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Abstract
In this paper, improved algorithms are proposed for preconditioned bi-Lanczos-type 
methods with residual norm minimization for the stable solution of systems of lin-
ear equations. In particular, preconditioned algorithms pertaining to the bi-conjugate 
gradient stabilized method (BiCGStab) and the generalized product-type method 
based on the BiCG (GPBiCG) have been improved. These algorithms are more sta-
ble compared to conventional alternatives. Further, a stopping criterion changeover 
is proposed for use with these improved algorithms. This results in higher accu-
racy (lower true relative error) compared to the case where no changeover is done. 
Numerical results confirm the improvements with respect to the preconditioned 
BiCGStab, the preconditioned GPBiCG, and stopping criterion changeover. These 
improvements could potentially be applied to other preconditioned algorithms based 
on bi-Lanczos-type methods.
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1 Introduction

In scientific and engineering computation, natural phenomena and engineering 
problems are described by mathematical models. These models are often reduced to 
a system of linear equations:

where A is a large, sparse nonsymmetric coefficient matrix of size n  × n, x is the 
solution vector, and b is the right-hand side (RHS) vector. In this paper, we assume 
A, x and b to be real.

Preconditioned algorithms based on the bi-Lanczos-type Krylov subspace 
method are often adopted. These algorithms achieve satisfactory convergence with 
few mathematical operations and limited computational resources compared to algo-
rithms based on the Arnoldi-type Krylov subspace method. The bi-Lanczos-type 
methods are based on the bi-conjugate gradient (BiCG) method [3, 10]. For instance, 
the bi-conjugate gradient stabilized method (BiCGStab) [18] and the generalized 
product-type method based on the BiCG (GPBiCG) [19] have been proposed.

Further, preconditioning is effective for improving the convergence of these algo-
rithms. However, if a preconditioned algorithm is poorly designed, there may be no 
beneficial effect from the preconditioning operation. Consequently, it is essential to 
carefully design preconditioned algorithms.

Recently, an improved preconditioned algorithm for the conjugate gradient 
squared (CGS) method was proposed [8]. The algorithm retains some mathemati-
cal properties that are associated with the derivation of CGS from the BiCG method 
for the non-preconditioned system. It performs better than the conventional pre-
conditioned CGS (PCGS) algorithm. A mathematical characteristic of this algo-
rithm is that it corresponds to the left-preconditioned system, with �PCGS

k
= �PBiCG

k
 , 

�PCGS
k

= �PBiCG
k

 for the standard preconditioned BiCG (PBiCG) algorithm [7]. Here, 
we seek to derive improved preconditioned algorithms for the BiCGStab and the 
GPBiCG which adopt the above characteristic. Importantly, there is an essential dif-
ference in preconditioning conversion between the BiCG, the CGS, and the BiCG-
Stab, the GPBiCG. We have already shown that the direction of the preconditioned 
system for the CGS depends on the direction of the BiCG by focusing on the con-
gruence property with respect to the direction of the preconditioning conversion [8]. 
In contrast, there is no congruence property on the minimal residual operation (MR 
part) for the BiCGStab and the GPBiCG. In what follows, we prove that the PCGS 
improvement mechanism can be extended to the preconditioned BiCGStab (PBiCG-
Stab) and preconditioned GPBiCG (PGPBiCG) without the congruence property, by 
analyzing the structure of both preconditioned algorithms.

Moreover, we generate a further improvement via introducing a stopping crite-
rion changeover [9]. Doing so realizes a highly accurate numerical solution with 
advantages for the right- and left-preconditioned systems for the CGS method [8].

This paper is organized as follows. Section   2 provides relevant definitions, 
theorems and notations. Section   3 focusses on various PBiCGStab including 
improved algorithms. Section  4 focusses on various PGPBiCG including improved 

(1.1)Ax = b,
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algorithms. In Sect.   5, we present the results of numerical experiments. Finally, 
conclusions are offered in Sect.  6.

2  Preliminaries

In this study, preconditioned algorithm and preconditioned system refer to solving 
algorithms described with some preconditioning operator M (or preconditioner/pre-
conditioning matrix) and the system converted by the operator based on M , respec-
tively. Here, M is not a specific preconditioner, but a general preconditioner.

Definition 1 The matrix, vector and scalar variable for a preconditioned system are 
denoted by tilde ( ̃  ). Then, for the system and solution

we define the direction of the preconditioned system of linear equations as follows:

– The two-sided preconditioned system: Equation (2.2);
– The right-preconditioned system: Ml = I and Mr = M in (2.2);
– The left-preconditioned system: Ml = M and Mr = I in (2.2),

where M is the preconditioner M = MlMr ( M ≈ A ) and I is the identity matrix.
Other vectors in the solution method are not preconditioned. The initial guess is 

given as x0 , and x̃0 = Mrx0.

In terms of bi-Lanczos-type methods like the BiCG and the CGS, we assume 
the existence of a dual system ATx♯ = b♯ and we will refer to this as the “shadow 
system”. It has the initial shadow residual vector (ISRV: r♯

0
(= b♯ − ATx

♯

0
) assuming 

an initial guess). References [7, 8] have reported the following theorem concerning 
the relation between the construction and setting of ISRV and preconditioned BiCG, 
and CGS methods.

Theorem 1 (Itoh and Sugihara [7, 8]) The direction of a preconditioned system for 
the BiCG method and CGS method is switched by the construction and setting of 
ISRV.

After preliminaries, Example  1 in Definition  8 is used to illuminate Theorem  1.

Definition 2 Notation for the direction of preconditioning conversion:
Ãw(= M−1

l
AM−1

r
) : the matrix with two-sided preconditioning conversion.

Ãr(= AM−1) : the matrix with right-preconditioning conversion.

(2.1)Ãx̃ = b̃,

(2.2)Ã = M−1
l
AM−1

r
, x̃ = Mrx, b̃ = M−1

l
b,
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Ãl(= M−1A) : the matrix with left-preconditioning conversion.

Definition 3 (Congruence [8]) Let the term “all directions on preconditioning con-
versions” be a synthesis of the preconditioning conversion for “the two-sided direc-
tion”, “the right direction”, and “the left direction”, not only for the system and solu-
tion (2.1), but also for other vectors in the solution method.

If all directions on the preconditioning conversions to the solution method are 
reduced to one and the same algorithm description, then we refer to this as “congru-
ence” in the direction of the preconditioning conversion (See [8] for an example). 
Furthermore, the term “congruency” refers to the congruence property.

Proposition 1 (Congruency: Itoh and Sugihara [7, 8]) There is congruence in 
the PBiCG and PCGS algorithms concerning the direction of the preconditioning 
conversion.

At first glance, the above Definitions   1 and 2 may be misinterpreted as the 
same matter. Importantly, they differ because of the assertions of Theorem  1 and 
Proposition  1 concerning the PBiCG and PCGS algorithms, and these algorithms 
do not have residual norm minimization operations. In this paper, Theorem   1 
will be extended to bi-Lanczos-type methods with residual norm minimization.

Definition 4 (Notation concerning the inner product and norm.) Let V be a lin-
ear space. Then, we describe (u, v) as the Euclidean inner product, u, v ∈ V  . ‖ ⋅ ‖ 
means the 2-norm (the Euclidean vector norm and the corresponding matrix norm), 
and �(A)(= ‖A‖‖A−1‖) means the condition number of matrix A. Let V♯ be the dual 
space of V. Then, we describe ⟨u♯, v⟩ as the inner product expressing the duality of V 
and V♯ , v ∈ V , u♯ ∈ V♯ [13].

Definition 5 (Coordinative to the left-preconditioned algorithm) If a precondition-
ing bi-Lanczos-based algorithm corresponds to the left-preconditioned system with 
mathematical equivalence, then we state that “the preconditioning bi-Lanczos-type 
algorithm is coordinative to the left-preconditioned algorithm.” Let r+

k
 be the resid-

ual vector of the left-preconditioned (Left) bi-Lanczos-type algorithm in Definition  
1, then a coordinative to the left-preconditioned (coLeft) algorithm has a residual 
vector rk , here, r+

k
≡ M−1rk . Further, the relative residual norm of the algorithm is 

‖rk‖∕‖b‖ for coLeft, but ‖r+
k
‖∕‖M−1b‖ for Left.

Proposition 2 (Itoh and Sugihara [9]) In the solution algorithms for a nonsym-
metric system, there exist the following relations (2.3) for the right-preconditioned 
system and (2.4) for the left-preconditioned system. k denotes the iteration number. 
xexact means the exact solution for the system of linear equations (1.1).

