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Abstract
In this paper we study a system of delay differential equations from the viewpoint of 
a finite time blow-up of the solution. We prove that the system admits blow-up solu-
tions, no matter how small the length of the delay is. In the non-delay system every 
solution approaches to a stable unit circle in the plane, thus time delay induces blow-
up of solutions, which we call “delay-induced blow-up” phenomenon. Furthermore, 
it is shown that the system has a family of infinitely many periodic solutions, while 
the non-delay system has only one stable limit cycle. The system studied in this 
paper is an example that arbitrary small delay can be responsible for a drastic change 
of the dynamics. We show numerical examples to illustrate our theoretical results.

Keywords  Blow-up of solutions · Periodic solutions · Delay differential equations

Mathematics Subject Classification  34K99 · 34K13

1  Introduction

In various disciplines of the science, mathematical modelling offers a description of 
phenomena. In some phenomena, the history of the state, not only the current state, 
affects the change of the state, thus it is reasonable to consider the effect of time 
delay [7]. Up to now the theory of delay differential equations have been intensively 
developed [9, 17].
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In this paper we study a system of delay differential equations from the viewpoint 
of the blow-up solutions. Here we use the terminology “blow-up” as a finite time 
blow-up of the solutions, i.e., the solution diverges (in a suitable topology) in finite 
time. The blow-up phenomenon has been widely investigated in partial differential 
equations, see [2, 11, 18, 19] and references therein. There are also extensive stud-
ies in Volterra integral equation, as an alternative formulation of partial differential 
equation of parabolic type with a point source term [3, 18, 21]. Compactification of 
the phase space is a method to study the blow-up solutions of ordinary differential 
equations [6, 14]. Numerical analysis has been an unavoidable tool for understand-
ing the blow-up phenomenon. Numerical method to compute the blow-up solutions 
for polynomial systems of ordinary differential equations has been proposed for 
ordinary differential equations with application to partial differential equations, see 
[11] and references therein. Recently, numerical validation for the existence of the 
blow-up solutions is proposed [20].

The blow-up phenomenon in delay differential equations has not been much stud-
ied, as far as we know, except for a few studies [1, 8, 10, 13, 22, 23]. Perhaps the 
reason is that many examples of delay differential equations, which appear in popu-
lation biology, control theory, etc, negative feedback condition is usually imposed 
which excludes blow-up solutions. One also sees that the following delay differential 
equation

does not have a blow-up solution (at least if the initial function is continuous) for 
𝜏 > 0 and is reduced to a famous example of the ordinary differential equation hav-
ing a blow-up solution when � = 0 . Thus one may speculate that time delay inhibits 
the blow-up phenomenon in general (which is certainly not).

In the paper [8] the authors study the existence of the blow-up solutions for a class 
of delay differential equations. The authors are interested if adding (and multiplying) 
a delay term to an ordinary differential equation affects the solution behavior. Using 
the comparison principle, the authors obtain conditions that the delay term does not 
change the qualitative properties concerning the global existence and blow-up of the 
solution. In [23] the authors study the blow-up phenomenon of differential equations 
with piecewise constant arguments, in comparison with the corresponding ordinary 
differential equations. The blow-up phenomenon is studied in Volterra integro-dif-
ferential equations. See [1, 10, 13, 22] as applications to a parabolic type partial dif-
ferential equations to study of Volterra integro-differential equations.

It seems that the blow-up phenomenon that stems from the time delay has not 
been reported, to the best of our knowledge. Our motivations are to demonstrate 
whether the time delay itself induces blow-up of the solution, and to understand the 
mechanism of blow-up of solutions. In this paper, we propose an example model 
that time delay drastically changes the solution behavior and induces the blow-up 
solution together with a family of infinitely many periodic solutions, where most 
of solutions are shown to be unstable. In our equation, a blow-up solution exists no 
matter how small the length of the delay is, while non-delay equation does not have 
a blow-up solution. We thus call these phenomena “delay-induced blow-up”.

x�(t) = x(t)x(t − �)
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This paper is organized as follows. In Sect. 2, we introduce a planar system of delay 
differential equations which we study in this paper. In the absence of time delay, the 
system becomes a planar system of ordinary differential equations. It can be seen that 
every solution except the trivial solution approaches to the limit cycle, thus no solution 
blows up. Concerning the system of delay differential equations, we present our two 
main theorems that show blow-up of solutions is possible due to time delay and that 
the system admits infinitely many periodic solutions. In this section we use a special 
initial function in order to show blow-up of solutions for any 𝜏 > 0 . We demonstrate 
numerical examples of blow-up solutions and global solutions. See Remark 3.1, Fig. 1 
and also Sect. 6. In Sect. 3, by a careful estimation of the solution we show that there is 
a blow-up solution for the system of delay differential equations and provide a proof of 
Theorem 2.1. In Sect. 4, we study existence of a periodic solution with constant radius 
and constant angular velocity in the plane. It is shown that there exist infinitely many 
periodic solutions which appear due to time delay. In Sect. 5, we study a characteristic 
equation which characterizes stability of the periodic solutions. It is shown that most of 
periodic solutions are not stable except for the only one periodic solution that is a con-
tinuation of the periodic solution of the non-delay model. In Sect. 6, we provide numer-
ical examples which illustrate our theoretical results. In Sect. 7, we discuss our results.

2 � A planar system of delay differential equations and main results

Let � ≥ 0 be a parameter for time delay. In this paper we consider the following planar 
system of delay differential equations 

(2.1a)x�(t) = x(t) − y(t) − x(t − �)
(
x2(t) + y2(t)

)
,

(2.1b)y�(t) = x(t) + y(t) − y(t − �)
(
x2(t) + y2(t)

)
.

