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Abstract

In this paper, improved algorithms are proposed for preconditioned bi-Lanczos-type
methods with residual norm minimization for the stable solution of systems of lin-
ear equations. In particular, preconditioned algorithms pertaining to the bi-conjugate
gradient stabilized method (BiCGStab) and the generalized product-type method
based on the BiCG (GPBiCG) have been improved. These algorithms are more sta-
ble compared to conventional alternatives. Further, a stopping criterion changeover
is proposed for use with these improved algorithms. This results in higher accu-
racy (lower true relative error) compared to the case where no changeover is done.
Numerical results confirm the improvements with respect to the preconditioned
BiCGStab, the preconditioned GPBiCG, and stopping criterion changeover. These
improvements could potentially be applied to other preconditioned algorithms based
on bi-Lanczos-type methods.
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1 Introduction

In scientific and engineering computation, natural phenomena and engineering
problems are described by mathematical models. These models are often reduced to
a system of linear equations:

Ax = b, (1.1)

where A is a large, sparse nonsymmetric coefficient matrix of size n X n, x is the
solution vector, and b is the right-hand side (RHS) vector. In this paper, we assume
A, x and b to be real.

Preconditioned algorithms based on the bi-Lanczos-type Krylov subspace
method are often adopted. These algorithms achieve satisfactory convergence with
few mathematical operations and limited computational resources compared to algo-
rithms based on the Arnoldi-type Krylov subspace method. The bi-Lanczos-type
methods are based on the bi-conjugate gradient (BiCG) method [3, 10]. For instance,
the bi-conjugate gradient stabilized method (BiCGStab) [18] and the generalized
product-type method based on the BiCG (GPBiCG) [19] have been proposed.

Further, preconditioning is effective for improving the convergence of these algo-
rithms. However, if a preconditioned algorithm is poorly designed, there may be no
beneficial effect from the preconditioning operation. Consequently, it is essential to
carefully design preconditioned algorithms.

Recently, an improved preconditioned algorithm for the conjugate gradient
squared (CGS) method was proposed [8]. The algorithm retains some mathemati-
cal properties that are associated with the derivation of CGS from the BiCG method
for the non-preconditioned system. It performs better than the conventional pre-
conditioned CGS (PCGS) algorithm. A mathematical characteristic of this algo-
rithm is that it corresponds to the left-preconditioned system, with a}f %S = afBi°C,
preSS = RIS for the standard preconditioned BiCG (PBiCG) algorithm [7]. Here,
we seek to derive improved preconditioned algorithms for the BiCGStab and the
GPBiCG which adopt the above characteristic. Importantly, there is an essential dif-
ference in preconditioning conversion between the BiCG, the CGS, and the BiCG-
Stab, the GPBiCG. We have already shown that the direction of the preconditioned
system for the CGS depends on the direction of the BiCG by focusing on the con-
gruence property with respect to the direction of the preconditioning conversion [8].
In contrast, there is no congruence property on the minimal residual operation (MR
part) for the BiCGStab and the GPBiCG. In what follows, we prove that the PCGS
improvement mechanism can be extended to the preconditioned BiCGStab (PBiCG-
Stab) and preconditioned GPBiCG (PGPBiCG) without the congruence property, by
analyzing the structure of both preconditioned algorithms.

Moreover, we generate a further improvement via introducing a stopping crite-
rion changeover [9]. Doing so realizes a highly accurate numerical solution with
advantages for the right- and left-preconditioned systems for the CGS method [8].

This paper is organized as follows. Section 2 provides relevant definitions,
theorems and notations. Section 3 focusses on various PBiCGStab including
improved algorithms. Section 4 focusses on various PGPBiCG including improved
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Preconditioned bi-Lanczos-type algorithms with residual norm minimization 21

algorithms. In Sect. 5, we present the results of numerical experiments. Finally,
conclusions are offered in Sect. 6.

2 Preliminaries

In this study, preconditioned algorithm and preconditioned system refer to solving
algorithms described with some preconditioning operator M (or preconditioner/pre-
conditioning matrix) and the system converted by the operator based on M, respec-
tively. Here, M is not a specific preconditioner, but a general preconditioner.

Definition 1 The matrix, vector and scalar variable for a preconditioned system are
denoted by tilde (7). Then, for the system and solution

Ax=b, 2.1

A=M'AM', ¥=Mx, b=M"b, 2.2)

we define the direction of the preconditioned system of linear equations as follows:

— The two-sided preconditioned system: Equation (2.2);
— The right-preconditioned system: M; = I and M, = M in (2.2);
— The left-preconditioned system: M; = M and M, = I in (2.2),

where M is the preconditioner M = M;M, (M =~ A) and [ is the identity matrix.
Other vectors in the solution method are not preconditioned. The initial guess is
given as x, and ¥, = M x,.

In terms of bi-Lanczos-type methods like the BiCG and the CGS, we assume
the existence of a dual system ATx¥ = b* and we will refer to this as the “shadow
system”. It has the initial shadow residual vector (ISRV: rg (= b — ATxg) assuming
an initial guess). References [7, 8] have reported the following theorem concerning
the relation between the construction and setting of ISRV and preconditioned BiCG,
and CGS methods.

Theorem 1 (Itoh and Sugihara [7, 8]) The direction of a preconditioned system for
the BiCG method and CGS method is switched by the construction and setting of
ISRV.

After preliminaries, Example 1 in Definition 8 is used to illuminate Theorem 1.
Definition 2 Notation for the direction of preconditioning conversion:

;\W(= MI‘IAM;l): the matrix with two-sided preconditioning conversion.
A,(= AM™"): the matrix with right-preconditioning conversion.
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22 S.ltoh

A,(= M~'A): the matrix with left-preconditioning conversion.

Definition 3 (Congruence [8]) Let the term “all directions on preconditioning con-
versions” be a synthesis of the preconditioning conversion for “the two-sided direc-
tion”, “the right direction”, and “the left direction”, not only for the system and solu-
tion (2.1), but also for other vectors in the solution method.

If all directions on the preconditioning conversions to the solution method are
reduced to one and the same algorithm description, then we refer to this as “congru-
ence” in the direction of the preconditioning conversion (See [8] for an example).

Furthermore, the term “congruency” refers to the congruence property.

Proposition 1 (Congruency: Itoh and Sugihara [7, 8]) There is congruence in
the PBiCG and PCGS algorithms concerning the direction of the preconditioning
conversion.

At first glance, the above Definitions 1 and 2 may be misinterpreted as the
same matter. Importantly, they differ because of the assertions of Theorem 1 and
Proposition 1 concerning the PBiCG and PCGS algorithms, and these algorithms
do not have residual norm minimization operations. In this paper, Theorem 1
will be extended to bi-Lanczos-type methods with residual norm minimization.

Definition 4 (Notation concerning the inner product and norm.) Let V be a lin-
ear space. Then, we describe (u,v) as the Euclidean inner product, u,v € V. || - ||
means the 2-norm (the Euclidean vector norm and the corresponding matrix norm),
and k(A)(= ||A||||A~"||) means the condition number of matrix A. Let V¥ be the dual
space of V. Then, we describe (u*,v) as the inner product expressing the duality of V
and V&, v € V,uf € V#[13].

Definition 5 (Coordinative to the left-preconditioned algorithm) If a precondition-
ing bi-Lanczos-based algorithm corresponds to the left-preconditioned system with
mathematical equivalence, then we state that “the preconditioning bi-Lanczos-type
algorithm is coordinative to the left-preconditioned algorithm.” Let r;r be the resid-
ual vector of the left-preconditioned (Left) bi-Lanczos-type algorithm in Definition
1, then a coordinative to the left-preconditioned (coLeft) algorithm has a residual
vector ry, here, r: = M“rk. Further, the relative residual norm of the algorithm is
lr11/11b]| for coLeft, but ||r;r||/||M‘1b|| for Left.

Proposition 2 (Itoh and Sugihara [9]) In the solution algorithms for a nonsym-
metric system, there exist the following relations (2.3) for the right-preconditioned
system and (2.4) for the left-preconditioned system. k denotes the iteration number.
Xexact Means the exact solution for the system of linear equations (1.1).