(2.3)
‖M(xk+1 − xexact)‖

‖Mxexact‖
≤ �(AM−1)

‖rk+1‖
‖b‖ ,
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Definition 6 Let a stopping criterion ‖rk+1‖∕‖b‖ be a benchmark. We define the 
following relation between the benchmark and ‖r+

k+1
‖∕‖M−1b‖ for the left-precondi-

tioned algorithm [9].

The recurrences of the BiCG for the preconditioned system are

Here, Rk(�̃�) is the residual polynomial of degree k. Further, Pk(�̃�) is the probing 
direction polynomial of degree k, that is, r̃BiCG

k
= Rk(Ã)r̃0 and p̃BiCG

k
= Pk(Ã)r̃0 . For 

example, in the left-PBiCG, (2.7) is shown as RL
k
(�̃�) = RL

k−1
(�̃�) − 𝛼L

k−1
�̃�PL

k−1
(�̃�) . We 

denote these polynomials with superscript “L”1, to indicate that these polynomials 
pertain to the left-preconditioned system [7].

Definition 7 (Notation for the preconditioned vector) The symbol v+
k
 means 

v+
k
≡ M−1vk . To distinguish between the direction of the preconditioned system, we 

use v+
k
(= PolL

k
(M−1A)M−1r0 = M−1PolL

k
(AM−1)r0 = M−1vL

k
) for the left-precondi-

tioned system ( L ). Here, Polk(Ã)r̃0 means the polynomial of degree k for ṽk . On the 
other hand2, for the right-preconditioned system ( R ), we use v̆k to distinguish with 
v+
k
 . Here, v̆k ≡ M−1PolR

k
(AM−1)r0 = M−1vR

k
.

Theorem 2 (Lanczos [10], Fletcher [3], Itoh and Sugihara [7]) The BiCG method 
for the preconditioned system satisfies the following conditions:

Here, r̃♯
i
 and p̃♯

i
 are the vectors in the dual shadow system of r̃BiCG

j
 and p̃BiCG

j
 , 

respectively.

(2.4)
‖xk+1 − xexact‖

‖xexact‖
≤ �(M−1A)

‖r+
k+1

‖
‖M−1b‖

.

(2.5)
‖r+

k+1
‖

‖M−1b‖
<

‖rk+1‖
‖b‖ (LTB: less than the benchmark),

(2.6)
‖rk+1‖
‖b‖ <

‖r+
k+1

‖
‖M−1b‖

(GTB: greater than the benchmark) .

(2.7)Rk(�̃�) = Rk−1(�̃�) − 𝛼PBiCG
k−1

�̃�Pk−1(�̃�), R0(�̃�) = 1,

(2.8)Pk(�̃�) = Rk(�̃�) + 𝛽PBiCG
k−1

Pk−1(�̃�), P0(�̃�) = 1.

(2.9)⟨r̃♯
i
, r̃BiCG

j
⟩ = 0 (i ≠ j), (biorthogonality),

(2.10)⟨p̃♯
i
, Ãp̃BiCG

j
⟩ = 0 (i ≠ j), (biconjugacy).

1 In a similar manner, we use “R” to indicate the right-preconditioned system and “W” to indicated the 
two-sided preconditioned system. On the other hand, we denote the direction of the preconditioning con-
version in lower case.
2 For coding purposes, we do not need to specifically distinguish v+

k
 and v̆

k
.
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Definition 8 (Abbreviation of initial shadow residual vectors [7, 8]) We assume that 
⟨r̃♯

0
, r̃0⟩ ≠ 0 , e.g., r̃♯

0
= r̃0 ≠ 0 , regarding the construction and setting of the ISRV for 

the preconditioned system. Here, r̃0 means the initial residual vector for the precon-
ditioned system of r0 = b − Ax0 . If r̃

♯

0
= r

♯

0
 and r̃0 = M−1r0 are given, then it reduces 

to r♯
0
= M−1r0 (ISRV1). This construction and setting of ISRV brings coLeft to the 

left-preconditioned system. If r̃♯
0
= M−Tr

♯

0
 and r̃0 = r0 are given, then it reduces to 

r♭
0
= r0 ( r♭0 ≡ M−Tr

♯

0
 ) or r♯

0
= MTr0 (ISRV2). This brings coLeft to the right-precon-

ditioned system. Further, if r̃♯
0
= M−Tr

♯

0
≡ r♭

0
 , r♭

0
= M−TM−1r0 and r̃0 = r0 are given, 

it reduces to r♭
0
= M−TM−1r0 (ISRV93), this brings the right-preconditioned algo-

rithm to the left-preconditioned system.

Example 1 It is sufficient to prove the following cases regarding the biorthogonal-
ity. The biconjugacy can be proven in a similar manner [7, 8]. 

(1) Applying ISRV1 to coLeft: 

(2) Applying ISRV2 to coLeft: 

(3) Applying ISRV9 to right-preconditioned algorithm: 

(r̃
♯

k
, r̃k) = (Rk(A

TM−T) r
♯

0
, M−1Rk(AM

−1)r0)

= (RL
k
(ATM−T)(M−1r0), R

L
k
(M−1A)(M−1r0)).

(r̃
♯

k
, r̃k) = (Rk(A

TM−T) r
♯

0
, M−1Rk(AM

−1)r0)

= (M−TRR
k
(ATM−T)(MTr0), R

R
k
(AM−1)r0)

= (RR
k
(M−TAT)r0, R

R
k
(AM−1)r0).

(r̃
♯

k
, r̃k) = (Rk(M

−TAT)(M−Tr
♯

0
), Rk(AM

−1)r0)

= (Rk(M
−TAT)r♭

0
, Rk(AM

−1)r0)

= (RL
k
(M−TAT)(M−TM−1r0), R

L
k
(AM−1)r0)

= (M−TRL
k
(ATM−T)(M−1r0), R

L
k
(AM−1)r0)

= (RL
k
(ATM−T)(M−1r0), R

L
k
(M−1A)(M−1r0)).

3 Although ISRV9 is not sequential with respect to ISRV1 and ISRV2, the designation is consistent with 
our approach.
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3  Analyses for various preconditioned BiCGStab algorithms

First, we outline how to derive the BiCGStab method for the preconditioned system, 
and propose relevant theorems concerning the characteristics of the PBiCGStab. 
Next, we give outlines of six types of PBiCGStab algorithms. Finally, we summa-
rize the characteristics of their mathematical structures.

3.1  Derivation of the BiCGStab method from PBiCG

The shadow residual vector in the PBiCGStab adopts s̃♯
k
= Sk(Ã

T )r̃
♯

0
 using the poly-

nomial Sk(�̃�) of degree k, the stabilized polynomial. s̃♯
k
 is expanded as follows4:

where, “lc” is an abbreviation of the leading coefficient;

Deriving the bi-Lanczos-type method from the PBiCG, we apply (2.9) to the follow-
ing inner product:

Therefore,

Next, the inner product (2.10) is transformed by p̃♯
k
= r̃

♯

k
+ 𝛽PBiCG

k−1
p̃
♯

k−1
 of PBiCG

Further, like deriving (3.2), the inner product of s̃♯
k
 and Ãp̃k reduces the following 

with ⟨r̃♯
i
, Ãp̃BiCG

j
⟩ = ⟨p̃♯

i
− 𝛽PBiCG

i−1
p̃
♯

i−1
, Ãp̃BiCG

j
⟩ = 0 (i ≠ j):

We state the polynomials of the residual vector and probing direction vector as

(3.1)s̃
♯

k
=

lc(Sk)

lc(Rk)
(r̃

♯

k
+ dk−1r̃

♯

k−1
+⋯ + d1r̃

♯

1
+ d0r̃

♯

0
).

lc(Rk+1) = −�PSTAB
k

lc(Rk), lc(Sk+1) = −�PSTAB
k

lc(Sk).

⟨s̃♯
k
, r̃BiCG

k
⟩ =

lc(Sk)

lc(Rk)
⟨r̃♯

k
, r̃BiCG

k
⟩ ≡ 1

ck
⟨r̃♯

k
, r̃BiCG

k
⟩.

(3.2)
⟨r̃♯

k
, r̃BiCG

k
⟩ = ck⟨s̃

♯

k
, r̃BiCG

k
⟩ = ck⟨Sk(ÃT )r̃

♯

0
,Rk(Ã)r̃0⟩

= ck⟨r̃
♯

0
, Sk(Ã)Rk(Ã)r̃0⟩.