Fig. 1   Illustration of trajectories of the solution in (x,  y)-plane for � = 0.392 . The initial condition 
(3.2), which are plotted as dashed curves in the above figures, is used (in the polar coordinate) with 
s(t) =

�

2�
t −

1

2
� for the numerical experiments. The solution behavior changes by different R = 0.5, 1.3 

and 2.6. (i) The solution converges to a periodic solution with R = 0.5 , (ii) The solution blows up in a 
finite time t > 𝜏 with R = 1.3 (The blow-up time is nearly t = 4.359⋯ .) and (iii) The solution blows up 
in t < 𝜏 with R = 2.6
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 For the special case � = 0 , the system (2.1) is reduced to the following system of 
ordinary differential equations with a = 1 : 

 Here a ∈ ℝ is a parameter. This system is a famous model for Hopf bifurcation at 
a = 0 . (See [12], for instance.) From the elementary calculation, one can see that 
every solution of (2.2) except the trivial solution (x(t), y(t)) ≡ (0, 0) tends to a peri-
odic solution of minimal period 2� and satisfies

i.e., the limit cycle of (2.2) is the unit circle.
For the system (2.1) we prove that the system admits blow-up solutions due to the 

presence of time delay. We prove the following theorem in Sect. 3.

Theorem 2.1  For any 𝜏 > 0 , there exist blow-up solutions for the planar system of 
delay differential Eq. (2.1).

Then in Sects. 4 and 5, we further investigate the system (2.1) and show the exist-
ence of infinitely many periodic solutions. We also study the stability of the periodic 
solutions. The following theorem is proved in Sects. 4 and 5.

Theorem 2.2  For any 𝜏 > 0 , there exist infinitely many unstable periodic solutions 
of (2.1) with constant radius and angular velocity. Moreover, there exists a positive 
�∗ such that the system (2.1) admits only one asymptotically stable periodic solution 
with constant radius and angular velocity for 0 < 𝜏 < 𝜏∗.

3 � Delay‑induced blow‑up

We consider a polar coordinate system. Let

By the change of the variables, from (2.1), we obtain the following polar coordinate 
system 

 Now we prove that there exists a solution such that r blows up in a finite time with 
� →

�

4
 as r → ∞ . Therefore, we can conclude that x and y blow up in a finite time.

(2.2a)x�(t) = ax(t) − y(t) − x(t)
(
x2(t) + y2(t)

)
,

(2.2b)y�(t) = x(t) + ay(t) − y(t)
(
x2(t) + y2(t)

)
.

lim
t→∞

√
x2(t) + y2(t) = 1.

(x(t), y(t)) = r(t)(cos �(t), sin �(t)).

(3.1a)r�(t) = r(t)(1 − r(t)r(t − �) cos (�(t) − �(t − �))),

(3.1b)��(t) = 1 + r(t)r(t − �) sin (�(t) − �(t − �)).
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For (3.1), we consider the following initial condition 

 where R > 0 and s(t) is a continuous function such that

Remark 3.1  In this paper we consider a special initial condition (3.2) in order to 
show an existence of blow-up solutions for any positive � . In this section we will 
prove the blow-up of solutions in t < 𝜏 for sufficiently large R > 0 . For other initial 
data, there are no mathematical results on global existence of solutions except peri-
odic solutions studied in Sect. 4 and blow-up of the solutions. In Fig. 1 (i) and (ii), 
numerical examples for R = 0.5 and 1.3 are presented. These numerical simulations 
suggest that there are not only time-global solutions which converge to a periodic 
orbit but also solutions which blow up in a finite time t > 𝜏 . In Sect. 6, numerical 
figures for other initial data are presented.

Since −𝜏 ≤ t − 𝜏 < −
1

2
𝜏 for t ∈

[
0,

1

2
�

]
 , from the initial condition (3.2), we 

have

Then, for t ∈
[
0,

1

2
�

]
 , the solution of the system of delay differential equations (3.1) 

with the initial condition (3.2) is given by the following system of ordinary differen-
tial equations 

 with the initial condition

We are going to prove that the solution of the system of ordinary differential equa-
tions (3.3) with the initial condition (3.4) blows up in t ≤ 1

2
�.

Figure 2 shows each step for blow-up of solutions. The process for blow-up of 
solutions is divided into the following 3 steps: 

(3.2a)r(t) = R, t ∈ [−�, 0],

(3.2b)𝜃(t) =

{
−

3

4
𝜋, − 𝜏 ≤ t < −

1

2
𝜏,

s(t), −
1

2
𝜏 ≤ t ≤ 0,

s

(
−
1

2
�

)
= −

3

4
�, s(0) = −

1

2
�.

r(t − �) = R, �(t − �) = −
3

4
�, t ∈

[
0,

1

2
�

]
.

(3.3a)r�(t) = r(t)
(
1 − Rr(t) cos

(
�(t) +

3

4
�

))
,

(3.3b)��(t) = 1 + Rr(t) sin
(
�(t) +

3

4
�

)

(3.4)(r(0), �(0)) =
(
R,−

1

2
�

)
.
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Step 1	 The angle of the solutions is monotonically increasing from −�∕2 to −�∕4 
in t ∈ [0, T1] for some T1 > 0 . In this region, the radius of the solutions may 
decrease, and thus we establish a decay estimate of the solutions in Lemma 3.1.