”M(xk+1 - xexact)” < K(AM_I) ”rk+1 “ i
1M cyqe I Izl

2.3)
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1% 41 — Xexactl e, I
k+1 exact < K(M_IA) l1
[ exact | IM~"b]||°

2.4)

Definition 6 Let a stopping criterion ||r,,||/[|b|| be a benchmark. We define the
following relation between the benchmark and ||, || /||M~'b|| for the left-precondi-

k+1
tioned algorithm [9].
[ r
k+11 i ol (LTB: less than the benchmark), 2.5)
lM~1b]| lIoll
Il llr
(GTB: greater than the benchmark) . (2.6)
lIb|] IM=1b]|

The recurrences of the BiCG for the preconditioned system are

Rk(l) Ri_ 1(/1) PBICG)&Pk 1(1) Ro(;l) =1, 2.7

P(D) =R (D) + BPOP_ (D), Py(d) =1 (2.8)

Here, R,(1) is the residual polynomial of degree k. Further, P,(1) is the probing
direction polynomial of degree k, that is, ”E‘CG = R,((A)r0 and ﬁBlCG = Pk(A)ro For
example, in the left-PBiCG, (2.7) is shown as RL(/I) 1(/1) —a /IPL l(/1) We
denote these polynomials with superscript “L"!, to 1ndlcate that these polynomlals
pertain to the left-preconditioned system [7].

Deﬁnition 7 (Notation for the preconditioned vector) The symbol v means
k =M-v,. To d1st1ngu1sh between the direction of the preconditioned system we
use v (= Poly(M~'A)M~"'ry = M~'Pol,(AM~")ry = M~'v}) for the left-precondi-
t10ned system (L). Here, Polk(A)r0 means the polynomial of degree k for ¥,. On the
other hand?, for the right-preconditioned system (R), we use ¥, to distinguish with
vi. Here, ¥, = M~' Pol}(AM~"yry = M~'v}.

Theorem 2 (Lanczos [10], Fletcher [3], Itoh and Sugihara [7]) The BiCG method
for the preconditioned system satisfies the following conditions:

(ff,f?iCG) =0 (i+#)), (biorthogonality), 2.9
B ApPC) =0 (i#)). (biconjugacy). (2.10)
Here, rJj and p are the vectors in the dual shadow system of rBICG and pB‘CG

respecnvely

! In a similar manner, we use “R” to indicate the right-preconditioned system and “W” to indicated the
two-sided preconditioned system. On the other hand, we denote the direction of the preconditioning con-
version in lower case.
2 . . P . + o

For coding purposes, we do not need to specifically distinguish v;” and ¥,.
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24 S.ltoh

Definition 8 (Abbreviation of initial shadow residual vectors [7, 8]) We assume that
(i'ﬁ, 7)) #0,e.g., i‘g =7, # 0, regarding the construction and setting of the ISRV for
the preconditioned system. Here, 7, means the initial residual vector for the precon-
ditioned system of r, = b — Ax,. If i'g = rg and 7, = M~'r, are given, then it reduces

to rf) = M~'r, (ISRV1). This construction and setting of ISRV brings coLeft to the

left-preconditioned system. If i'g = M‘Trﬁ and 7, =r, are given, then it reduces to

rf) =r, (r(b] = M‘Trﬁ) or rg = M"r, (ISRV2). This brings coLeft to the right-precon-
b b

.. i i T - .
ditioned system. Further, if 7 = M~Try = r), r) = M~"M~'r; and 7, = r,, are given,

it reduces to rg = M~"M~'r, (ISRV9?), this brings the right-preconditioned algo-
rithm to the left-preconditioned system.

Example 1 1t is sufficient to prove the following cases regarding the biorthogonal-
ity. The biconjugacy can be proven in a similar manner [7, 8].

(1) Applying ISRV1 to coLeft:

#, F) = RA™M ™) rl, MT'R(AM My
= Ry A™M ™ YM 'ry), Ry (MTAYM ™ 'ry)).
(2) Applying ISRV2 to coLeft:
#, 7) = RA™M ™) rl, M7 R(AM )
= (M TREAT™™M M ry), RRAM D)
= RRM A )ry, RRMAM Mry).
(3) Applying ISRV9 to right-preconditioned algorithm:

#, F) = R(MTATYM ), R(AM rg)
= R, M A, R,(AM "))
= (RyM~TADM ™M 'r), R (AM ™ ry)
= M TREA™M )M 'rg), R (AM ™M)
= (REA™™M M 'rg), RE(M™'A)M'ry)).

3 Although ISRV is not sequential with respect to ISRV 1 and ISRV2, the designation is consistent with
our approach.
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Preconditioned bi-Lanczos-type algorithms with residual norm minimization 25

3 Analyses for various preconditioned BiCGStab algorithms

First, we outline how to derive the BiCGStab method for the preconditioned system,
and propose relevant theorems concerning the characteristics of the PBiCGStab.
Next, we give outlines of six types of PBiCGStab algorithms. Finally, we summa-
rize the characteristics of their mathematical structures.

3.1 Derivation of the BiCGStab method from PBiCG

The shadow residual vector in the PBiCGStab adopts Sk(AT) using the poly-
nomial Sk(/l) of degree k, the stabilized polynomial. su 18 expanded as follows*:

1c(S,)
< k) -4
5 = IC(Rk)(rk dk i k 1

-+ d1 + doro) 3.1

where, “Ic” is an abbreviation of the leading coefficient,
leRp)) = = P Ie(Ry),  1e(Sipy) = —0p° AP 1e(S)).

Deriving the bi-Lanczos-type method from the PBiCG, we apply (2.9) to the follow-
ing inner product:

Ic(S
<~ 1CG> — lzngi <~k’~B1CG> — _<~ﬁ ~B1CG>.

Therefore,

<~ﬁ ~B1CG> — ck(s 1CG> — Ck(Sk(AT)r Rk(A)i0>

3.2)
= ck(ro, S (AR, (A)F,y).

Next, the inner product (2.10) is transformed by ﬁi + ﬂPB‘CGﬁi , of PBiCG

<pk’ B1CG> < Apk1CG>+ PB1CG<pk 1,A~EiCG>

3.3
— <I‘ ,AﬁBlCG>' ( )

Further like deriving (3.2), the inner product of § s and Ap, reduces the following

with <r Ap31CG> _ <pﬁ ﬂPBlCG ? l’ApBlCG> =0 (l 75])

<’~'k’AﬁEICG> = Ck( Apk ICG> = ¢ (Si( AT) APk(A)i'())

34
= ck<r0,ASk(A)Pk(A)rO).
We state the polynomials of the residual vector and probing direction vector as
~STAB = Sk(A)Rk(A)roa I~7;§TAB = Sk(A)Pk(A)ro 3.5

4 Coefficients of d; (i = k — 1, ..., 0) inside the brackets are calculated by dividing each coefficient of i'?
by 1c(Sy)/1c(Ry).
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26 S.ltoh

Then, the following Proposition consists of (3.2) to (3.5):

Proposition 3

~B1CG ~STAB
oFBiCG _ < > ( To T ) — oPSTAB
k (p APB1CG (r ApSTAB k ’
k’

<~ #BICG oPSTAB <~ti =STAB
PBiCG _ k+1’ k+1 — _k k+1 _ PSTAB
k - — _PSTAB oo Pk ’

< B1CG> o (l‘ﬁ , rETAB>

These a;>™B and B75™B compose the BiCG part of the PBiCGStab, and they
determine the dlrectlon of the preconditioned system [7]. This is the common char-
acteristic which exists in all bi-Lanczos-type methods.

The residual vector and polynomial of the BiCGStab method for the precondi-

tioned system, are expressed as follows:

FSTAB F _ PSTAB A, o
= (I — fSTBAY, = STTAB(A)R,,, (A)F,, '
i= i,zTAB PSTAB AﬁiTAB S/fTAB A) Re, A, 3.7
The stabilized polynomial of PBiCGStab is
S}ETAB(Z) — ( PSTAB /1)(1 PSTABA) ( wgSTABZ)’

and contains no information regarding the direction of the preconditioned system,
because a]fSTAB and ﬂPSTAB are not present.
Next, we con51der PBiCGStab from the viewpoint of congruency [8]. ﬂPSTAB of

the PBiCGStab has the following operation,

(Af,.T)
W AP = (3.8)
(At Aty)
The coefficient (3.8) defines the minimal residual (MR) operation of the polynomial
of degree 1 that minimizes the norm of the residual vector in PBiCGStab, ||F 1P|
[5, 18].

Theorem 3 wiSTAB has no congruency on the direction of the preconditioning
conversion, but its direction of the preconditioned system depends on the PBiCG
regardless of the direction of the preconditioning conversion.

Proof The three directions of the preconditioning conversion of (3.6), the two-sided
(w), the left (/) and the right (r), are as follows, respectively:

m;! iﬂAB =M 'ty — WA, (M 't,), (3.9)
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M7 = M7 — 0l A (M), (3.10)
P =t — AL, (3.11)
These w;>™P corresponding to the above are
o = A M, M ') B (M['AM™'t,, M7 ') 3.12)
AWM ) AWM (MTAMS Y, MTTAM ) :
o = AM ', M~'t,) _ (M~'AM~'t,,M~'t,) 5.13)
CAMT),AM)  (MTIAMT Y, MTTAMT 1) '
A1) AM™¢t,,t,)
Al Lk (3.14)

“T A1 A - -1 —1)
At,AL) AM- 4, AM't))

Therefore, there is no congruency on the direction of the preconditioning conversion.