(3.3)
⟨p̃♯

k
, Ãp̃BiCG

k
⟩ = ⟨r̃♯

k
, Ãp̃BiCG

k
⟩ + 𝛽PBiCG

k−1
⟨p̃♯

k−1
, Ãp̃BiCG

k
⟩

= ⟨r̃♯
k
, Ãp̃BiCG

k
⟩.

(3.4)
⟨r̃♯

k
, Ãp̃BiCG

k
⟩ = ck⟨s̃

♯

k
, Ãp̃BiCG

k
⟩ = ck⟨Sk(ÃT )r̃

♯

0
, ÃPk(Ã)r̃0⟩

= ck⟨r̃
♯

0
, ÃSk(Ã)Pk(Ã)r̃0⟩.

(3.5)r̃STAB
k

≡ Sk(Ã)Rk(Ã)r̃0, p̃STAB
k

≡ Sk(Ã)Pk(Ã)r̃0.

4 Coefficients of d
i
(i = k − 1,… , 0) inside the brackets are calculated by dividing each coefficient of r̃♯

i
 

by lc(S
k
)∕lc(R

k
).
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Then, the following Proposition consists of (3.2) to (3.5):

Proposition 3 

These �PSTAB
k

 and �PSTAB
k

 compose the BiCG part of the PBiCGStab, and they 
determine the direction of the preconditioned system [7]. This is the common char-
acteristic which exists in all bi-Lanczos-type methods.

The residual vector and polynomial of the BiCGStab method for the precondi-
tioned system, are expressed as follows:

The stabilized polynomial of PBiCGStab is

and contains no information regarding the direction of the preconditioned system, 
because �PSTAB

k
 and �PSTAB

k
 are not present.

Next, we consider PBiCGStab from the viewpoint of congruency [8]. �PSTAB
k

 of 
the PBiCGStab has the following operation,

The coefficient (3.8) defines the minimal residual (MR) operation of the polynomial 
of degree 1 that minimizes the norm of the residual vector in PBiCGStab, ||r̃STAB

k+1
|| 

[5, 18].

Theorem  3 �PSTAB
k

 has no congruency on the direction of the preconditioning 
conversion, but its direction of the preconditioned system depends on the PBiCG 
regardless of the direction of the preconditioning conversion.

Proof The three directions of the preconditioning conversion of (3.6), the two-sided 
(w), the left (l) and the right (r), are as follows, respectively:

𝛼PBiCG
k

=
⟨r̃♯

k
, r̃BiCG

k
⟩

⟨p̃♯
k
, Ãp̃BiCG

k
⟩
≡

⟨r̃♯
0
, r̃STAB

k
⟩

⟨r̃♯
0
, Ãp̃STAB

k
⟩
= 𝛼PSTAB

k
,

𝛽PBiCG
k

=
⟨r̃♯

k+1
, r̃BiCG

k+1
⟩

⟨r̃♯
k
, r̃BiCG

k
⟩

≡
𝛼PSTAB
k

𝜔PSTAB
k

×
⟨r̃♯

0
, r̃STAB

k+1
⟩

⟨r̃♯
0
, r̃STAB

k
⟩
= 𝛽PSTAB

k
.

(3.6)
r̃STAB
k+1

= t̃k − 𝜔PSTAB
k

Ãt̃k

= (I − 𝜔PSTAB
k

Ã)t̃k = SSTAB
k+1

(Ã)Rk+1(Ã)r̃0,

(3.7)t̃k = r̃STAB
k

− 𝛼PSTAB
k

Ãp̃STAB
k

= SSTAB
k

(Ã)Rk+1(Ã)r̃0.

SSTAB
k

(�̃�) = (1 − 𝜔PSTAB
k−1

�̃�)(1 − 𝜔PSTAB
k−2

�̃�)⋯ (1 − 𝜔PSTAB
0

�̃�),

(3.8)𝜔PSTAB
k

=
(Ãt̃k, t̃k)

(Ãt̃k, Ãt̃k)
.

(3.9)M−1
l
rPSTAB
k+1

= M−1
l
tk − 𝜔w

k
Ãw(M

−1
l
tk),
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These �PSTAB
k

 corresponding to the above are

Therefore, there is no congruency on the direction of the preconditioning conversion.
Next, we discuss the component of M−1tk in (3.12), which is the two-sided pre-

conditioning conversion of (3.8), to analyze the direction of the preconditioned sys-
tem. The initial residual vector of t̃k is also r̃0 = M−1

l
r0 . We assume the BiCG part of 

(3.7) to be the right preconditioned system (R), that is RR
k+1

(Ãw)r̃0 . Then

Here, the superscript STAB of the polynomial Sk is omitted. In contrast, we assume 
the BiCG part of (3.7) to be the left preconditioned system (L). Then

This is as per Ãw t̃
R

k
 , Ãw t̃

L

k
 of (3.8). In any preconditioned system, they will reduce 

to �w
k
 of (3.12) superficially. Further, �r

k
 and �l

k
 also depend on the direction of the 

preconditioned system of the BiCG part.   ◻

Remark 1 �PSTAB
k

 plays a function in min ‖M−1
l
rPSTAB
k+1

‖ , min ‖M−1rPSTAB
k+1

‖ or 
min ‖rPSTAB

k+1
‖ for the residual vectors with preconditioning conversion of (3.9) to (3.11), 

respectively. Here, only min ‖rPSTAB
k+1

‖ of the right preconditioning conversion (r) mini-
mizes “the original residual vector” without an operating preconditioner of (3.11).

However, it is not problematic to display only �k or �PSTAB
k

 by broadly interpret-
ing it as “ �k with preconditioning conversion” when referring to �k in other algo-
rithms. Therefore, only the MR coefficient in the PBiCGStab, that is �w

k
 , �l

k
 or �r

k
 , 

has no congruence property in a narrow sense. Further, these directions of the pre-
conditioned system depend on the BiCG part.

(3.10)M−1rPSTAB
k+1

= M−1tk − 𝜔l
k
Ãl(M

−1tk),

(3.11)rPSTAB
k+1

= tk − 𝜔r
k
Ãrtk.

(3.12)𝜔w
k
=

(ÃwM
−1
l
tk,M

−1
l
tk)

(Ãw(M
−1
l
tk), Ãw(M

−1
l
tk))

=
(M−1

l
AM−1tk,M

−1
l
tk)

(M−1
l
AM−1tk,M

−1
l
AM−1tk)

,

(3.13)𝜔l
k
=

(ÃlM
−1tk,M

−1tk)

(Ãl(M
−1tk), Ãl(M

−1tk))
=

(M−1AM−1tk,M
−1tk)

(M−1AM−1tk,M
−1AM−1tk)

,

(3.14)𝜔r
k
=

(Ãrtk, tk)

(Ãrtk, Ãrtk)
=

(AM−1tk, tk)

(AM−1tk,AM
−1tk)

.

t̃
R

k
= Sk(Ãw)R

R
k+1

(Ãw)r̃0 = M−1
l
Sk(AM

−1)RR
k+1

(AM−1)r0 ≡ M−1
l
tR
k
.

t̃
L

k
= Sk(Ãw)R

L
k+1

(Ãw)r̃0 = MrSk(M
−1A)RL

k+1
(M−1A)M−1r0

= M−1
l
Sk(AM

−1)RL
k+1

(AM−1)r0 ≡ M−1
l
tL
k
.
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Theorem 4 The direction of a preconditioned system which depends on the BiCG 
part is determined by the coefficients of �k and �k in each PBiCGStab algorithm. 
These intrinsic operations are based on biorthogonality and biconjugacy. Further, 
the direction of PBiCGStab is switched by the construction and setting of the ISRV.

Proof In the polynomial expressions of vectors r̃STAB
k

= SSTAB
k

(Ã)Rk(Ã)r̃0 , 
p̃STAB
k

= SSTAB
k

(Ã)Pk(Ã)r̃0 and t̃k = SSTAB
k

(Ã)Rk+1(Ã)r̃0 , the polynomial with the 
direction of the preconditioned system is only the BiCG part. That is Rk(Ã)r̃0 and 
Pk(Ã)r̃0 . Here, the recurrences of Rk(�̃�) , Pk(�̃�) contain �PSTAB

k
 and �PSTAB

k
 composed 

by the operations of biorthogonality or biconjugacy; these are switched by the con-
struction and setting of ISRV.   ◻

The assertions in Theorem   4 were also noted in References [7, 8] where the 
PCGS and the PBiCG were analyzed with the congruence property (see Theorem   
1 in this paper). Therein, it was proclaimed that the direction of the preconditioned 
system is not determined only by the linear system, but also depends on the con-
struction and setting of the ISRV, for the preconditioned algorithms or the bi-Lanc-
zos-type system. In this paper, we have confirmed this for the preconditioned algo-
rithms of interest without the congruence property.