Step 2	 Both radius and angle of the solutions monotonically increase in t ∈ [T1, T2] 
for some T2 > T1 . The angle varies from −�∕4 to 0 and the radius grows up 
beyond a threshold for an emergence of a nullcline of the angle. (See Lem-
mas 3.2,  3.3.)

Step 3	 The final stage for blow-up of solutions. The angle monotonically reaches to 
the nullcline of the angle which appears in Step 2. Then we show in Lemma 3.4 
that for large R there exists a blow-up time T3 ( T2 < T3) with T3 <

1

2
𝜏 such that 

For the exposition, we define

Then the system (3.3) with the initial condition (3.4) becomes 

(3.5)lim
t↑T3

r(t) = ∞.

�(t) ∶= �(t) +
3

4
�, t ≥ 0.

(3.6a)r�(t) = r(t)(1 − Rr(t) cos�(t)),

Fig. 2   Three steps for the blow-up of solutions
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 with the initial condition

In the proof below we need to estimate the solution r. For the estimation we use the 
following equation

which is obtained from (3.6).

3.1 � Step 1: The decay estimate of the radius

Lemma 3.1  There exists T1 > 0 such that � monotonically increases from �∕4 to 
�∕2 for t ∈

[
0, T1

]
 . One also has

Moreover, there exists R1 > 0 such that

Proof  The solution of the system of ordinary differential equation (3.6) with the ini-
tial condition (3.7) exists for sufficiently small t. We show that there exists T1 > 0 
such that the solution exists for t ∈

[
0, T1

]
 satisfying that � monotonically increases 

from �∕4 to �∕2 for 0 ≤ t ≤ T1 . We first obtain an a priori estimate for r for 
� ∈

[
1

4
�,

1

2
�

]
 . From (3.8) it follows that

One also obtains the following estimation

Integrating the inequalities (3.10) and (3.11), we obtain the following estimation

(3.6b)��(t) = 1 + Rr(t) sin�(t)

(3.7)(r(0),�(0)) =
(
R,

1

4
�

)
.

(3.8)
dr

d�
=

r(1 − Rr cos�)

1 + Rr sin�
,

(3.9)R exp
(
−
(
�(t) −

�

4

)) ≤ r(t) ≤ R exp
(
�(t) −

�

4

)
, t ∈

[
0, T1

]
.

R > R1 ⟹ T1 <
𝜏

4
.

(3.10)
dr

d�
≤ r, � ∈

[
1

4
�,

1

2
�

]
.

(3.11)
dr

d�
≥ −Rr2 cos�

Rr sin�
≥ −Rr2

√
2

2

Rr

√
2

2

= −r, � ∈
�
1

4
�,

1

2
�

�
.

(3.12)R exp
(
−
(
� −

�

4

)) ≤ r ≤ R exp
(
� −

�

4

)
, � ∈

[
1

4
�,

1

2
�

]
.
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Using the a priori bound (3.12), from the equation (3.6b), we see that � is an increas-
ing function and that ��(t) ≥ 1 , provided � ∈

[
1

4
�,

1

2
�

]
. Therefore, there exists 

T1 > 0 such that � monotonically increases from �∕4 to �∕2 for t ∈
[
0, T1

]
 . The ine-

quality (3.9) holds from the estimation (3.12). Since, from the inequality (3.9), we 
have R exp(−�∕4) ≤ r for t ∈

[
0, T1

]
 , the following estimation

implies that there exists R1 > 0 such that if R > R1 then T1 <
𝜏

4
 . 	�  ◻

From Lemma 3.1, we have

3.2 � Step 2: Emergence of the nullcline of the angle

Next we have the following estimation.

Lemma 3.2  There exists T2 (> T1) such that � monotonically increases from �∕2 to 
3�∕4 for t ∈

[
T1, T2

]
 . One also has that r monotonically increases for t ∈

[
T1, T2

]
 

and

Moreover, there exists R2 > 0 such that

Proof  First, we derive an a priori estimate for r, provided � ∈
[
1

2
�,

3

4
�

]
 . Let 

� ∈
[
1

2
�,

3

4
�

]
 . We have r�(t) ≥ r from (3.6a), thus r monotonically increases. Then 

one has

Since, from (3.8), it holds that

(3.13)�
�(t)≥1+R2 exp

�
−

�

4

�

sin� ≥ 1 + R2 exp
�
−
�

4

�√2

2
, t ∈

�
0, T1

�

R exp
(
−
�

4

) ≤ r(T1) ≤ R exp
(
�

4

)
,

�(T1) =
1

2
�.

(3.14)R exp
(
−
𝜋

4

) ≤ r(t) < ∞, t ∈
[
T1, T2

]
.

R > R2 ⟹ T2 − T1 <
𝜏

8
.

(3.15)r ≥ r(T1) ≥ R exp
(
−
�

4

)
.

(3.16)dr

d�
≤ r

�
1 + Rr

√
2

2

�

Rr

√
2

2

=

√
2 + Rr

R
, � ∈

�
1

2
�,

3

4
�

�
,



1045

1 3

Delay-induced blow-up in a planar oscillation model

integrating the equation, we obtain

which implies r < ∞.
From the Eq. (3.6b) and the a priori bounds (3.15), we have that ��(t) ≥ 1 holds 

for � ∈
[
1

2
�,

3

4
�

]
. Hence, there exists T2 > T1 such that � monotonically increases 

for t ∈
[
T1, T2

]
 with �(T1) =

1

2
�, �(t) ∈

(
1

2
�,

3

4
�

)
 for t ∈

(
T1, T2

)
 and �(T2) =

3

4
� . 