Next, we discuss the component of M‘ltk in (3.12), which is the two-sided pre-
conditioning conversion of (3.8), to analyze the direction of the preconditioned sys-
tem. The initial residual vector of 7, is also 7, = Ml‘lro. We assume the BiCG part of

(3.7) to be the right preconditioned system (R), that is R£+1 (Aw)i'o. Then

B =S AR (A )Fy = M S (AM™ORR, (AM™ "y = M;'E.
Here, the superscript STAB of the polynomial S, is omitted. In contrast, we assume
the BiCG part of (3.7) to be the left preconditioned system (L). Then

i = S,A,)RE, (A Fy = M, S, (M~ AR, (M~ AM ™',
= M 'S AM R, (AM Dy = M 'ty

This is as per ;\wif, Awik of (3.8). In any preconditioned system, they will reduce
to w;’ of (3.12) superficially. Further, w; and wf{ also depend on the direction of the
preconditioned system of the BiCG part. O
Remark 1 »;°™P plays a function in min [|M;'rfST*P |, min ||M~'r5TAB| or
min [|r;3TA| for the residual vectors with preconditioning conversion of (3.9) to (3.11),
respectively. Here, only min [|r;>1*® || of the right preconditioning conversion (r) mini-
mizes “the original residual vector” without an operating preconditioner of (3.11).

However, it is not problematic to display only a; or w;>™® by broadly interpret-
ing it as “w, with preconditioning conversion” when referring to w, in other algo-
rithms. Therefore, only the MR coefficient in the PBiCGStab, that is a)):, a)f{ or a),’{,
has no congruence property in a narrow sense. Further, these directions of the pre-

conditioned system depend on the BiCG part.
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28 S.ltoh

Theorem 4 The direction of a preconditioned system which depends on the BiCG
part is determined by the coefficients of a; and ), in each PBiCGStab algorithm.
These intrinsic operations are based on biorthogonality and biconjugacy. Further,
the direction of PBiCGStab is switched by the construction and setting of the ISRV.

Proof In the polynomial expressions of vectors F B =SSTAB(A)R, (A)F),
P = STABAPAF, and = STAB(A)R,,, (A)Fy, the polynomial with the
direction of the preconditioned system is only the BiCG part. That is R, (A)#, and
P,(A)Fy. Here, the recurrences of R;(1), P;(4) contain a;>™8 and g7S™® composed
by the operations of biorthogonality or biconjugacy; these are switched by the con-
struction and setting of ISRV. O

The assertions in Theorem 4 were also noted in References [7, 8] where the
PCGS and the PBiCG were analyzed with the congruence property (see Theorem
1 in this paper). Therein, it was proclaimed that the direction of the preconditioned
system is not determined only by the linear system, but also depends on the con-
struction and setting of the ISRV, for the preconditioned algorithms or the bi-Lanc-
zos-type system. In this paper, we have confirmed this for the preconditioned algo-
rithms of interest without the congruence property.

We verify Theorem 4 by various PBiCGStab algorithms in the next subsection
and provide numerical results in Sect. 5.

3.2 Various preconditioned BiCGStab algorithms

In this subsection, six types of PBiCGStab algorithms are outlined. The first two
algorithms are the right-PBiCGStab and left-PBiCGStab. These are based on Defini-
tion 1 with an extended application of Theorem 1 to the PBiCGStab. Subsequently,
new variants of algorithms are presented. The first two algorithms are coordinative
to the left-PBiCGStab (coLeft), and the algorithm switches the right-PBiCGStab to
the left-preconditioned system by the construction and setting of ISRV9. To analyze
algorithms with different directions between the BiCG and MR parts, the final two
algorithms are given as follows. One is an algorithm with the left-preconditioned
system of the BiCG part and the right-preconditioning conversion of the MR part
that is mathematically equivalent to ISRV9 (Casel)°. The other is an algorithm with
the right-preconditioned system of the BiCG part and the left-preconditioning con-
version of the MR part (Case2). These six algorithms have two kinds of precondi-
tioning operations in their iterative components. The Right and Left algorithms are
both derived trivially. Only the coLeft algorithm is presented on the new variant
PBiCGStab in this manuscript. However, Casel with the polynomial expression is
presented at the end of this section as a reference. Descriptions of all algorithms are
presented in Appendix A. In the subsection, we only discuss algorithms based on
BiCGStab, and we do not display “~ ” (tilde) or the superscript of “(P)STAB”.

5 This algorithm has been reported as an implementation technique in Reference [6], and its point at
issue was different from conventional (the right-) preconditioned BiCGStab.
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3.2.1 Right- and Left-PBiCGStab algorithm

It is straightforward to derive both the Right and Left algorithms by the precondi-
tioning conversion based on Definition 1, and by expressly providing the construc-
tion and setting of the ISRV.

Algorithm 1 Right-PBiCGStab algorithm (Right): The right-PBiCGStab is
derived by Definition 1. This is the conventional PBiCGStab algorithm provided in
References [1, 12, 18]. The construction and setting of the ISRV is r(b) =r,, and the
polynomials of the right preconditioned system are formed [8]. The standard stop-
ping criteria are

IItkII llriss Il
< e (Early check),
[ lIb1|

< e (Convergence check). (3.15)

Algorithm 2 Left-PBiCGStab algorithm (Left): The left-PBiCGStab is derived
by Definition 1. The construction and setting of the ISRV is r(ﬁ) = r , and the poly-
nomials of the left preconditioned system are formed [8]. The standard stopping cri-

teria are

llef | I
- < < e (Early check), k+11 <
|1M~1b|| IM~1b||

< e (Convergence check). (3.16)

3.2.2 New variants of PBiCGStab algorithms

In this subsection, new variants of PBiCGStab algorithms are provided based on
the foregoing Right and Left algorithms. For all algorithms, the standard stopping
criteria are (3.15).

Algorithm 3 is derived as follows. Applying the same preconditioning conversion
as Algorithm 2, splitting the residual vector r;: of Algorithm 2 into M~'r,, and add-
ing the recurrences for the residual vectors of ¢, = r, — qAp and r(,, = t; — 0, AL].
In this iterative part both ryy; and rk . are calculated. The construction and setting
of the ISRV is ro = M~'r,. This algorithm is coordinative to the Left PBiCGStab,
and this BiCG part is the left preconditioned system. The MR part is the left precon-
ditioning conversion.

Algorithm 3 Coordinative to left-PBiCGStab algorithm (coLeft) :

X, is an initial guess, ry =b — Ax,,set f_; =0,
f_ -t

ro=M"r,
+ = 171

rg =Mr,

Fork=0,1,2,3,...,Do
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30 S. Itoh

pi=ri+ B — wk—lM_lApz—_])a
o = PN (rg,r:) >
(ro-M~1Ap})
L =1 — GAP],
th=rf —aqM'Ap],
_ (M~'At;,t)
(M~'Atf, M=AE})

Wy

— + +
X1 —xk+akpk + ot ,
— +
rk+1 —tk_a)kAtk,

b —1 gt

rey =t —oM AL,
g+

a (o)

bp=—X—7"

@y (rg, rh) ’
End Do

Algorithm 4 Right-PBiCGStab with ISRV9 (ISRVY) : This algorithm is derived
by replacing the ISRV of the Right (Algorithm 1) with r) = M~TM~'r; (ISRV9).
This BiCG part is the left preconditioned system and the MR part is the right pre-
conditioning conversion.

Algorithm 5 BiCG-left and MR-right PBiCGStab algorithm (Casel): This algo-
rithm is mathematically equivalent to ISRV9 (Algorithm 4). That is, the BiCG part is
the left preconditioned system and the MR part is the right preconditioning conversion.

Algorithm 6 BiCG-right and MR-left PBiCGStab algorithm (Case2): This algorithm
is composed of the opposite combination to Casel (Algorithm 5). That is, the BiCG part
is the right preconditioned system and the MR part is the left preconditioning conversion.

3.2.3 Features of various preconditioned BiCGStab algorithms

Table 1 shows the characteristics of the PBiCGStab algorithms in this section.

There are differences between the Left (Algorithm 2) and the coLeft (Algorithm
3). The residual vector r; of the Left is split into M ~Ir, of the coLeft, and the stopping
criteria are different (see, Definition 5). However, the true residual vector b — Ax;,,
and the true error x;, — X, are mathematically equivalent between both algorithms.
ISRV9 (Algorithm 4) is mathematically equivalent to Casel (Algorithm 5). The
Right is the same algorithm as ISRV9, except for the construction and setting of the
ISRV. Therefore, we may confirm that the direction of a preconditioned system for the
BiCGStab is switched by the construction and setting of the ISRV.