We verify Theorem  4 by various PBiCGStab algorithms in the next subsection 
and provide numerical results in Sect.  5.

3.2  Various preconditioned BiCGStab algorithms

In this subsection, six types of PBiCGStab algorithms are outlined. The first two 
algorithms are the right-PBiCGStab and left-PBiCGStab. These are based on Defini-
tion  1 with an extended application of Theorem  1 to the PBiCGStab. Subsequently, 
new variants of algorithms are presented. The first two algorithms are coordinative 
to the left-PBiCGStab (coLeft), and the algorithm switches the right-PBiCGStab to 
the left-preconditioned system by the construction and setting of ISRV9. To analyze 
algorithms with different directions between the BiCG and MR parts, the final two 
algorithms are given as follows. One is an algorithm with the left-preconditioned 
system of the BiCG part and the right-preconditioning conversion of the MR part 
that is mathematically equivalent to ISRV9 (Case1)5. The other is an algorithm with 
the right-preconditioned system of the BiCG part and the left-preconditioning con-
version of the MR part (Case2). These six algorithms have two kinds of precondi-
tioning operations in their iterative components. The Right and Left algorithms are 
both derived trivially. Only the coLeft algorithm is presented on the new variant 
PBiCGStab in this manuscript. However, Case1 with the polynomial expression is 
presented at the end of this section as a reference. Descriptions of all algorithms are 
presented in Appendix A. In the subsection, we only discuss algorithms based on 
BiCGStab, and we do not display “ ̃ ” (tilde) or the superscript of “(P)STAB”.

5 This algorithm has been reported as an implementation technique in Reference [6], and its point at 
issue was different from conventional (the right-) preconditioned BiCGStab.
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3.2.1  Right‑ and Left‑PBiCGStab algorithm

It is straightforward to derive both the Right and Left algorithms by the precondi-
tioning conversion based on Definition  1, and by expressly providing the construc-
tion and setting of the ISRV.

Algorithm  1 Right-PBiCGStab algorithm (Right): The right-PBiCGStab is 
derived by Definition  1. This is the conventional PBiCGStab algorithm provided in 
References [1, 12, 18]. The construction and setting of the ISRV is r♭

0
= r0 , and the 

polynomials of the right preconditioned system are formed [8]. The standard stop-
ping criteria are

Algorithm 2 Left-PBiCGStab algorithm (Left): The left-PBiCGStab is derived 
by Definition  1. The construction and setting of the ISRV is r♯

0
= r+

0
 , and the poly-

nomials of the left preconditioned system are formed [8]. The standard stopping cri-
teria are

3.2.2  New variants of PBiCGStab algorithms

In this subsection, new variants of PBiCGStab algorithms are provided based on 
the foregoing Right and Left algorithms. For all algorithms, the standard stopping 
criteria are (3.15).

Algorithm  3 is derived as follows. Applying the same preconditioning conversion 
as Algorithm  2, splitting the residual vector r+

k
 of Algorithm  2 into M−1rk , and add-

ing the recurrences for the residual vectors of tk = rk − �kAp
+
k
 and rk+1 = tk − �kAt

+
k
 . 

In this iterative part, both rk+1 and r+
k+1

 are calculated. The construction and setting 
of the ISRV is r♯

0
= M−1r0 . This algorithm is coordinative to the Left PBiCGStab, 

and this BiCG part is the left preconditioned system. The MR part is the left precon-
ditioning conversion.

Algorithm 3 Coordinative to left-PBiCGStab algorithm (coLeft) :
x0 is an initial guess, r0 = b − Ax0, set �−1 = 0,

r
♯

0
= M−1r0,

r+
0
≡ M−1r0,

For k = 0, 1, 2, 3,… , Do:

(3.15)
‖tk‖
‖b‖ ≤ � (Early check),

‖rk+1‖
‖b‖ ≤ � (Convergence check).

(3.16)
‖t+

k
‖

‖M−1b‖
≤ � (Early check),

‖r+
k+1

‖
‖M−1b‖

≤ � (Convergence check).
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End Do

Algorithm 4 Right-PBiCGStab with ISRV9 (ISRV9) : This algorithm is derived 
by replacing the ISRV of the Right (Algorithm  1) with r♭

0
= M−TM−1r0 (ISRV9). 

This BiCG part is the left preconditioned system and the MR part is the right pre-
conditioning conversion.

Algorithm 5 BiCG-left and MR-right PBiCGStab algorithm (Case1): This algo-
rithm is mathematically equivalent to ISRV9 (Algorithm  4). That is, the BiCG part is 
the left preconditioned system and the MR part is the right preconditioning conversion.

Algorithm 6 BiCG-right and MR-left PBiCGStab algorithm (Case2): This algorithm 
is composed of the opposite combination to Case1 (Algorithm 5). That is, the BiCG part 
is the right preconditioned system and the MR part is the left preconditioning conversion.

3.2.3  Features of various preconditioned BiCGStab algorithms

Table  1 shows the characteristics of the PBiCGStab algorithms in this section.
There are differences between the Left (Algorithm  2) and the coLeft (Algorithm  

3). The residual vector r+
k
 of the Left is split into M−1rk of the coLeft, and the stopping 

criteria are different (see, Definition   5). However, the true residual vector b − Axk 
and the true error xk − xexact are mathematically equivalent between both algorithms. 
ISRV9 (Algorithm   4) is mathematically equivalent to Case1 (Algorithm   5). The 
Right is the same algorithm as ISRV9, except for the construction and setting of the 
ISRV. Therefore, we may confirm that the direction of a preconditioned system for the 
BiCGStab is switched by the construction and setting of the ISRV.

As a reference, Case1 (Algorithm  5) with the polynomial expression is shown; 
double underline is used to indicate the polynomials.

p+
k
= r+

k
+ 𝛽k−1(p

+
k−1

− 𝜔k−1M
−1Ap+

k−1
),

𝛼k =
⟨r♯

0
, r+

k
⟩

⟨r♯
0
,M−1Ap+

k
⟩
,

tk = rk − 𝛼kAp
+
k
,

t+
k
= r+

k
− 𝛼kM

−1Ap+
k
,

𝜔k =
(M−1At+

k
, t+
k
)

(M−1At+
k
,M−1At+

k
)
,

xk+1 = xk + 𝛼kp
+
k
+ 𝜔kt

+
k
,

rk+1 = tk − 𝜔kAt
+
k
,

r+
k+1

= t+
k
− 𝜔kM

−1At+
k
,

𝛽k =
𝛼k
𝜔k

×
⟨r♯

0
, r+

k+1
⟩

⟨r♯
0
, r+

k
⟩
,
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Algorithm 5’ Polynomial description of the BiCG-left and MR-right PBiCG-
Stab algorithm (Case 1) :

x0 is an initial guess, r0 = b − Ax0, set �L
−1

= 0,
r
♯

0
= M−1r0,

r+
0
≡ M−1r0,

For k = 0, 1, 2, 3,… , Do:

End Do

p+
k
= r+

k
+ 𝛽L

k−1
(p+

k−1
− 𝜔r

k−1
M−1Ap+

k−1
) = Sk(Ãl)P

L
k
(Ãl)M

−1r0,

𝛼L
k
=

⟨r♯
0
, r+

k
⟩

⟨r♯
0
,M−1Ap+

k
⟩
=

⟨M−1r0, Sk(Ãl)R
L
k
(Ãl)M

−1r0⟩
⟨M−1r0, ÃlSk(Ãl)P

L
k
(Ãl)M

−1r0⟩
,

tk = rk − 𝛼L
k
Ap+

k
= MSk(Ãl)R

L
k+1

(Ãl)M
−1r0,

t+
k
= r+

k
− 𝛼L

k
M−1Ap+

k
= Sk(Ãl)R

L
k+1

(Ãl)M
−1r0,

𝜔r
k
=

(AM−1tk, tk)

(AM−1tk,AM
−1tk)

≡
(At+

k
, tk)

(At+
k
,At+

k
)

=
(ÃrMSk(Ãl)R

L
k+1

(Ãl)M
−1r0, Sk(Ãl)R

L
k+1

(Ãl)M
−1r0)

(ÃrMSk(Ãl)R
L
k+1

(Ãl)M
−1r0, ÃrMSk(Ãl)R

L
k+1

(Ãl)M
−1r0)