Therefore, the lower estimate (3.15) is valid for t ∈ [T1, T2] and by virtue of (3.17) 
the boundedness of r(t) also holds for t ∈ [T1, T2] . That is, the inequality (3.14) 
holds for t ∈ [T1, T2]. Finally, from the inequality (3.14), the following estimation 
holds:

which implies that there exists R2 > 0 such that if R > R2 then T2 − T1 <
𝜏

8
 . 	�  ◻

We are ready to show that the solution of (3.6) blows up. Note that 
r�(T2) ≥ r(T2) > 0 and 𝜙�(T2) > 1 since cos𝜙(T2) = cos

3

4
𝜋 = −

√
2

2
< 0 and 

sin𝜙(T2) = sin
3

4
𝜋 =

√
2

2
> 0. Thus, there is sufficiently small 𝛿 > 0 such that for 

t ∈
(
T2, T2 + �

)
 the solution exists and that � and r increase and thus 

r(t) ≥ r(T2) ≥ R exp
(
−

�

4

)
 for t ∈

(
T2, T2 + �

)
.

In Fig. 3, we plot the graph of 
(
�,�′

)
 . We show that, for sufficiently large R, a 

nullcline for � exists in 
(
�,

3

2
�

)
 , where the right-hand side of the �-equation (3.6b) 

becomes 0. We see in Lemma 3.4 that � has a upper bound for suitable large R and 
then r(t) blows up in a finite time. We now let R be a sufficiently large number such 
that R2 exp(−

𝜋

4
) >

√
2 . Then, for r > R exp(−

𝜋

4
) , there is a �-nullcline in 

(
�,

5

4
�

)
 

that is given as

It is easy to obtain the following elementary lemma.

Lemma 3.3  Let R be a sufficiently large number such that R2 exp(−
𝜋

4
) >

√
2 . Then 

𝜙∗(r) ∈
(
𝜋,

5

4
𝜋

) (
r > R exp

(
−

𝜋

4

))
 . One has that

and that

(3.17)log

� √
2 + Rr

√
2 + Rr(T1)

�
≤ � −

�

2
,

(3.18)��(t) ≥ 1 + R2 exp
�
−
�

4

�
sin� ≥ 1 + R2 exp

�
−
�

4

�√2

2
, t ∈

�
T1, T2

�
,

𝜙∗(r) ∶= 𝜋 − arcsin
(
−

1

Rr

)
∈
(
𝜋,

5

4
𝜋

)
, r > R exp

(
−
𝜋

4

)
.

1 + Rr sin𝜙

{
> 0, 𝜙 ∈

(
3

4
𝜋,𝜙∗(r)

)

= 0, 𝜙 = 𝜙∗(r)
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Hence, as long as the solution exists, for t > T2 , r(t) ≥ r(T2) ≥ R exp
(
−

�

4

)
 

increases and � increases and tends to �∗(r(t)) . Observe that � stays in the inter-
val 

(
3

4
�,

5

4
�

)
 , thus the sign of cos� in the right hand side of (3.6a) is fixed and is 

positive.
From Lemma 3.2, we have

3.3 � Step 3: Blow‑up of solutions

Finally we show the blow-up of solutions.

Lemma 3.4  There exists T3 (> T2) such that � and r monotonically increase for 
t ∈

[
T2, T3

)
 and

Furthermore, there exists R3 > 0 such that

(3.19)lim
r→∞

�∗(r) = �.

R exp
(
−
𝜋

4

) ≤ r(T2) < ∞,

𝜙(T2) =
3

4
𝜋.

(3.20)lim
t↑T3

r(t) = ∞, lim
t↑T3

�(t) = �.

R > R3 ⟹ T3 − T2 <
𝜏

8
.

Fig. 3   The graph of the right-hand side of the equation (3.6b) for large Rr. Large Rr makes a nullcline 
�∗(r) of the Eq. (3.6b). � approaches to �∗(r)
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Proof  We consider the system (3.6) for t > T2 . Let R be a sufficiently large number 
such that R > max

{
R1,R2

}
 and that R2 exp(−

𝜋

4
) >

√
2 . Since R > max

{
R1,R2

}
 , 

from Lemmas 3.1 and 3.2, we have �(T2) =
3

4
� and T2 <

3

8
𝜏 . We derive an a priori 

estimate for � , provided r < ∞ . Since we have R2 exp(−
𝜋

4
) >

√
2 , one sees that the 

equation (3.6b) has an equilibrium, �∗(r) ∈ (�,
5

4
�) from Lemma 3.3. Suppose that 

there exists t∗ > T2 such that ��(t∗) = 0 while r(t∗) < ∞ . Note that �(t∗) ∈ (�,
5

4
�) 

and by (3.8) we have dr
d�
|t=t∗ = ∞ , that is, the solution orbit crosses the curve of �

-nullcline {(𝜙, r)|1 + Rr sin𝜙 = 0,𝜋 < 𝜙 <
5

4
𝜋} vertically. Then, the solution enters 

the region where 𝜙�(t) < 0 , in what follows 𝜙(t) < 5

4
𝜋 . Note that the intersection of 

the solution orbit and �-nullcline may occur at most once because of the shape of 
the nullcline and the fact of vertical crossing. See Fig. 4.