As a reference, Casel (Algorithm 5) with the polynomial expression is shown;
double underline is used to indicate the polynomials.
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Table 1 Characteristics of

N Alg. no. ISRV , By Standard
the six types of PBiICGStab ame (Alg. no.) %P @ Standar
A stopping
algorithms. In the column of criterion
a, By, “R” indicates the right-
preconditioned system and “L” Right (Ale. 1 b R 3.15
indicates the left-preconditioned ght (Alg. 1) =" " (.15
system. In the column of w,, “r” Left (Alg. 2) = ry L ! (3.16)
indicates the right-direction of coLeft (Alg. 3) =M'r, L i (3.15)
preconditioning conversion and b T
“I” indicates the left-direction of ISRVO (Alg. 4) P =M~IM'ry L " 3.15)
preconditioning conversion Case 1 (Alg. 5) =Mr, L r (3.15)
Case2 (Alg. 6) /' =r, R l (3.15)

Algorithm 5’ Polynomial description of the BiCG-left and MR-right PBiCG-

Stab algorithm (Case 1) :
X, is an initial guess, r, = b — Ax,, set ﬂl:l =0
rg =M"'r,
rl=M"'r,
Fork=0,1,2,3,...,Do

)

+ _ .t L +
py =1+ B, — o M

“lApi ) = SLADPrAYM'r,

_ <rﬁ’ r+>
. m lApk )

_ (Mo, SADREA )M 1)
(M-rg, A S ADPEA M ry)’

>

= MS ARy, ,(ADM™'r,

tf =rf —ayM~'Ap] = S,(A)DRY, (ADM'r,,

@AMy ALy
“TAMT AMTIE) T (AL AE)
(AMSA)RE (ADM~"ry, S(A)RL  (A)M~'ry)

A, MSAR- (A)Mro, A MSA)RE, (A)M"r,)’

— L+ It
Xip1 =X o p, + oty

=x, + o S APy ADM ™' ry + 0 S ADRL, (ADM ™ 'r,,

Iy =t — 0 AL = MSk+1(A,)Rk+1(A,)M‘1r0,

I'Z_H =M_lrk+1 ZM_ (MSk+1(Al)R 1(AI)M r())

af (bt ab  (M7rg, Sy (AR,

(A,)M‘1r0>

()’ k+1
Bi=—x———=—X
3 ( rfy %%

(M~rg, Sk(A,)R%(A,)M—er)

End Do
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4 Analyses for various preconditioned GPBiCG algorithms

In this section, first we provide an outline for deriving the GPBiCG method for the
preconditioned system, and propose some corollaries on the characteristics of the
PGPBICG. Next, we give outlines of the six types of PGPBiCG algorithms. These
mathematical structure of the characteristics correspond to the six types of PBiCG-
Stab in the former section.

4.1 Derivation of the GPBiCG method from PBiCG

Derivation of the GPBiCG for the preconditioned system proceeds in a similar man-
ner as the derivation of the PBiCGStab in section 3. This is particularly the case
with respect to the derivation procedure from (3.1) to (3.4); except that the super-
scripts of a]]:STAB, ﬁ}:STAB, and a)ESTAB are changed of PGP.

Here, we state the polynomials of the residual vector and probing direction vector as

FOF = SLAR(AFy, P = SAPUAF,.
Then, the following Corollary uses (3.2) to (3.4):

Corollary 1

i ~BiCG =4 =GP
aPBiCG _ <r o > <r0’r > aPGP
k - A k
(pk,Apk‘CG> (Fo- ABY")
(~ #BiCG PGP <~Ii =GP
ﬂPBlCG k+1’ k+1 — k k+1 PGP

0 — _ PGP oo
(L) @l g pory

The residual vector and polynomial of the GPBiCG method for the preconditioned
system are expressed as follows:

7'1?51 =7 - n/l:GPy _ wPGP Af, = S]?fl (AR, +1(A)7‘0, @)
ik — i,kGP PGPA~GP SGP(A)Rk_H (A)ro :
The stabilized polynomial of PGPBiCG is
SGP(j) - 1 SGP(Z) — (1 _ PGPZ)SGP(Z)
4.2)

SGPI(A) — (1 + rIPGP PGP/’{)SGP(ﬂ) PGPSGPI (i) (k 2 1)
The coefficients of 779, ©;°F compose the minimal residual (MR) operation of the
polynom1a] of degree 2 that minimizes the norm of the residual vector in PGPBiCG,
||~k ‘11114, 5, 19]. Therefore, the effect of the MR part in PGPBIiCG is higher than in
PBiCGStab.
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For projection onto the two-dimensional subspace spanned by j, and Af,, we define
the n X 2 matrix B = [, AZ,]. Hence, the optimal coefficients 77" and ! for (4.1)
are calculated as follows:

<1 [ PP =T < n " 5T 5y —1 BT 7
B B[wIEGP] =B f,, therefore, [ ’@GP] =(B'B B i,

After all, we obtain

PGP — G F0AL ) — G B)AL. 5
AR ARG Fi) — G AR AT )

(4.3)

pap AL, ARG 1) — (5, AL)(AT, 1)
C AR ARG — G AR5
Here, §, = AQ;_ (AR, (AF, Q) (D) = (STF (1) — SF(A))/ . Then, the recur-
rences of (4.2) are transformed into the following: SGP(Z) =1, Qo(/l) PGP
SeP) = S5 (D) = 201 (D, QD) = 0T SPT (D) + mF QL (D) (k > 1).
The following Corollary resonates with Theorem 3 of the PBiCGStab.

“4.4)

Corollary 2 a)PGP and r]PGP have no congruency on the direction of the precondi-

tioning conversion, but the direction of the preconditioned system depends on the
PBiCG regardless of the direction of the preconditioning conversion.

The following are the coefficients of (4.3), (4.4) after preconditioning conversion
to the right () and the left (J).

O YIALL ) — 0 AL Y)

o = , 4.5)
CA L AED YY) — 0L AEDALE ) (
(ALL, AL 1) — 0 AEDAL 1) “6)
o = ) .
AL ARy — 0 AED(AE )
k
ol = WOYOWM AL 6) = 0 EDM ALy @7
CMAE MPA Y] — 0 M AR (M A y T :
k> k k k’ k
L (M~'Atr, M 1At+)(yk,t+)— M™'AEH M AL, t+) is
= Tar M ALY — 0, MPTAED) (M ALy “8)
k k k> k k> k
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Remark 2 The w;, n; of the right preconditioning conversion minimizes the norm
of the original residual vector ||rfflP || without operating a preconditioner, as with
Remark 1 for the PBiCGStab.

The following Corollary resonates with Theorem 4 of the PBiCGStab. We verify
Corollary 3 by various PGPBiCG algorithms in the next subsection with numerical
results provided in section 5.

Corollary 3 The direction of a preconditioned system which depends on the BiCG
part is determined by the coefficients of o, and f, in each PGPBiCG algorithm.
These intrinsic operations are based on biorthogonality and biconjugacy. Further,
the direction of PGPBICG is switched by the construction and setting of the ISRV.

4.2 Various preconditioned GPBiCG algorithms

In this subsection, the six types of PGPBiCG algorithms are shown and their
mathematical structures are summarized in Sect. 4.2.3. These six algorithms have
two kinds of preconditioning operations in their iterative part. Descriptions of all
algorithms are presented in the Appendix B. We only discuss algorithms based on
GPBIiCG, and do not display “ "~ (tilde)” or the superscript of “(P)GP”.

4.2.1 Right- and Left-PGPBiCG algorithm
The Right and Left algorithms are derived as follows.

Algorithm 7 Right-PGPBiCG algorithm (Right): The “Right-PGPBiCG algo-
rithm” based on Definition 1 has three kinds of preconditioning operations (M~'p,,
M~'t,, and M~'z;). We state z, = M~'z;, and use #(= M~'r}), it,(= M~'u,). Fur-
ther, we apply the necessary transformation. The construction and setting of the
ISRV is ¥ = r, and the polynomials of the right preconditioned system are formed

0
[8]. The standard stopping criteria are (3.15); [|&. || /11| < &, I I/11B]] < €.

Algorithm 8 Left-PGPBiCG algorithm (Left): We derive the left-PGPBiCG by
Definition 1. The construction and setting of the ISRV is rg = rg and the polynomi-
als of the left preconditioned system are formed [8]. The standard stopping criteria

are 3.16); [IEf 1|/ IIM "1 < &, I, I/ IIM~'B]| < e.