,

xk+1 = xk + 𝛼L
k
p+
k
+ 𝜔r

k
t+
k

= xk + 𝛼L
k
Sk(Ãl)P

L
k
(Ãl)M

−1r0 + 𝜔r
k
Sk(Ãl)R

L
k+1

(Ãl)M
−1r0,

rk+1 = tk − 𝜔r
k
At+

k
= MSk+1(Ãl)R

L
k+1

(Ãl)M
−1r0,

r+
k+1

= M−1rk+1 = M−1
�
MSk+1(Ãl)R

L
k+1

(Ãl)M
−1r0

�
,

𝛽L
k
=

𝛼L
k

𝜔r
k

×
⟨r♯

0
, r+

k+1
⟩

⟨r♯
0
, r+

k
⟩

=
𝛼L
k

𝜔r
k

×
⟨M−1r0, Sk+1(Ãl)R

L
k+1

(Ãl)M
−1r0⟩

⟨M−1r0, Sk(Ãl)R
L
k
(Ãl)M

−1r0⟩
,

Table 1  Characteristics of 
the six types of PBiCGStab 
algorithms. In the column of 
�
k
, �

k
 , “R” indicates the right-

preconditioned system and “L” 
indicates the left-preconditioned 
system. In the column of �

k
 , “r” 

indicates the right-direction of 
preconditioning conversion and 
“l” indicates the left-direction of 
preconditioning conversion

Name (Alg. no.) ISRV �
k
 , �

k
�
k

Standard 
stopping 
criterion

Right  (Alg.  1) r
♭ = r0

R r (3.15)
Left    (Alg.  2) r

♯ = r
+
0

L l (3.16)
coLeft (Alg.  3) r

♯ = M
−1
r0

L l (3.15)
ISRV9 (Alg.  4) r

♭ = M
−T
M

−1
r0

L r (3.15)
Case 1 (Alg.  5) r

♯ = M
−1
r0

L r (3.15)
Case 2 (Alg.  6) r

♭ = r0
R l (3.15)
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4  Analyses for various preconditioned GPBiCG algorithms

In this section, first we provide an outline for deriving the GPBiCG method for the 
preconditioned system, and propose some corollaries on the characteristics of the 
PGPBiCG. Next, we give outlines of the six types of PGPBiCG algorithms. These 
mathematical structure of the characteristics correspond to the six types of PBiCG-
Stab in the former section.

4.1  Derivation of the GPBiCG method from PBiCG

Derivation of the GPBiCG for the preconditioned system proceeds in a similar man-
ner as the derivation of the PBiCGStab in section 3. This is particularly the case 
with respect to the derivation procedure from (3.1) to (3.4); except that the super-
scripts of �PSTAB

k
 , �PSTAB

k
 , and �PSTAB

k
 are changed of PGP.

Here, we state the polynomials of the residual vector and probing direction vector as

Then, the following Corollary uses (3.2) to (3.4):

Corollary 1 

The residual vector and polynomial of the GPBiCG method for the preconditioned 
system are expressed as follows:

The stabilized polynomial of PGPBiCG is

The coefficients of �PGP
k

 , �PGP
k

 compose the minimal residual (MR) operation of the 
polynomial of degree 2 that minimizes the norm of the residual vector in PGPBiCG, 
||r̃GP

k+1
|| [4, 5, 19]. Therefore, the effect of the MR part in PGPBiCG is higher than in 

PBiCGStab.

r̃GP
k

≡ Sk(Ã)Rk(Ã)r̃0, p̃GP
k

≡ Sk(Ã)Pk(Ã)r̃0.

𝛼PBiCG
k

=
⟨r̃♯

k
, r̃BiCG

k
⟩

⟨p̃♯
k
, Ãp̃BiCG

k
⟩
≡

⟨r̃♯
0
, r̃GP

k
⟩

⟨r̃♯
0
, Ãp̃GP

k
⟩
= 𝛼PGP

k
,

𝛽PBiCG
k

=
⟨r̃♯

k+1
, r̃BiCG

k+1
⟩

⟨r̃♯
k
, r̃BiCG

k
⟩

≡
𝛼PGP
k

𝜔PGP
k

×
⟨r̃♯

0
, r̃GP

k+1
⟩

⟨r̃♯
0
, r̃GP

k
⟩
= 𝛽PGP

k
.

(4.1)
r̃GP
k+1

= t̃k − 𝜂PGP
k

ỹk − 𝜔PGP
k

Ãt̃k = SGP
k+1

(Ã)Rk+1(Ã)r̃0,

t̃k = r̃GP
k

− 𝛼PGP
k

Ãp̃GP
k

= SGP
k
(Ã)Rk+1(Ã)r̃0.

(4.2)
SGP
0
(�̃�) = 1, SGP

1
(�̃�) = (1 − 𝜔PGP

0
�̃�)SGP

0
(�̃�),

SGP
k+1

(�̃�) = (1 + 𝜂PGP
k

− 𝜔PGP
k

�̃�)SGP
k
(�̃�) − 𝜂PGP

k
SGP
k−1

(�̃�), (k ≥ 1).
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For projection onto the two-dimensional subspace spanned by ỹk and Ãt̃k , we define 
the n × 2 matrix B̃ ≡

[
ỹk, Ãt̃k

]
 . Hence, the optimal coefficients �PGP

k
 and �PGP

k
 for (4.1) 

are calculated as follows:

After all, we obtain

Here, ỹk = ÃQk−1(Ã)Rk+1(Ã)r̃0 , Qk−1(�̃�) = (SGP
k−1

(�̃�) − SGP
k
(�̃�))∕�̃� . Then, the recur-

rences of (4.2) are transformed into the following: SGP
0
(�̃�) = 1, Q0(�̃�) = 𝜔PGP

0
 , 

SGP
k
(�̃�) = SGP

k−1
(�̃�) − �̃�Qk−1(�̃�) , Qk(�̃�) = 𝜔PGP

k
SGP
k
(�̃�) + 𝜂PGP

k
Qk−1(�̃�) (k ≥ 1).

The following Corollary resonates with Theorem  3 of the PBiCGStab.

Corollary 2 �PGP
k

 and �PGP
k

 have no congruency on the direction of the precondi-
tioning conversion, but the direction of the preconditioned system depends on the 
PBiCG regardless of the direction of the preconditioning conversion.

The following are the coefficients of (4.3), (4.4) after preconditioning conversion 
to the right (r) and the left (l).

B̃TB̃

[
𝜂PGP
k

𝜔PGP
k

]
= B̃T t̃k, therefore,

[
𝜂PGP
k

𝜔PGP
k

]
= (B̃TB̃)−1B̃T t̃k.

(4.3)𝜔PGP
k

=
(ỹk, ỹk)(Ãt̃k, t̃k) − (ỹk, t̃k)(Ãt̃k, ỹk)

(Ãt̃k, Ãt̃k)(ỹk, ỹk) − (ỹk, Ãt̃k)(Ãt̃k, ỹk)
,

(4.4)𝜂PGP
k

=
(Ãt̃k, Ãt̃k)(ỹk, t̃k) − (ỹk, Ãt̃k)(Ãt̃k, t̃k)

(Ãt̃k, Ãt̃k)(ỹk, ỹk) − (ỹk, Ãt̃k)(Ãt̃k, ỹk)
.

(4.5)�r
k
=

(yk, yk)(At
+
k
, tk) − (yk, tk)(At

+
k
, yk)

(At+
k
,At+

k
)(yk, yk) − (yk,At

+
k
)(At+

k
, yk)

,

(4.6)�r
k
=

(At+
k
,At+

k
)(yk, tk) − (yk,At

+
k
)(At+

k
, tk)

(At+
k
,At+

k
)(yk, yk) − (yk,At

+
k
)(At+

k
, yk)

.

(4.7)�l
k
=

(y+
k
, y+

k
)(M−1At+

k
, t+
k
) − (y+

k
, t+
k
)(M−1At+

k
, y+

k
)

(M−1At+
k
,M−1At+

k
)(y+

k
, y+

k
) − (y+

k
,M−1At+

k
)(M−1At+

k
, y+

k
)
,

(4.8)�l
k
=

(M−1At+
k
,M−1At+

k
)(y+

k
, t+
k
) − (y+

k
,M−1At+

k
)(M−1At+

k
, t+
k
)

(M−1At+
k
,M−1At+

k
)(y+

k
, y+

k
) − (y+

k
,M−1At+

k
)(M−1At+

k
, y+

k
)
.
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Remark 2 The �r
k
 , �r

k
 of the right preconditioning conversion minimizes the norm 

of the original residual vector ‖rPGP
k+1

‖ without operating a preconditioner, as with 
Remark  1 for the PBiCGStab.