One sees that �(t) ∈
(

3

4
�,

5

4
�

)
 . Since

from (3.6a) we now have the estimation,

Therefore, one sees that there exists T3 such that limt↑T3
r(t) = ∞ . Thus, from (3.19) 

in Lemma 3.3, we have limt↑T3
�(t) =

�

2
 . From the Eq. (3.21), for any � there exists 

R such that R > R implies that T3 − T2 < 𝜀 . Therefore, there exists R3 , such that 
T3 − T2 <

𝜏

8
 . 	�  ◻

Proof of Theorem 2.1  Let R > R3 . From Lemmas 3.1, 3.2 and 3.4, one has T3 <
𝜏

2
 . 

(3.20) in Lemma 3.4 implies that

−1 ≤ cos� ≤ −

√
2

2
, � ∈

�
3

4
�,

5

4
�

�
,

(3.21)r�(t) ≥ r

�
1 + R

√
2

2
r

�
.

lim
t↑T3

(x(t), y(t)) = (∞,∞).

Fig. 4   The vector field (r�(t),��(t)) for the system (3.6). Solid lines (resp. dashed lines) describe �
-nullcline (resp. r-nullcline)
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Thus we obtain the conclusion. 	�  ◻

4 � Existence of periodic solutions

We consider a periodic solution with a constant radius, i.e. r(t) ≡ 𝜌 > 0 , for the sys-
tem (3.1). Then, ��(t) is also a constant from Eq. (3.1). Thus, we treat a periodic 
solution of the form

where � ∈ ℝ is an angular velocity.
From (3.1), the periodic solution satisfies 

 Remark that for the special case � = 0 , from (4.2), we obtain

for periodic solution (r(t), �(t)) = (1, t) corresponding to the system (3.1) with � = 0.
From (4.2) one has cos𝜔𝜏 > 0 . Then we have the following equations 

In Fig.  5a we plot the functions y = � − 1 and y = tan�� . For 
�� ∈ (−

�

2
+ 2n�,

�

2
+ 2n�)(n ∈ ℤ), intersections of the two functions correspond 

to the roots of (4.4a) satisfying cos𝜔𝜏 > 0 . First we study the roots of (4.4a) for 
0 ≤ 𝜔𝜏 <

𝜋

2
 . The implicit function (4.4a) for 0 ≤ 𝜔𝜏 <

𝜋

2
 defines a function

which attains a unique maximum at � = �∗ where ��(�∗) = 0 . One can compute that

from which we can numerically compute �∗ ≈ 2.22913⋯ . Let �∗ = �(�∗) . Then we 
numerically obtain

Proposition 4.1  For 0 < 𝜏 ≤ 𝜏∗ the equation (4.2) has two roots which we denote by 
�0(�) and �1(�) such that

(4.1)(r(t), �(t)) = (�,�t),

(4.2a)1 = �2 cos��,

(4.2b)� = 1 + �2 sin��.

(4.3)(�,�) = (1, 1),

(4.4a)� − 1 = tan��,

(4.4b)1 + (� − 1)2 = �4.

�(�) =
arctan (� − 1)

�
,

�
�
(�) =

�

1+(�−1)2
− arctan (� − 1)

�2
,

(4.5)�∗ ≈ 0.398284⋯ .
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–	 �0(�) ≤ �∗ ≤ �1(�),

–	 lim�↓0 �0(�) = 1, lim�↓0 �1(�) = ∞ and
–	 �0(�

∗) = �1(�
∗) = �∗.

For 𝜏 < 𝜏∗ there is at least 2 periodic solutions

where

(r(t), �(t)) =
(
�j,�jt

)
, j ∈ {0, 1},

Fig. 5   Visualization of solutions of equation (4.4a)
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From Proposition 4.1 and (4.6), one sees that lim�↓0 �0 = 1 and lim�↓0 �1 = ∞ . Thus 
one periodic solution is a continuation of the periodic solution (4.3) at � = 0 and one 
periodic solution emerges from infinity.

For 𝜏 > 0 , one can see that the Eq. (4.2) has infinitely many roots. It is elemen-
tary to prove the following result, thus we omit the proof. See also Fig. 5a.

Lemma 4.1  For j ∈ ℤ ⧵ {0, 1} , the Eq. (4.4a) with cos𝜔𝜏 > 0 has exactly one root 
�j on the following each interval

Therefore, we obtain roots �j for j ∈ ℤ if � ≤ �∗ and for j ∈ ℤ ⧵ {0, 1} if 𝜏 > 𝜏∗ 
of the Eq. (4.4a). In Fig. 5b we plot the branches for � as a function of � . Once � of 
the periodic solution (4.1) is given, � is determined from (4.4b). The radius � can be 
determined as �j given as, similar to (4.6),

This implies that the periodic solutions of the form (4.1) has larger radius than the 
unit circle which is the trajectory of the periodic solution for � = 0 . We also note 
that there is a root � = 1 if � = 2n�, n ∈ ℕ . In Fig. 6 we plot the branches for the 
radius as a function of �.

Summarizing the above findings, we obtain the following result for the existence 
of the periodic solution (4.1) for the system (3.1). The result is not intuitive and not 
expected that the delay induces many periodic solutions from the non-delay system 
(2.1).

Theorem  4.1  For each 𝜏 > 0 , the Eq. (4.2) has infinitely many roots, which are 
countable. Thus the system (3.1) has infinitely many periodic solutions, which are 
countable, of the form (4.1).

5 � Analysis of the characteristic equation for the stability 
of the periodic solutions

To analyze stability of the periodic solution obtained in Section  3, we study a 
system of a delay differential equation and an integral equation, employing the 
principle of linearized stability for the coupled systems of renewal equations and 
delay differential equations [4].

(4.6)�j ∶=
(
1 +

(
�j − 1

)2) 1

4

.