4.2.2 New variants of PGPBiCG algorithms

In this subsection, new variants of PGPBiCG algorithms are provided. In the
same manner as deriving new PBiCGStab variants, they are also based on the for-

mer Right (Algorithm 7) or Left (Algorithm 8) algorithms. For all algorithms, the
standard stopping criteria are (3.15).
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Algorithm 9 Coordinative to left-PGPBiCG algorithm (coLeft): This algorithm
is coordinative to the Left PGPBiCG and the BiCG part is the left preconditioned
system. The MR part is the left preconditioning conversion. The construction and
setting of the ISRV is rﬁ =M'r,

Algorithm 10 Right-PGPBiCG with ISRV9 (ISRV9): This algorithm is derived
by replacing the ISRV of the Right (Algorithm 7) with r) = M~TM~'r; (ISRV9).
The BiCG part is the left preconditioned system and the MR part is the right precon-
ditioning conversion.

Algorithm 11 BiCG-left and MR-right PGPBiCG algorithm (Case 1): This
algorithm is mathematically equivalent to ISRV9 (Algorithm 10). That is, the BiCG
part is the left preconditioned system and the MR part is the right preconditioning
conversion.

Algorithm 12 BiCG-right and MR-left PGPBiCG algorithm (Case 2): This
algorithm is composed of the opposite combination to Casel (Algorithm 11). That
is, the BiCG part is the right preconditioned system and the MR part is the left pre-
conditioning conversion.

4.2.3 Features of various preconditioned GPBiCG algorithms

Table 2 shows the characteristics of the PGPBiCG algorithms in this section.

Table 2 Characteristics of

N Alg.no.) ISRV , By s Standard
the six types of PGPBIiCG ame (Alg. no.) e B Ope T Stj;pﬁfg
algorithms. In the column of criterion

a, By, “R” indicates the right-

preconditioned system and “L” Right (Ale. 7 b R 3.15
indicates the left-preconditioned g (Alg. 7) =" " (315
system. In the column of @, n,, ~ Left (Alg. 8)  pl=rt L l (3.16)
“r” indicates the right-direction  coLeft (Alg. 9) M= M, L 1 (3.15)
of preconditioning conversion b Ty

and “ [ ” indicates the left- ISRVY (Alg. 10) 7 =M~"M"'r, L r (.15)
direction of preconditioning Casel (Alg. 11) ¥ =M"r, L r (3.15)
conversion Case2 (Alg. 12) s> =r, R 1 (3.15)
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5 Numerical experiments

In Sect. 5.1, we verify that the numerical values of @, and f, of PBiCG, PBiCGStab
and PGPBiCG are equivalent for each direction of the preconditioned system (Prop-
osition 3, Corollary 1). Further, we confirm the characteristics of the six types of
algorithms (Right, Left, coLeft, ISRV9, Casel, and Case2), by the numerical values
of a, p;, w,, and 7. We also confirm that the direction of the preconditioned system
which depends on the BiCG part is determined by the coefficients of a; and g, in
each PBiCGStab, PGPBiCG algorithm, and the direction of PBiCGStab is switched
by the construction and setting of the ISRV (Theorem 4, Corollary 3).

In Sect. 5.2, we present numerical results associated with the six types of PBiCG-
Stab and PGPBiCG in Sects. 3.2 and 4.2, and the numerical results of the three types
of PBiCGStab and PGPBiCG with changing over of the stopping criterion [9].

The test problems were generated by building real nonsymmetric matrices correspond-
ing to linear systems taken from the University of Florida Sparse Matrix Collection [2]
and the Matrix Market [11]. The RHS vector b of (1.1) was generated in two ways:

RHSone] : Setting all elements of x.,. as 1.0 and substituting this into (1.1).
RHS + nn]: Setting all elements of x,,,.. as Mersenne Twister pseudo-random
numbers and substituting this into (1.1). Here, we term this RHS “RHS + nn”,
because the random numbers are generated using a seed number (nn). Ex.) RHS
+ 10 means that b = Ax,, and x.,,, is generated by seed = 10.

The numerical experiments were executed on a DELL PowerEdge R515 (AMD
Opteron 4133) running Cent OS (kernel 2.6.32) and Intel compiler 16.0.2. The
solution algorithm was implemented using the sequential mode of the Lis numeri-
cal computation library 1.1.2 [16] in double precision, with compiler options reg-
istered in the Lis “Makefile.” In all tests, the initial solution was set to x, = 0.
ILU(0) was adopted as a preconditioning operation with PBiCG, PBiCGStab and
PGPBICG algorithms; here, the value “zero” means the fill-in level. We evaluated
the algorithm’s relative residual 2-norm (ARR). We adopted (3.15) as the stop-
ping criterion in all cases except for the left-preconditioned algorithms where we
used (3.16). We set € = 107!2 in all cases. In all tables, the true relative residual
(TRR) log,, 2-norm (||b — A%||/||b||) and the true relative error (TRE) log,, 2-norm
(1% = Xexaetll / X exace ) at convergence are stated. Here, £ means the numerical solu-
tion. The maximum number of iterations (mx) was set to 1000, except for visco-
plastic2 (mx = 2000) and young3c (mx = 2500) matrices solved by PBiCG-
Stab, and young3c (mx = 5000) matrix solved by PGPBiCG.

5.1 Verification of PBiCG, PBiCGStab and PGPBiCG algorithms

The add32 matrix was used and the linear equations were generated using RHSone.

We confirm Proposition 3 and Corollary 1. Figure 1 plots values of «; and
Fig. 2 plots values of g, for PBiCG, PBiCGStab and PGPBiCG. In both figures, the
upper displays the values of the right-preconditioned algorithms and the lower dis-
plays the values of the left-preconditioned algorithms.
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We plotted the values of a, and f, for five algorithm types, except for coLeft®
of PBiCGStab algorithms or PGPBiCG algorithms presented in Sects. 3.2 or 4.2;
these are shown in Figs. 3, 4, 5, 6. From these ﬁgures7, we confirm the correspond-
ence relations between the behavior of a, and f, and the direction of the precon-
ditioned system summarized in Tables 1, 2. That is to say, behaviors of a; and g,
are the same between Right and Case2 (right-preconditioned system algorithms),
and the behaviors of a; and p, are the same among Left, ISRV9 and Casel (left-
preconditioned system algorithms). On the other hand, behaviors of a; and f, are not
the same between the right-preconditioned system algorithms and the left-precon-
ditioned system algorithms. It is very important that the directions of the precondi-
tioned system for ISRV9, Casel and Case2 accord with the directions of each @, and
B in spite of the fact that the direction of the MR operators in these algorithms differ
from the directions of each @, and f; see Theorem 3 and Corollary 2. Further, we
have numerically confirmed Theorem 4 and Corollary 3, because the ISRV9 and
Right algorithms are identical, except for the construction and setting of the ISRV.

We have also confirmed that both @, values of the ISRV9 and Casel algorithms
of the PBiCGStab, the PGPBiCG, and #, values of the PGPBiCG were the same
in Figs. 7, 8 and 9; these algorithms were equivalent. In contrast, both values of
the other algorithms of the above w, and 7, differ from each other. We have again
numerically confirmed Theorems 3 and 4, and Corollary 2, 3.

As reference information, other numerical results for add32 using the relative
residual of each algorithm are listed in Appendix C.

In the next subsection, we will discuss various results by solving the six types of
PBiCGStab and PGPBIiCG.

5.2 PBiCGStab and PGPBiCG results

In this subsection, we compare and evaluate the performance of various PBiCG-
Stab and PGPBiCG algorithms for solving the linear equations of RHSone. The
results with the standard stopping criterion are shown in Tables 3, 4. Further,
the results from using three types of algorithms (RtL, coLtL, C1tL) with stop-
ping criterion changeover [9], are shown in Tables 5, 6. Here, “RtL” means the
Right (Algorithm 1,7) with stopping criterion (3.15) to the Left criterion (3.16)° by the
changeover. In a similar way, “coLtL” means the coLeft to the Left criterion by the
changeover, and “C1tL” means the Casel to the Left criterion by the changeover.

Further, we show results from replacing the RHS for the latter three types of
algorithms (PBiCGStab: Tables 7, 8, 9; PGPBiCG: Tables 10, 11 12).

In these tables, significant disadvantages of one algorithm over the other are
emphasized by bold font. For example, poor accuracy over 108 on the TRR or the

6 coLeft was excluded in this validation because a;, f;, @, and 7, are identical with Left mathematically
and in programming code.

7 The same f, values are plotted twice at the right-end in the figures, because these program codes log
twice at the iteration stop; there is no mathematical basis for this duplication.

8 The right-PBiCGStab algorithm changed over only at the early check, that is, changing ||¢.]|/||b]| to
|M~'2, | /|IM~"b]|, because this algorithm has no M~'r, operation and we avoid excessive calculation on
the preconditioning operation.
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Fig.2 Values of f, for the right- (upper) and left- (lower) PBiCG, PBiCGStab and PGPBiCG
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Fig.7 Values of @, for each PBiCGStab

TRE, or too many iterations until convergence. Further, “Max” means reaching the
maximum number of iterations with no convergence by stagnation or divergence.
“BD” means breakdown at the operation of @, or f,. “NaN” means that ‘“not a num-
ber” occurs at MR operations by zero division.