The following Corollary resonates with Theorem  4 of the PBiCGStab. We verify 
Corollary  3 by various PGPBiCG algorithms in the next subsection with numerical 
results provided in section 5.

Corollary 3 The direction of a preconditioned system which depends on the BiCG 
part is determined by the coefficients of �k and �k in each PGPBiCG algorithm. 
These intrinsic operations are based on biorthogonality and biconjugacy. Further, 
the direction of PGPBiCG is switched by the construction and setting of the ISRV.

4.2  Various preconditioned GPBiCG algorithms

In this subsection, the six types of PGPBiCG algorithms are shown and their 
mathematical structures are summarized in Sect. 4.2.3. These six algorithms have 
two kinds of preconditioning operations in their iterative part. Descriptions of all 
algorithms are presented in the Appendix B. We only discuss algorithms based on 
GPBiCG, and do not display “ ̃ (tilde)” or the superscript of “(P)GP”.

4.2.1  Right‑ and Left‑PGPBiCG algorithm

The Right and Left algorithms are derived as follows.

Algorithm  7 Right-PGPBiCG algorithm (Right): The “Right-PGPBiCG algo-
rithm” based on Definition  1 has three kinds of preconditioning operations ( M−1pk , 
M−1tk , and M−1zk ). We state z̆k ≡ M−1zk , and use r̆k(≡ M−1rk) , ŭk(≡ M−1uk) . Fur-
ther, we apply the necessary transformation. The construction and setting of the 
ISRV is r♭

0
= r0 and the polynomials of the right preconditioned system are formed 

[8]. The standard stopping criteria are (3.15); ‖tk‖∕‖b‖ ≤ � , ‖rk+1‖∕‖b‖ ≤ �.

Algorithm 8 Left-PGPBiCG algorithm (Left): We derive the left-PGPBiCG by 
Definition  1. The construction and setting of the ISRV is r♯

0
= r+

0
 and the polynomi-

als of the left preconditioned system are formed [8]. The standard stopping criteria 
are (3.16); ‖t+

k
‖∕‖M−1b‖ ≤ � , ‖r+

k+1
‖∕‖M−1b‖ ≤ �.

4.2.2  New variants of PGPBiCG algorithms

In this subsection, new variants of PGPBiCG algorithms are provided. In the 
same manner as deriving new PBiCGStab variants, they are also based on the for-
mer Right (Algorithm 7) or Left (Algorithm 8) algorithms. For all algorithms, the 
standard stopping criteria are (3.15).
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Algorithm 9 Coordinative to left-PGPBiCG algorithm (coLeft):  This algorithm 
is coordinative to the Left PGPBiCG and the BiCG part is the left preconditioned 
system. The MR part is the left preconditioning conversion. The construction and 
setting of the ISRV is r♯

0
= M−1r0.

Algorithm 10 Right-PGPBiCG with ISRV9 (ISRV9):  This algorithm is derived 
by replacing the ISRV of the Right (Algorithm  7) with r♭

0
= M−TM−1r0 (ISRV9). 

The BiCG part is the left preconditioned system and the MR part is the right precon-
ditioning conversion.

Algorithm  11 BiCG-left and MR-right PGPBiCG algorithm (Case 1): This 
algorithm is mathematically equivalent to ISRV9 (Algorithm  10). That is, the BiCG 
part is the left preconditioned system and the MR part is the right preconditioning 
conversion.

Algorithm  12 BiCG-right and MR-left PGPBiCG algorithm (Case 2): This 
algorithm is composed of the opposite combination to Case1 (Algorithm 11). That 
is, the BiCG part is the right preconditioned system and the MR part is the left pre-
conditioning conversion.

4.2.3  Features of various preconditioned GPBiCG algorithms

Table  2 shows the characteristics of the PGPBiCG algorithms in this section.

Table 2  Characteristics of 
the six types of PGPBiCG 
algorithms. In the column of 
�
k
, �

k
 , “R” indicates the right-

preconditioned system and “L” 
indicates the left-preconditioned 
system. In the column of �

k
, �

k
 , 

“ r ” indicates the right-direction 
of preconditioning conversion 
and “ l ” indicates the left-
direction of preconditioning 
conversion

Name (Alg. no.) ISRV �
k
 , �

k
�
k
 , �

k
Standard 
stopping 
criterion

Right  (Alg.  7) r
♭ = r0

R r (3.15)
Left    (Alg.  8) r

♯ = r
+
0

L l (3.16)
coLeft (Alg.  9) r

♯ = M
−1
r0

L l (3.15)
ISRV9 (Alg.  10) r

♭ = M
−T
M

−1
r0

L r (3.15)
Case1 (Alg.  11) r

♯ = M
−1
r0

L r (3.15)
Case2 (Alg.  12) r

♭ = r0
R l (3.15)
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5  Numerical experiments

In Sect. 5.1, we verify that the numerical values of �k and �k of PBiCG, PBiCGStab 
and PGPBiCG are equivalent for each direction of the preconditioned system (Prop-
osition  3, Corollary  1). Further, we confirm the characteristics of the six types of 
algorithms (Right, Left, coLeft, ISRV9, Case1, and Case2), by the numerical values 
of �k , �k , �k , and �k . We also confirm that the direction of the preconditioned system 
which depends on the BiCG part is determined by the coefficients of �k and �k in 
each PBiCGStab, PGPBiCG algorithm, and the direction of PBiCGStab is switched 
by the construction and setting of the ISRV (Theorem  4, Corollary  3).

In Sect.  5.2, we present numerical results associated with the six types of PBiCG-
Stab and PGPBiCG in Sects.  3.2 and 4.2, and the numerical results of the three types 
of PBiCGStab and PGPBiCG with changing over of the stopping criterion [9].

The test problems were generated by building real nonsymmetric matrices correspond-
ing to linear systems taken from the University of Florida Sparse Matrix Collection [2] 
and the Matrix Market [11]. The RHS vector b of (1.1) was generated in two ways:

• RHSone] : Setting all elements of xexact as 1.0 and substituting this into (1.1).
• RHS + nn] : Setting all elements of xexact as Mersenne Twister pseudo-random 

numbers and substituting this into (1.1). Here, we term this RHS “RHS + nn”, 
because the random numbers are generated using a seed number (nn). Ex.) RHS 
+ 10 means that b = Axexact and xexact is generated by seed = 10.

The numerical experiments were executed on a DELL PowerEdge R515 (AMD 
Opteron 4133) running Cent OS (kernel 2.6.32) and Intel compiler 16.0.2. The 
solution algorithm was implemented using the sequential mode of the Lis numeri-
cal computation library 1.1.2 [16] in double precision, with compiler options reg-
istered in the Lis “Makefile.” In all tests, the initial solution was set to x0 = 0 . 
ILU(0) was adopted as a preconditioning operation with PBiCG, PBiCGStab and 
PGPBiCG algorithms; here, the value “zero” means the fill-in level. We evaluated 
the algorithm’s relative residual 2-norm (ARR). We adopted (3.15) as the stop-
ping criterion in all cases except for the left-preconditioned algorithms where we 
used (3.16). We set � = 10−12 in all cases. In all tables, the true relative residual 
(TRR) log10 2-norm ( ‖b − Ax̂‖∕‖b‖ ) and the true relative error (TRE) log10 2-norm 
( ‖x̂ − xexact‖∕‖xexact‖ ) at convergence are stated. Here, x̂ means the numerical solu-
tion. The maximum number of iterations (mx) was set to 1000, except for visco-
plastic2 (mx = 2000) and young3c (mx = 2500) matrices solved by PBiCG-
Stab, and young3c (mx = 5000) matrix solved by PGPBiCG.