�j ∈
(
2�

�
(j − 1),

2�

�
(j − 1) +

�

2�

)
, j = 2, 3,… ,

�j ∈
(
2�

�
(j + 1) −

�

2�
,
2�

�
(j + 1)

)
, j = … ,−2,−1.

�j =
(
1 + (�j − 1)2

) 1

4 ≥ 1.
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Let v(t) = ��(t) . From the system (3.1), we get the following system of a delay 
differential equation and a renewal equation 

 The system (5.1) has equilibria

corresponding to the periodic solutions

of the system (3.1), given as in Sect. 3.
In the Appendix A, by linearization of the system (5.1) at the equilibrium 

(5.2), we obtain the following characteristic equation

with � = �j, j ∈ ℕ . Note that we have a family of the characteristic equations (5.3) 
which are indexed by the equilibrium about which we linearize.

Define � ∶= �� . Then, from (5.3), we obtain the following equation

(5.1a)r�(t) = r(t)

(
1 − r(t)r(t − �) cos∫

t

t−�

v(s)ds

)
,

(5.1b)v(t) = 1 + r(t)r(t − �) sin∫
t

t−�

v(s)ds.

(5.2)(r(t), v(t)) =
(
�j,�j

)
, j ∈ ℕ

(r(t), �(t)) =
(
�j,�jt

)
, j ∈ ℕ

(5.3)0 = � + 2e−�� − �4 ∫
2�

0

e−�sds, � ∈ ℂ,

Fig. 6   Branches of the periodic solutions in (�, r) plane. The branch �0 emerges from r = 1 at � = 0 and 
the branch �1 emerges from r = +∞ at � = 0 . Those branches �0 and �1 meet at � = �∗ . The branches 
�j j ∈ ℤ ⧵ {0} appear from +∞ at � = 0 and exist for 𝜏 > 0 . Dashed curve denotes the periodic solutions 
with 𝜔j < 0 (clockwise periodic solutions)
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where f ∶ ℂ → ℂ defined as

We study (5.4) to analyze the distribution of the roots of (5.3) with respect to the 
imaginary axis. First let us study the existence of real roots for the characteristic 
equation.

Lemma 5.1  For each j ∈ ℕ , the characteristic equation (5.4) has 

1.	 a unique negative real root if 𝜌4
j
𝜏 < 1,

2.	 a root � = 0 if �4
j
� = 1 , and

3.	 a unique positive real root if 𝜌4
j
𝜏 > 1.

Proof  Consider the function f (�) for � ∈ ℝ . Note that f (0) = 2�
(
1 − �4�

)
. Since it 

follows that

one obtains

Since f is a continuous function, if 𝜌4
j
𝜏 < 1 then there is a negative real root and if 

𝜌4
j
𝜏 > 1 then there is a positive real root. We also see that if �4

j
� = 1 then there exists 

a root 0 for the function f.
For the uniqueness of the root, we study the equation 0 = �f (�) . Here

Let us define

We consider an intersection of g1 and g2 . It is easy to see that g1(0) = g2(0) = �2 . 
We compute

(5.4)0 = f (�), � ∈ ℂ,

(5.5)f (�) ∶= � + 2�e−� − �4�2 ∫
2

0

e−�sds, � ∈ ℂ.

lim
�→−∞

e� ∫
2

0

e−�sds = lim
�→−∞

e� − e−�

�
= ∞,

lim
�→∞

f (�) = ∞, lim
�→−∞

f (�) = −∞.

�f (�) = �2 + 2�e−�� − �4�2
(
1 − e−2�

)

= (� + �e−�)2 − �2e−2� − �4�2
(
1 − e−2�

)
.

g1(�) = (� + �e−�)2,

g2(�) = �2e−2� + �4�2
(
1 − e−2�

)
.
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Therefore, one sees that g1 is a downward-convex function (attaining minimum at 
� = log � ) and g2 is upward-convex function. Hence, the intersection of the functions 
g1 and g2 except 0 is unique. Thus we obtain the conclusion. 	�  ◻

For each j ∈ ℕ we obtain the estimation of �4
j
� with respect to 1 as follows.

Lemma 5.2  The following statements are true.

–	 It holds 𝜌4
0
𝜏 < 1 and 𝜌4

1
𝜏 > 1 for 𝜏 < 𝜏∗ and �4

0
� = �4

1
� = 1 for � = �∗ , and

–	 it holds 𝜌4
j
𝜏 > 1 (j ∈ ℕ ⧵ {0, 1}) for 𝜏 > 0.

Proof  For any j ∈ ℤ , from the condition (4.4),

Thus

holds. One can see that

for 𝜏 < 𝜏∗ and

for � = �∗ . Thus we obtain the first statement. For j ∈ ℤ ⧵ {0, 1} it is clear that

Thus we obtain the conclusion. 	�  ◻

From Lemmas 5.1 and 5.2 and the principle of linearized stability [4], we obtain the 
following result concerning instability of the periodic solutions.

Theorem 5.1  The periodic solution of the form (4.1) for j = 1 is unstable for 𝜏 < 𝜏∗ . 
The periodic solution of the form (4.1) for j ∈ ℤ ⧵ {0, 1} is unstable.

g�
1
(𝜂) = 2(𝜂 + 𝜏e−𝜂)(1 − 𝜏e−𝜂),

g�
2
(𝜂) = 2𝜏2

(
𝜌4 − 1

)
e−2𝜂 > 0,

g��
2
(𝜂) = −4𝜏2

(
𝜌4 − 1

)
< 0.