For Right, Left, coLeft, Casel, RtL, coLtL and C1tL of PBiCGStab, we present
convergence history graphs for two kinds of solving problems with RHSone (Figs.
10, 11, 12, 13, 14, 15).

In Tables 3, 4, the results of Case2 are similar to Right in terms of breakdown
and poor accuracy on the TRR and TRE. Here, Case2 is a kind of right-precondi-
tioned system. We did not apply stopping criterion changeover to Case2, because the
results using Case2 did not suggest an adequate solution. We applied stopping crite-
rion changeover to coLeft and Casel of the left-preconditioned system, and they are
labeled “coLtL” and “C1tL”, respectively. Because ISRV9 and Casel are equivalent
algorithms, we applied the criterion changeover only to Casel. Further, we applied
the changeover to Right just for form, and this was labeled “RtL”.

In Tables 5, 6, RtL is shown to yield improved accuracy for TRR and TRE
compared to Right in many cases, but the result of viscoplastic?2 in Table 6
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0lm5000 (BiCGStab)
2 T T

Algorithm relative residual 2-norm (log10)

Ci1tL
14 | | | |
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Iteration number

Fig. 10 Convergence histories for the ARR 2-norm (0lm5000, RHSone)

suggests decreased accuracy for both. This is confirmed in Table 6 of PBiCGStab.
Further, RtL did not lead to improved accuracy in Table 10. It was confirmed that
RtL never solved equations that were not solved as BD or Max by Right (Tables 7,
11).

Next, we consider the results pertaining to LTB in Definition 6 and list the
problems for which Left was weak in Tables 3, 4. The LTB case is the result of
poor accuracy on the TRE, in spite of convergence with a smaller or equal itera-
tion number to coleft, pores_3,viscoplastic{1,2} were concerned in Table
3 of PBiCGStab. Here, we extend the comparing target to ISRV9 and Casel, then
young3c was also concerned’. Further, viscoplastic{1,2} were also concerned
in Table 4 of PGPBiCG. We extend the comparing target to ISRV9 and Casel, then
lopl63, pores_3 were also concerned, and arc130 exhibited poor accuracy for
the results of the six types of algorithms in Table 4. In terms of the other cases,

° However, the TRE of young3c by coLeft satisfied 1075,
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0lm5000 (BiCGStab)
2 T T

True relative residual 2-norm (log10)

14 | | | |
0 10 20 30 40 50

Iteration number

Fig. 11 Convergence histories for the TRR 2-norm (olm5000, RHSone)

results according to Left were poor on the TRR and the TRE in Tables 8, 9, 10, 11,
12.

Next, we consider results pertaining to GTB in Definition 6, and list the solving
problems to work out by Left in Tables 3, 4. In Table 3 of PBiCGStab, arc130,
0lm{2000,5000}, raefsky3 were concerned, and Left exhibited superior
accuracy compared to the other five types of algorithms'®. In Table 4 of PGPBIiCG,
0olm{2000,5000}, raefsky3 were concerned, and Left was the most accurate
among the six types of algorithms. However, coLtL and C1tL converged roughly
with fewer iterations and higher accuracy compared to Left in some cases as per
Tables 5, 6.

coLeft and coLtL are mathematically equivalent algorithms to Left, except
for the stopping criterion being caused by splitting r,j of Left into M~'r,. Com-
paring the results in Tables 5, 6, the case of the GTB and converging without
NaN or Max, Left and coLtL exhibited mathematically identical accuracy; for

10 The difference on the TRR and the TRE occurred for arc130 between the Left and coLeft in spite of
the fact that the required numbers were both 5, because coLeft converged at the early check.
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0lm>5000 (BICGStab)

True relative error 2-norm (log10)

colLeft +
12 | Caset i
RIL ———-
coLtL ——
C1tL
_14 | | | |
0 10 20 30 40 50

Iteration number

Fig. 12 Convergence histories for the TRE 2-norm (olm5000, RHSone)

example, arc130, 01lm{2000,5000}, raefsky3 in Table 5 (PBiCG-
Stab), jpwh_991, 01m5000, raefsky3 in Table 6 (PGPBiCG). This was also con-
firmed by the fact that the values after changing over colLeft to coLLtL. were the
same as per Left in Fig. 10 (01m5000). We might roughly rank as “the coLeft <
the Left = the coLtL” on accuracy, except for the LTB cases. In the case of LTB,
“the Left < the coLeft = the coLtL”, because there were many cases where coLeft
achieved higher accuracy.

The Casel and ISRV9 algorithms of the left-preconditioned system directly
minimize the norm of the residual vector which is not operating M~! in the MR
part. These algorithms generated stable solutions without incurring breakdown,
NaN or Max. However, a major gap between TRR and TRE was recognized at
arcl30, o0lm5000, raefsky3 in Table 3 (PBiCGStab) and at arc130,
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young3c (BiCGStab)
4 T

Algorithm relative residual 2-norm (log10)

coLtk ——
C1tL

0 500 1000 1500 2000
Iteration number

Fig. 13 Convergence histories for the ARR 2-norm (young3c, RHSone)

raefsky3 in Table 4 (PGPBiCG). This is because Casel and ISRV9 adopted
I 11/11B]] as the stopping criterion, in spite of the relations between the TRE
and the ARR of the algorithms of the left-preconditioned system, shown as (2.4)
in Proposition 2. The above issue was resolved in the CItL by the changeover.
Further, improved accuracy was recognized. The issue of the major gap in the
former case was also recognized in Left, however Left was not able to change
over the stopping criterion.

Figures 10, 11, 12, 13, 14, 15 show the behavior of the ARR, TRR and TRE for
X = x;,. In these figures, iterations of the TRR and the TRE continued irrespective
of the second convergence of the ARR after changeover, to observe the converg-
ing status of the TRR and the TRE. From these results, we confirmed stagnation of
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young3c (BiCGStab)
4 T

True relative residual 2-norm (log10)

-12 RiL - sl |
coltl —— WL .
C1tL
-14 | | |
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Fig. 14 Convergence histories for the TRR 2-norm (young3c, RHSone)

the TRR and TRE with high accuracy. We may expect high accuracy on the TRE
without iteration stopping, but in practical terms, we need a mathematically based
stopping criterion to avoid excessive iterative calculations, and the changeover was
confirmed as an effective measure in this respect.

Finally, we summarize these numerical results. The changeover was very effec-
tive on the RtL, the coLLtL and the CItL. The results for Casel and ISRV9, the
algorithms composed by the BiCG part of the left-preconditioned system and the
MR part of the right-preconditioning conversion, were stable in terms of accurately
solving linear equations. CI1tL further improved the accuracy of the TRE. From
the above, CItL is considered to be the best algorithm. We may think that “ISRV9
to the Left stopping criterion” is also promising because ISRVY is equivalent to
Casel. However, after the changeover, an early check is only available in the case of
PBiCGStab, because the iteration part of ISRV9 is identical to Right.
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young3c (BiCGStab)
4 T

True relative error 2-norm (log10)

0 i
coLeft + R
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Fig. 15 Convergence histories for the TRE 2-norm (young3c, RHSone)

6 Conclusions

In this paper, we have proposed improved PBiCGStab and PGPBiCG algorithms
as preconditioned bi-Lanczos-type algorithms with residual norm minimization. It
was confirmed that the direction of the preconditioned system which depends on
the BiCG part is determined by the coefficients of a; and f,, in each PBiCGStab
and PGPBiCG, similar to PBiCG or PCGS [7, 8], in spite of the fact that both meth-
ods have MR operators of @, and #, with no congruency in terms of the direction
of preconditioning convergence (Theorem 3, Corollary 2). We have numerically
confirmed that the direction of the preconditioned system which depends on the
BiCG part for both methods is switched by the construction and setting of the ISRV.
That is, Theorem 1 for PBiCG and PCGS is extended to PBiCGStab and PGPBiCG
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which contain the MR operation (Theorem 4, Corollary 3). Therefore, we may
expect that the left-preconditioned system is associated with higher accuracy on
the TRE than the right-preconditioned system from Proposition 2 and Reference
[9]. Further, we have numerically confirmed that Casel of the right-preconditioning
conversion for the MR operator yields better results than coLeft of the left-precondi-
tioning for the MR.

We have also numerically confirmed that changing over stopping criterion
improves the TRE.

Based on the foregoing, we concluded that the CItL algorithm composed of
Casel with changeover is preferable for both PBiCGStab and PGPBiCG. Some
numerical results showed the stability of the C1tL, the accuracy on the TRE and the
state of affairs for solving linear equations.