5.1  Verification of PBiCG, PBiCGStab and PGPBiCG algorithms

The add32 matrix was used and the linear equations were generated using RHSone.
We confirm Proposition   3 and Corollary   1. Figure   1 plots values of �k and 

Fig.  2 plots values of �k for PBiCG, PBiCGStab and PGPBiCG. In both figures, the 
upper displays the values of the right-preconditioned algorithms and the lower dis-
plays the values of the left-preconditioned algorithms.
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We plotted the values of �k and �k for five algorithm types, except for coLeft6 
of PBiCGStab algorithms or PGPBiCG algorithms presented in Sects.   3.2 or 4.2; 
these are shown in Figs.  3, 4, 5, 6. From these figures7, we confirm the correspond-
ence relations between the behavior of �k and �k and the direction of the precon-
ditioned system summarized in Tables  1, 2. That is to say, behaviors of �k and �k 
are the same between Right and Case2 (right-preconditioned system algorithms), 
and the behaviors of �k and �k are the same among Left, ISRV9 and Case1 (left-
preconditioned system algorithms). On the other hand, behaviors of �k and �k are not 
the same between the right-preconditioned system algorithms and the left-precon-
ditioned system algorithms. It is very important that the directions of the precondi-
tioned system for ISRV9, Case1 and Case2 accord with the directions of each �k and 
�k in spite of the fact that the direction of the MR operators in these algorithms differ 
from the directions of each �k and �k ; see Theorem  3 and Corollary  2. Further, we 
have numerically confirmed Theorem  4 and Corollary  3, because the ISRV9 and 
Right algorithms are identical, except for the construction and setting of the ISRV.

We have also confirmed that both �k values of the ISRV9 and Case1 algorithms 
of the PBiCGStab, the PGPBiCG, and �k values of the PGPBiCG were the same 
in Figs.   7, 8 and 9; these algorithms were equivalent. In contrast, both values of 
the other algorithms of the above �k and �k differ from each other. We have again 
numerically confirmed Theorems  3 and 4, and Corollary  2, 3.

As reference information, other numerical results for add32 using the relative 
residual of each algorithm are listed in Appendix C.

In the next subsection, we will discuss various results by solving the six types of 
PBiCGStab and PGPBiCG.

5.2  PBiCGStab and PGPBiCG results

In this subsection, we compare and evaluate the performance of various PBiCG-
Stab and PGPBiCG algorithms for solving the linear equations of RHSone. The 
results with the standard stopping criterion are shown in Tables   3, 4. Further, 
the results from using three types of algorithms (RtL, coLtL, C1tL) with stop-
ping criterion changeover [9], are shown in Tables   5, 6. Here, “RtL” means the 
Right (Algorithm 1, 7) with stopping criterion (3.15) to the Left criterion (3.16)

8 by the 
changeover. In a similar way, “coLtL” means the coLeft to the Left criterion by the 
changeover, and “C1tL” means the Case1 to the Left criterion by the changeover.

Further, we show results from replacing the RHS for the latter three types of 
algorithms (PBiCGStab: Tables  7, 8,  9; PGPBiCG: Tables  10, 11 12).

In these tables, significant disadvantages of one algorithm over the other are 
emphasized by bold font. For example, poor accuracy over 10−8 on the TRR or the 

6 coLeft was excluded in this validation because �
k
 , �

k
 , �

k
 and �

k
 are identical with Left mathematically 

and in programming code.
7 The same �

k
 values are plotted twice at the right-end in the figures, because these program codes log 

twice at the iteration stop; there is no mathematical basis for this duplication.
8 The right-PBiCGStab algorithm changed over only at the early check, that is, changing ‖t

k
‖∕‖b‖ to 

‖M−1
t
k
‖∕‖M−1

b‖ , because this algorithm has no M−1
r
k
 operation and we avoid excessive calculation on 

the preconditioning operation.
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TRE, or too many iterations until convergence. Further, “Max” means reaching the 
maximum number of iterations with no convergence by stagnation or divergence. 
“BD” means breakdown at the operation of �k or �k . “NaN” means that “not a num-
ber” occurs at MR operations by zero division.

For Right, Left, coLeft, Case1, RtL, coLtL and C1tL of PBiCGStab, we present 
convergence history graphs for two kinds of solving problems with RHSone (Figs.  
10, 11, 12, 13, 14, 15).

In Tables  3, 4, the results of Case2 are similar to Right in terms of breakdown 
and poor accuracy on the TRR and TRE. Here, Case2 is a kind of right-precondi-
tioned system. We did not apply stopping criterion changeover to Case2, because the 
results using Case2 did not suggest an adequate solution. We applied stopping crite-
rion changeover to coLeft and Case1 of the left-preconditioned system, and they are 
labeled “coLtL” and “C1tL”, respectively. Because ISRV9 and Case1 are equivalent 
algorithms, we applied the criterion changeover only to Case1. Further, we applied 
the changeover to Right just for form, and this was labeled “RtL”.

In Tables   5, 6, RtL is shown to yield improved accuracy for TRR and TRE 
compared to Right in many cases, but the result of viscoplastic2 in Table  6 
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suggests decreased accuracy for both. This is confirmed in Table  6 of PBiCGStab. 
Further, RtL did not lead to improved accuracy in Table  10. It was confirmed that 
RtL never solved equations that were not solved as BD or Max by Right (Tables  7, 
11).

Next, we consider the results pertaining to LTB in Definition   6 and list the 
problems for which Left was weak in Tables   3, 4. The LTB case is the result of 
poor accuracy on the TRE, in spite of convergence with a smaller or equal itera-
tion number to coLeft, �����_�, ������������{�, �} were concerned in Table   
3 of PBiCGStab. Here, we extend the comparing target to ISRV9 and Case1, then 
young3c was also concerned9. Further, ������������{�, �} were also concerned 
in Table  4 of PGPBiCG. We extend the comparing target to ISRV9 and Case1, then 
������, �����_� were also concerned, and arc130 exhibited poor accuracy for 
the results of the six types of algorithms in Table   4. In terms of the other cases, 
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Fig. 10  Convergence histories for the ARR 2-norm (olm5000, RHSone)

9 However, the TRE of young3c by coLeft satisfied 10−8.
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results according to Left were poor on the TRR and the TRE in Tables  8, 9, 10, 11, 
12.

Next, we consider results pertaining to GTB in Definition  6, and list the solving 
problems to work out by Left in Tables  3, 4. In Table  3 of PBiCGStab, arc130, 
olm{2000,5000}, raefsky3 were concerned, and Left exhibited superior 
accuracy compared to the other five types of algorithms10. In Table  4 of PGPBiCG, 
olm{2000,5000}, raefsky3 were concerned, and Left was the most accurate 
among the six types of algorithms. However, coLtL and C1tL converged roughly 
with fewer iterations and higher accuracy compared to Left in some cases as per 
Tables  5, 6.

coLeft and coLtL are mathematically equivalent algorithms to Left, except 
for the stopping criterion being caused by splitting r+

k
 of Left into M−1rk . Com-

paring the results in Tables   5, 6, the case of the GTB and converging without 
NaN or Max, Left and coLtL exhibited mathematically identical accuracy; for 
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Fig. 11  Convergence histories for the TRR 2-norm (olm5000, RHSone)

10 The difference on the TRR and the TRE occurred for arc130 between the Left and coLeft in spite of 
the fact that the required numbers were both 5, because coLeft converged at the early check.
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example, arc130, olm{2000,5000}, raefsky3 in Table   5 (PBiCG-
Stab), ����_���, �������, ������� in Table  6 (PGPBiCG). This was also con-
firmed by the fact that the values after changing over coLeft to coLtL were the 
same as per Left in Fig.  10 (olm5000). We might roughly rank as “the coLeft ≤ 
the Left = the coLtL” on accuracy, except for the LTB cases. In the case of LTB, 
“the Left ≤ the coLeft = the coLtL”, because there were many cases where coLeft 
achieved higher accuracy.

The Case1 and ISRV9 algorithms of the left-preconditioned system directly 
minimize the norm of the residual vector which is not operating M−1 in the MR 
part. These algorithms generated stable solutions without incurring breakdown, 
NaN or Max. However, a major gap between TRR and TRE was recognized at 
arc130, olm5000, raefsky3 in Table  3 (PBiCGStab) and at arc130, 
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Fig. 12  Convergence histories for the TRE 2-norm (olm5000, RHSone)
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raefsky3 in Table   4 (PGPBiCG). This is because Case1 and ISRV9 adopted 
‖rk+1‖∕‖b‖ as the stopping criterion, in spite of the relations between the TRE 
and the ARR of the algorithms of the left-preconditioned system, shown as (2.4) 
in Proposition   2. The above issue was resolved in the C1tL by the changeover. 
Further, improved accuracy was recognized. The issue of the major gap in the 
former case was also recognized in Left, however Left was not able to change 
over the stopping criterion.