�4
j
= 1 + tan2 �j� =

1

cos2 �j�
.

�4
j
� =

d

d�
tan(��)||�=�j

d

d𝜔
tan(𝜔𝜏)||𝜔=𝜔0

< 1 <
d

d𝜔
tan(𝜔𝜏)||𝜔=𝜔1

d

d�
tan(��)||�=�0

= 1 =
d

d�
tan(��)||�=�1

𝜌4
j
𝜏 =

d

d𝜔
tan(𝜔𝜏)||𝜔=𝜔j

> 1.
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Let us consider stability of the periodic solution of the form (4.1) for j = 0 . For 
j = 0 the characteristic equation (5.4) may have an imaginary root with positive real 
part. Thus so far we cannot determine stability of the periodic solution from Lem-
mas 5.1 and 5.2. Below we exclude this possibility to conclude that the periodic solu-
tion of the form (4.1) for j = 0 is asymptotically stable for 𝜏 < 𝜏∗.

First let us show that there is a compact region in the complex plane for the exist-
ence of a root with positive real part.

Lemma 5.3  Let j = 0 . Suppose that the characteristic Eq. (5.4) has a root � with 
Re 𝜂 > 0 . Then every root � with Re 𝜂 > 0 satisfies

Thus for any 𝜀 > 0 there exists 𝛿 > 0 such that 𝜏 < 𝛿 implies |𝜂| < 𝜀.

Proof  Consider the Eq. (5.4) for � such that Re 𝜂 > 0 . We have

Thus from the characteristic equation (5.4), we obtain

By the straightforward estimation |e−𝜂| < 1 and ||1 − e−2𝜂|| ≤ 1 + ||e−2𝜂|| < 2 using 
Re 𝜂 > 0 , we obtain the estimation (5.6). From the inequality (5.6), one gets

from which we obtain the conclusion. 	�  ◻

Substituting � = � + i�, (�, �) ∈ ℝ
2 into (5.4), we obtain the following two 

equations. 

 From (5.7b) it is immediate to obtain the following lemma. We omit the proof.

Lemma 5.4  If � = � + i� is a root of the characteristic Eq. (5.4), then so is its conju-
gate � = � − i�.

(5.6)|�| ≤ 2� + 2�4
0
�2

1

|�|
.

∫
2

0

e−�sds =
1 − e−2�

�
.

� = −2�e−� + �4
0
�2

1 − e−2�

�
.

��� ≤ � +
√
2� + �2,

(5.7a)0 = � + 2�e−� cos � − �4
j
�2 ∫

2

0

e−�s cos �s ds,

(5.7b)0 = � − 2�e−� sin � + �4
j
�2 ∫

2

0

e−�s sin �s ds.
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From Lemma 5.4, it is sufficient to consider the root � = � + i� of the charac-
teristic equation (5.4) with 𝜈 > 0 . Our next aim is to show the following result.

Lemma 5.5  Let j = 0 . There exists � such that if 𝜏 < 𝜀 then there is no root with 
positive real part for the characteristic equation (5.4).

Proof  Consider the branch j = 0 for 𝜏 < 𝜏∗ . Suppose that there exists a root 
� = � + i� with 𝜇 > 0 . From Lemma  5.3, there exists � such that sin �s ≥ 0 for 
s ∈ [0, 2] . Thus, for this � , one has ∫ 2

0
e−�s sin �sds ≥ 0 . Furthermore, for sufficiently 

small �,

for 𝜈 > 0 . Therefore, we obtain a contradiction to (5.7). Thus we obtain the conclu-
sion. 	�  ◻

Lemma 5.6  Let j = 0 . The characteristic equation (5.4) does not have a purely 
imaginary root.

Proof  Assume that there exists an imaginary root 𝜂 = i𝜈, 𝜈 > 0 for the characteristic 
equation (5.4). Then, from (5.7b), it holds that 

 One can see that

Then, from (5.8), we obtain 

 Note that we have �0 ≥ 1 from (4.6). Since, for any a ∈ ℝ , it holds that 
1 − 2𝜏a + 2𝜏2a2 > 0, we see that

𝜈 − 2𝜏e−𝜇 sin 𝜈 = 𝜈

(
1 − 2𝜏e−𝜇

sin 𝜈

𝜈

)
> 0

(5.8a)0 = 2� cos � − �4
0
�2 ∫

2

0

cos �s ds,

(5.8b)0 = � − 2� sin � + �4
0
�2 ∫

2

0

sin �s ds.

∫
2

0

cos �s ds =
sin 2�

�
=

2 sin � cos �

�
,

∫
2

0

sin �s ds =
1 − cos 2�

�
=

2 sin2 �

�
.

(5.9a)0 = cos �
(
1 − �4

0
�
sin �

�

)
,

(5.9b)0 = �

(
1 − 2�

sin �

�
+ 2�4

0
�2
(
sin �

�

)2
)
.
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which is a contradiction to (5.9b). Therefore, we obtain the conclusion. 	� ◻

Therefore, from the application of the Rouche’s theorem (see e.g. Lemma 2.8 in 
Chapter XI of [5]), we obtain the following conclusion.

Theorem  5.2  If 𝜏 < 𝜏∗ , then the periodic solution of the form (4.1) with j = 0 is 
asymptotically stable and the periodic solution j ≠ 0 is unstable. If 𝜏 > 𝜏∗ then 
every periodic solution (4.1) is unstable.

From Theorems 4.1 and 5.2, we complete the proof of Theorem 2.2.