The fundamentals of improvement put forward in this paper could be applied
to other preconditioned bi-Lanczos-type methods, for example, BiCGStab(L) [15],
GBiCGStab(s, L) [17] and Ritz-IDR [14].

Appendix

This appendix shows various preconditioned algorithms analyzed in the paper.

Various preconditioned BiCGStab algorithms

We describe the six types of preconditioned BiCGStab algorithms.

Algorithm 1. Right-PBiCGStab algorithm (Right) :

xo is an initial guess, ro = b — Azg, set -1 =0,

Tb@ =To,

For £=0,1,2,3,---,Do:
Pp =Tk + Bk 1(Pp_1 — Wk 1AM 'py_y),
(rd, k)
(ro, AM~1p;)’
ty =1y —a AM p,,
(AM ™'ty ts)
(AM—1t,, AM—1¢},)’
Ty = @ + M py +w My,
Tr+1 = tg 7kaM71tk,

ap =

W =

ap  (rhiTry1)
Wi (13, k)

Br =

)

End Do
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Algorithm 2. Left-PBiCGStab algorithm (Left) :
x( is an initial guess, rSL =M~1Y(b— Axg), set B_1 =0,
o =70,
For £=0,1,2,3,--- ,Do:
Pl =7l 4+ Buo1(pf_, —we_ 1 M AP ),

ap = 7(1“%,1‘2) ,
(rh, M~1Ap)
tz = 'r‘; — akM*IAp;,
—1 g4+ 4+
(M~1AL] )
(M—YALS, M—1AL])

Tpi1 = Tk + Oékpz +Wktzy
i =t —w M AL
223 <7°3n$+1>
Wy <rg,rz) ’

Br =

End Do

Algorithm 3. Coordinative to left-PBiCGStab algorithm (coLeft) :
o is an initial guess, r9 = b — Axg, set S_1 =0,
'r'g =M"1rg, v = M~ lrg,
For £=0,1,2,3,--- ,Do:
pi =71l 4 Bu_1(pf_, —we 1 M Ap_ ),

O G L S

(rg,M—lAp;>

ty = — apAp),

t;: = 7‘: — akM_lAp:,
(Mt AL] &)

(M=1AtE, M—1AL)’

W =
Tp41 = Tk +OckP$ +wkt¥7
Tk4+1 = tk — kat;:,

+ 4t —1 gq
Thr1 =ty —wxM At

Qg <”‘§)v"’g+1)
Br = Tk x SOkl

wi o (rf,rh)

End Do
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Algorithm 4. Right-PBiCGStab with ISRV9 (ISRV9) :
x( is an initial guess, ro = b — Azg, set S_1 =0,
'r(b) =M-"TM~1rg,
For £=0,1,2,3,--- ,Do:

Pr =Tk + Br1(Pr_1 —wr_ 1AM Ip,_4),

_ (rherw)
Q. = b 1 )
<’I"0,AM pk)
ty = ri — akAM_lpk,
(AM_ltkHtk)
(A]W_ltk,A]W_ltk)7
Tpp1 = Tk + M py + w0 M ey,
Trt1 = Ly — (,u'}gA/‘Ll\471't]€7

W =

o (), rryn)
Br = — X ——
Wk <T077‘k>

End Do

Algorithm 5. BiCG-left and MR-right PBiCGStab algorithm (Casel) :
xo is an initial guess, ro = b — Azg, set -1 =0,
’l‘g =M 1rg, 7'0+ =M"1lrg,
For k=0,1,2,3,--- ,Do:
pf =+ Bu1(pi | —wr M AP ),
(ré. i)
= T gty
(rg, M~ Apy, )
ty, = v — arAp),
tz = 7'2' — akM_lAp;i',
(At ty)
Wk = - T
(AL, At))
Tpy1 = T + O‘kp;r +Wkt;r7
Try1 =ty — kat;l',
T;Zrl = Mﬁl'r'k;Jrl,
ai <r?)71'2—+1>
wk ()

Br =

End Do

@ Springer



62 S.ltoh

Algorithm 6. BiCG-right and MR-left PBiCGStab algorithm (Case2) :
xo is an initial guess, rg = b — Axg, set B_1 =0,
1’% =1ro, To = M711’0,
For £=0,1,2,3,--- ,Do:

Pr = Pk + Br_1(Pr_1 —wp 1 M~ APy ),
(rd,7k)

(rg, Apy)’

ty = T — ap APy,

o =

ty = T — OszilAf)k,
(MilAikvik)
(MﬁlA'Ek,M*lA'Ek)7

Tpy1 = T + Py + wity,

Thg1 =ty — wi Ak,
TRyl = ik - wkMilAi]w

g (P rri)
B = 2k o Tht1)
iy (rd; Tk)

End Do

As a reference, the Casel (Algorithm 5) with the polynomial expression is
shown, the parts of the double underline indicate the polynomials.
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Algorithm 5'. Polynomial description of the BiCG-left and MR-right PBiCGStab
algorithm (Casel) :

x is an initial guess, 79 = b — Axg, set 5111 =0,

rg =M~1rg, 1'3' = M~1rg,

For £=0,1,2,3,--- ,Do:

pi =i 4B (pf, —wi_ M Ap} ) = Sp(A)PE(A)M vy,

(s, v _ (M7, Sp(A)RE(A)M o)
(rh, M=1Ap})  (M~1ro, ASp(A)PE(A)M~1ro)’

af =

tk =T — Oé}gApz = Msk(Al)R%+1(AZ)M_1T0,

t: = 1': — akalAp: = Sk(fil)Rk‘_'_l(Al)M*lro,

” (AM =y, t,) (At], ty)
Wy = =
P TO(AM Tt AMTty) T (AL AL
(ATMSk (Al)R%+1(A~Z)M_17‘0, Sk(AZ)Rk+1(Al)M_1T0)
(ArMSi(A)RE (A)M 1o, A, M Sy (AR, | (A)M~1rq)’

@1 = T+ agpy +wity
= x + Oé%sk (Al)PkI;(Al)MilTO + w,’;Sk(Al)RI,;+1 (141)]\4717‘07

Tri1 = tg — wp At = MSk 1 (A)RE (A)M " 'ro,

iy =M e =Mt (M5k+1(AZ)R%H(Az)M*lTo),

g ok by e (Mo Sen (AR, (A)M o)
wp o (ehedy wh (M~1rg, Sk (A)RE(AY)M~1ro)

End Do

@ Springer



64

S.ltoh

Various preconditioned GPBiCG algorithms

We describe the six types of preconditioned GPBiCG algorithms.

Algorithm 7. Right-PGPBiCG algorithm (Right) :

xo is an initial guess, ro = b — Axo,

1‘% =17rg, To EMﬁl'l‘o,
For k=0,1,2,3, -

Py
O
Yg

tr
iy
W

Mk

End Do

@ Springer

,Do:

set t_1 =w_1 =0, f_1 =0,

i+ Br—1(Pr—1 — Ur_1),
<T%7"'k>

<7‘g’Ai7k>’

tp—1— Tk — apwg_1 + apApy,

Ty — ap APy,

P — akalAi)k,
(Y, i) (Ak, tr

(At, Atg) (yy, i,

(Aty, A) (Y, th

(At, Atg)(yy,, yy,

— (yp, t) (Aty, yy)

- (ykvAik)(Aikvyk)7
— (Y, Ati) (Aty, tr)
- (ylw Aik)(Aikv yk) '
(Aio,to)

= |

(if k=0, then wo = no=0)

= wiM 7 Apy + e (Br—1 — Fr + Br—1tr—1),

WP + M Zp—1 — oy,
Ty + apDPy + 2k,
tr — MeYp — wreAtk,

Mﬁl,"kﬁ»lv
ak (19, Thi)
Wi (r2, Tk)

Aty + B APy,
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Algorithm 8. Left-PGPBiCG algorithm (Left) :

x( is an initial guess, 'r'ar =M~1(b— Axzg), set tJ_r1 = 'wJ_r1 =0, -1 =0,
To = "'Sr:

For k=0,1,2,3,--- ,Do:

pl =+ Bpi_, —uf ),

(ré, i)
S S
(ro, M~ Apk)
yz' = tz_l — 'r';f — asz_l +akM_1Ap2',

th =nr’ akM_lApz',

e
(il )M agt 60 — (wil e (M ALy

R MAGE, MTAD) (ui L ul) — (i MIALD)(M—LAL y)

e — (MY A, M~ AE) (yf  t]) — (uif , M At (M AL ) 7
(M—1At], M= A0 (yl ) — (i, M1 AL (M1 At y))
(if k=0, then wp = (M(—]\I4At1;i\§7—t10+14x)t3)7 n=0)

ul = wp M7 AP + (T — v+ Beiul ),

zz' = wk'rz' + nkz;l'_l — aku;l',

Tp1 = Tk + Oékpz_ + ZZ_,

-1
"';Zrl = t;r *ﬁkyz —wpM Atz,

g o+
ar  (To:Thy1)
/Bk = — >< 7+’

we  (rf,rh)

wi = MYAt] + LM~ Ap)f,

End Do
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Algorithm 9. Coordinative to left-PGPBiCG algorithm (coLeft) :
x0 is an initial guess, ro = b — Az, set ti’l = wtl =0, -1 =0,

rg = M~1rg, r('f = M~1rg,
For k=0,1,2,3,--- ,Do:
p;r = "': + 5%1(1’211 - uz71)’