Figures  10, 11, 12, 13, 14, 15 show the behavior of the ARR, TRR and TRE for 
x̂ = xk+1 . In these figures, iterations of the TRR and the TRE continued irrespective 
of the second convergence of the ARR after changeover, to observe the converg-
ing status of the TRR and the TRE. From these results, we confirmed stagnation of 
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the TRR and TRE with high accuracy. We may expect high accuracy on the TRE 
without iteration stopping, but in practical terms, we need a mathematically based 
stopping criterion to avoid excessive iterative calculations, and the changeover was 
confirmed as an effective measure in this respect.

Finally, we summarize these numerical results. The changeover was very effec-
tive on the RtL, the coLtL and the C1tL. The results for Case1 and ISRV9, the 
algorithms composed by the BiCG part of the left-preconditioned system and the 
MR part of the right-preconditioning conversion, were stable in terms of accurately 
solving linear equations. C1tL further improved the accuracy of the TRE. From 
the above, C1tL is considered to be the best algorithm. We may think that “ISRV9 
to the Left stopping criterion” is also promising because ISRV9 is equivalent to 
Case1. However, after the changeover, an early check is only available in the case of 
PBiCGStab, because the iteration part of ISRV9 is identical to Right.
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6  Conclusions

In this paper, we have proposed improved PBiCGStab and PGPBiCG algorithms 
as preconditioned bi-Lanczos-type algorithms with residual norm minimization. It 
was confirmed that the direction of the preconditioned system which depends on 
the BiCG part is determined by the coefficients of �k and �k , in each PBiCGStab 
and PGPBiCG, similar to PBiCG or PCGS [7, 8], in spite of the fact that both meth-
ods have MR operators of �k and �k with no congruency in terms of the direction 
of preconditioning convergence (Theorem   3, Corollary   2). We have numerically 
confirmed that the direction of the preconditioned system which depends on the 
BiCG part for both methods is switched by the construction and setting of the ISRV. 
That is, Theorem  1 for PBiCG and PCGS is extended to PBiCGStab and PGPBiCG 
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which contain the MR operation (Theorem   4, Corollary   3). Therefore, we may 
expect that the left-preconditioned system is associated with higher accuracy on 
the TRE than the right-preconditioned system from Proposition   2 and Reference 
[9]. Further, we have numerically confirmed that Case1 of the right-preconditioning 
conversion for the MR operator yields better results than coLeft of the left-precondi-
tioning for the MR.

We have also numerically confirmed that changing over stopping criterion 
improves the TRE.

Based on the foregoing, we concluded that the C1tL algorithm composed of 
Case1 with changeover is preferable for both PBiCGStab and PGPBiCG. Some 
numerical results showed the stability of the C1tL, the accuracy on the TRE and the 
state of affairs for solving linear equations.

The fundamentals of improvement put forward in this paper could be applied 
to other preconditioned bi-Lanczos-type methods, for example, BiCGStab(L) [15], 
GBiCGStab(s, L) [17] and Ritz-IDR [14].

Appendix

This appendix shows various preconditioned algorithms analyzed in the paper.

Various preconditioned BiCGStab algorithms

We describe the six types of preconditioned BiCGStab algorithms.

Algorithm 1. Right-PBiCGStab algorithm (Right) :
x0 is an initial guess, r0 = b− Ax0, set β−1 = 0,
r0 = r0,
For k = 0, 1, 2, 3, · · · ,Do :

pk = rk + βk−1(pk−1 − ωk−1AM−1pk−1),

αk =
r0, rk

r0, AM−1pk

,

tk = rk − αkAM−1pk ,

ωk =
(AM−1tk , tk)

(AM−1tk, AM−1tk)
,

xk+1 = xk + αkM
−1pk + ωkM

−1tk,

rk+1 = tk − ωkAM−1tk,

βk =
αk

ωk
× r0, rk+1

r0,rk

,

End Do
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Algorithm 2. Left-PBiCGStab algorithm (Left) :
x0 is an initial guess, r+

0 = M−1(b− Ax0), set β−1 = 0,
r0 = r+

0 ,
For k = 0, 1, 2, 3, · · · ,Do :

p+
k = r+

k + βk−1(p
+
k−1 − ωk−1M

−1Ap+
k−1),

αk =
r0, r

+
k

r0,M
−1Ap+

k

,

t+k = r+
k − αkM

−1Ap+
k ,

ωk =
(M−1At+k , t+k )

(M−1At+k ,M−1At+k )
,

xk+1 = xk + αkp
+
k + ωkt

+
k ,

r+
k+1 = t+k − ωkM

−1At+k ,

βk =
αk

ωk
×

r0,r
+
k+1

r0, r
+
k

,

End Do

Algorithm 3. Coordinative to left-PBiCGStab algorithm (coLeft) :
x0 is an initial guess, r0 = b− Ax0, set β−1 = 0,
r0 = M−1r0, r+

0 ≡ M−1r0,
For k = 0, 1, 2, 3, · · · ,Do :

p+
k = r+

k + βk−1(p
+
k−1 − ωk−1M

−1Ap+
k−1),

αk =
r0, r

+
k

r0,M
−1Ap+

k

,

tk = rk − αkAp+
k ,

t+k = r+
k − αkM

−1Ap+
k ,

ωk =
(M−1At+k , t+k )

(M−1At+k ,M−1At+k )
,

xk+1 = xk + αkp
+
k + ωkt

+
k ,

rk+1 = tk − ωkAt+k ,

r+
k+1 = t+k − ωkM

−1At+k ,

βk =
αk

ωk
×

r0,r
+
k+1

r0, r
+
k

,

End Do
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Algorithm 4. Right-PBiCGStab with ISRV9 (ISRV9) :
x0 is an initial guess, r0 = b− Ax0, set β−1 = 0,
r0 = M−TM−1r0,
For k = 0, 1, 2, 3, · · · ,Do :

pk = rk + βk−1(pk−1 − ωk−1AM−1pk−1),

αk =
r0, rk

r0, AM−1pk

,

tk = rk − αkAM−1pk ,

ωk =
(AM−1tk , tk)

(AM−1tk, AM−1tk)
,

xk+1 = xk + αkM
−1pk + ωkM

−1tk,

rk+1 = tk − ωkAM−1tk,

βk =
αk

ωk
× r0, rk+1

r0,rk

,

End Do

Algorithm 5. BiCG-left and MR-right PBiCGStab algorithm (Case1) :
x0 is an initial guess, r0 = b− Ax0, set β−1 = 0,
r0 = M−1r0, r+

0 ≡ M−1r0,
For k = 0, 1, 2, 3, · · · ,Do :

p+
k = r+

k + βk−1(p
+
k−1 − ωk−1M

−1Ap+
k−1),

αk =
r0, r

+
k

r0,M
−1Ap+

k

,

tk = rk − αkAp+
k ,

t+k = r+
k − αkM

−1Ap+
k ,

ωk =
(At+k , tk)

(At+k , At+k )
,

xk+1 = xk + αkp
+
k + ωkt

+
k ,

rk+1 = tk − ωkAt+k ,

r+
k+1 = M−1rk+1,

βk =
αk

ωk
×

r0,r
+
k+1

r0, r
+
k

,

End Do
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Algorithm 6. BiCG-right and MR-left PBiCGStab algorithm (Case2) :
x0 is an initial guess, r0 = b− Ax0, set β−1 = 0,
r0 = r0, r̆0 ≡ M−1r0,
For k = 0, 1, 2, 3, · · · ,Do :

p̆k = r̆k + βk−1(p̆k−1 − ωk−1M
−1Ap̆k−1),

αk =
r0,rk

r0, Ap̆k

,

tk = rk − αkAp̆k,

t̆k = r̆k − αkM
−1Ap̆k ,

ωk =
(M−1At̆k , t̆k)

(M−1At̆k,M−1At̆k)
,

xk+1 = xk + αkp̆k + ωk t̆k,

rk+1 = tk − ωkAt̆k,

r̆k+1 = t̆k − ωkM
−1At̆k,

βk =
αk

ωk
× r0, rk+1

r0,rk

,

End Do

As a reference, the Case1 (Algorithm   5) with the polynomial expression is 
shown, the parts of the double underline indicate the polynomials.
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Various preconditioned GPBiCG algorithms

We describe the six types of preconditioned GPBiCG algorithms.
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As a reference, the Case1 (Algorithm   11) with the polynomial expression is 
shown, the parts of the double underline indicate the polynomials.
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Numerical results for add32 using the relative residual of each 
algorithm.

Tables  13, 14, 15 show numerical results for add32 as reference information11.

11 A difference in TRR and TRE occurred between the Left and the coLeft in spite of the fact that the 
required numbers were both 34 in Table  14. This is because coLeft converged at the early check.
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