(.m0
Ok = A
(ro, M~ Apk)
Yp = tpo1 — Tk — apwy_1 + arApy,
y;r = t;ll - 'r';r — akw;ll + akalAp;r,
ty = iy — arApy,
t;’ = 7'2' — ockM_lApz',

(yi,y) (M ALS )

(i thHwtaeh yh)

T AL M A (v — (u) M A (M AL y))
A M AR ) — (i M AR At )
(M-TAGE, M A (v y)) — (y) M TAED) (M AL y))
M—tAtt tF
(if k=0, then wg = (M(—lAtar,]\(;[—lojtaf)’ o =0)
ul = wpM T AP ety — v 4 Beufl ),
28 = wprf ezl - auy,

T+l = Tk + Oékpz_ + ZZ_7
Th+1 = Lk — MYy — kat;ry

—1
riﬂ = tﬁ _kaz —wpM Atﬁ,

223 <""P)v"'2_+1>

Bk = X )
Wi )
wy = Aty + B AP,

'wz' = M_lAtz +BkM_1Ap2',

End Do
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Algorithm 10. Right-PGPBiCG with ISRV9 (ISRV9) :

x( is an initial guess, 7o =b — Axg, set t_1 =w_1 =0, f_1 =0,
1‘% =M-"TM1pg, 'r'ar =M~ 1rg,

For k£=0,1,2,3,---,Do:

Py
(697

Yk
tr

+
ty

Wi

Nk

End Do

7"2 + 51@—1(17?71 - uk+,1)7
<7"())7rk>

(rh, Ap)

tpo1— Tk — pwi_1 + apApy,

ry — arApy,

"’2_ —akM_lApz',

(Y, Up)(At] ) — (yy, ) (At], yy,)
(Atsztg)(ykvtk) - (ykvAtﬁ)(At:ftk)
(Atsztz)(ykvyk) - (ykvAtz)(At;:vyk)
(At to)
(Atf, Atd)’
weM T AP + () — i+ Broauyl ),

wk'r'z + nkzZ71 - aku:,

(if k=0, then wo = no=20)

xy + Otkpz + ZZ,
th — Meyy, — wr AL,
M~ ey,

ag (7’%,7‘1@+1>

wp (k)

At + BLApy
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Algorithm 11. BiCG-left and MR-right PGPBiCG algorithm (Casel) :
xo is an initial guess, ro = b — Azg, set t_1 =w_1 =0, 81 =0,
'rg = M~1rg, rar =M~1rg,
For k£=0,1,2,3,--- ,Do:
pkf = Tk+ + Bk—l(p]j_l - ’u’z__l)a

(rh.ri)

Ok = T 1Aty
<T07M_1Ap]€>
Yp = tho1 — Tk — apwi_1 + g Ap),
ty = 1 — apAp{,

tk+ = 'rk+ — akalAkar,
(Atz»vAtg)(yk’vyk
(At AL (yy, b
(At At (Y, yp

— (ykvtk)(At+ayk)

- (yk,Atﬁ)(AtZ,yk)

— (Y AL (AL 1)

- (ykvAtﬁ)(AtZ,yk)
(AtT, to)

—~ 07 -0
ek, ey =)

ul = weM YA 4t — v+ Bl ),

W =

Nk =

NI NN

(if k=0, then wg =

z, = wkr;r + nkz271 — aku;r,
Tp41 = Tk + Oékkar + 22,
Tri1 = te — kY — WAt
-1
Tz+1 = M Tk+1,
# .+
ar ("0 Thi)
T o S Ty
W (ro,T5)
At} + BrApl,

G
Il

End Do

@ Springer



Preconditioned bi-Lanczos-type algorithms with residual norm minimization

69

Algorithm 12. BiCG-right and MR-left PGPBiCG algorithm (Case2) :

xo is an initial guess, ro = b — Az,

b

_ oo ay—1
Ty =170, o =M 7o,

For k=0,1,2,3,--- ,Do:

Pk

o =

Y =

Yk

U

Th+1
Tk+1
Tyl

Bk

Wk

P+ Br—1(Pr—1 — Uk—1),
(rd,Tx)
(ro, Apy)’
tp-1— Tk — pWg_1 + APy,
t1 — P — apiby_1 + oM AP,
T — ap APy,
i — ML Ap,,

(U i) (ML ARy, £y,

(Yp, Ee) (M~ ALy, §y)

set t_1 =w_1=t_1=w_1=0, B_1 =0,

) — (Fg
(MﬁlA%k,MflAik)(?u/k,f/k) - (’.‘ulk,MflAik)(MflA%k,i'ka)’
) —

(M~YAE,, M~ AL (g, T

(Yp, M—T AR, (M 1AL £y)

(MflAilm MﬁlAEk)('flm Yi) — (Up» MﬁlAEk)(MflAim ilvlk)7

(Mfl/—ii:o7 io)

(if k=0, then wo = ~ <
(M_lAto,M_lAto)

,m0=0)

= wM T Apy + mp(Er—1 — Fr + Br—1tk—1),

wrTr + MkZK—1 — Uk,
T + agPy + 2k,

t, — MYy — wp Ak,

ty — ¥y — weM ALy,
ok (rh Tre)

Wi (rh, i)

Aty + B APy,

Wy, = M~ AL, + B M~ Apy,,

End Do

As a reference, the Casel (Algorithm

shown, the parts of the double underline indicate the polynomials.

11) with the polynomial expression is
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Algorithm 11'. Polynomial description of the BiCG-left and MR-right PGP-
BiCG algorithm (Casel) :

o is an initial guess, 7o = b — Axg, set t_1 =w_1 =0, BEl =0,

'rg =M 1rg, rF,L =M 1rg,

For k£=0,1,2,3,---,Do:

pl =7+ B (P —uf_)) = Sk(AYPE(AYM 'ro,

(rd, v _ (M~'ro, Si(A)RE (A) M ~1ro)
(rd,M=1Ap[y  (M~1lro, A;Si(A) PL(A)M~1rg)’
Yp = tho1 — Th — afwi_1 + af Ap{ = MA;Qu_1(A)RE 1 (A)M v,

tk = T — Q%Apz = MS]C(A‘Z)RI];+1(A~Z)M71T0,

tf = rf —af M Apf = SK(A)RE 1 (A)M e,

r (Yso Yi) Artr, tr) = (Y, tr) (Artr, yi)
(Artr, Artr) (Y, Ur) — (Uis Artie) (Arti, yy,)
— substitute each vector’s polynomial,
r (Artr, Arty) (Yp, tr) = (i, Arti) (Arty, i)
(Artlm Artk)(ykv Yi) = (Yps Artk>(A~Ttkyyk)’
— substitute each vector’s polynomial,
(Arto, to)
(Arto, Arto)’
uwl = WM AP oty — v+ Bl ) = AQw(A) PL(AYM T ro,

(if k=0, then wj = 6 =0)

L ANRL (A -
zz = wzrﬁ + nzzz71 — akuz = Qr(A) Ry 1 (A)M Ly,

Tpt1 = Tp + OJEP;: + z:
= @y + af S(A)PE(ADM ™ ro + Qi(A) Ry 1 (A)M ™ ro,

Thi1 = th — Ry, — Wh A = MSp 1 (A) Ry (A)M o,

i = M e = S (AYRE L (A)M g,

Lol (b)) ol (Mo, Sppa(A)RE, (A) M~ )
By = & X —————— = £ x
P owr T kel wp (M~=1rg, Sp(A)RE(A)M~1rg)

wy, = At} + L Ap) = MA; S, (A) P (A)M ™ ro,

End Do

Numerical results for add32 using the relative residual of each
algorithm.

Tables 13, 14, 15 show numerical results for add32 as reference information'".

1" A difference in TRR and TRE occurred between the Left and the coLeft in spite of the fact that the
required numbers were both 34 in Table 14. This is because coLeft converged at the early check.
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Table 15 Numerical results by

Matri Right- PBiCG Left-PBIiCG
PBICG using RHSone [7] atrx (S‘tfm dar d)’ e
add32 ~ 1238 (64) ~ 1227 (62)
~12.19 ~11.73
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