6 � Numerical simulations

In this section we demonstrate numerical solutions of the delay differential equation 
(2.1) with the special initial conditions x(t) = y(t) = �, t ∈ [−�, 0] , where � ∈ ℝ.

First we fix � = 0.392 . For 𝜏 < 𝜏∗ ≈ 0.398284⋯ , we show that the periodic solu-
tion of the form (4.1) with j = 0 is asymptotically stable (Theorem 5.2). From (4.4), 
we can compute the radius of the stable periodic solution as r = �0 ≈ 1.18547⋯ . In 
Fig. 7, a trajectory of the solution for � = −36 is plotted in (x, y) plane, which shows 
that the periodic solution with the radius r = �0 ≈ 1.18547⋯ attracts the solution. 
Observe that there is an unstable periodic solution in the vicinity of the stable peri-
odic solution (in Fig. 7, the trajectory of the asymptotically stable periodic solution 
and of the unstable periodic solution are illustrated as the dashed orange circle and 
as the dashed blue circle, respectively). In Fig. 8, a trajectory of the solution with 
the initial condition � = −37 is plotted. In this case, the solution winds around the 
unstable periodic solution (dashed blue circle) and then leaves and goes far away.

In Fig 9, we plot log r(t) for several initial conditions � . The numerical experi-
ment suggests that the solution exists globally for −36 < 𝛿 ≤ 0 and blows up for 
𝛿 < −37 : in short, the solution blows up for large |�| . We can numerically observe 
many blow-up solutions, which blow up even after t = �∕2 . In this paper, we prove 
the existence of blow-up solutions, which blow up in the time interval (0, �∕2) . The 
numerical simulation suggest that many solutions blow up in finite times.

We also numerically compute the solution for 𝜏 > 𝜏∗ . Figure 10 shows a transient 
behavior of a solution. The solution stays around the origin for a while and then it 
blows up in a finite time. Although for 𝜏 = 0.3985 > 𝜏∗ , there does not exist peri-
odic solution for j = 0 and j = 1 around the origin, those periodic solutions may 
indirectly affect the transient behavior of the solution.

1 − 2𝜏
sin 𝜈

𝜈
+ 2𝜌4

0
𝜏2
(
sin 𝜈

𝜈

)2 ≥ 1 − 2𝜏
sin 𝜈

𝜈
+ 2𝜏2

(
sin 𝜈

𝜈

)2

> 0,
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Fig. 7   Illustration of a trajectory of the solution with � = −36 in (x, y)-plane for � = 0.392 . The asymp-
totic stable solution attracts the solution with the initial condition � = −36 . The trajectory of the asymp-
totically stable periodic solution and of the unstable periodic solution are illustrated as the dashed orange 
circle and as the dashed blue circle, respectively

Fig. 8   Illustration of a trajectory of the solution with � = −37 in (x, y)-plane for � = 0.392 . (The right 
figure is close-up view of the left figure near the origin.) The solution blows up, after winding around 
the unstable periodic solution (dashed blue circle). The trajectory of the asymptotically stable periodic 
solution and of the unstable periodic solution are illustrated as the dashed orange circle and as the dashed 
blue circle, respectively

7 � Discussion

In this paper we show an example of a blow-up phenomenon in a planar system 
of delay differential equations. In our system, the delay completely changes the 
system: many blow-up solutions and periodic solutions suddenly appear, no mat-
ter how small the length of the delay is. In neutral delay differential equations, it 
is known that arbitrary small delay can destabilize the system (see Chapter 1.7 in 
[9]). Here we find that arbitrary small delay can induce blow-up solutions in delay 
differential equations. Numerical simulations suggest that many solutions either 
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tend to the stable periodic solution or blow up in a finite time. It is not obvious 
if more complicated solution behavior exists. The transient behavior observed in 
Fig. 10 is interesting, as it looks that the solution tries to find a stable periodic 
solution which does not exist in this parameter setting.

Many results concerning the existence of the blow-up solutions are available in 
Volterra integral equations (see [2, 3, 15, 16] and references therein). When delay 

Fig. 9   We plot the growth of log r(t) for several � . Here � is fixed ( � = 0.392) . The numerical simulation 
suggests that larger |�| causes the solution to blow up faster

Fig. 10   Transient behavior of the solution for 𝜏 = 0.3985 > 𝜏∗ . The solution stays around the origin for a 
while, then it blows up in a finite time
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differential equations can be formulated as Volterra integral equations, we may 
apply the blow-up results for Volterra integral equations to delay differential equa-
tions, see e.g. [1, 21] for a relation between Volterra type integral equations and 
integro-differential equations. However, we cannot apply the results for Volterra 
integral equations to a system of integral equations which is rewritten formally from 
our target system of delay differential equations. Since delay differential equations 
form an infinite dimensional dynamical system, it is also not straightforward to 
apply the results established in ordinary differential equations.

In the context of mathematical modelling, our example suggests that arbitrary 
small delay can be responsible for a drastic change of the dynamics, thus one should 
be careful when ignoring small delay. Other blow-up mechanisms in delay differen-
tial equations will be explored in our future work.

A The characteristic equation

Here, by linearization of the system (5.1) about the equilibrium (5.2), we derive the 
characteristic equation (5.3), which characterizes stability of the periodic solutions. 
Fixing j ∈ ℤ , we let

Then, applying the Taylor expansion, we get

Ignoring the higher order terms, we obtain the following linearized equation 

 Substituing the exponential solution (s(t), u(t)) = e�t� , where � ∈ ℂ and � ∈ ℂ
2 , we 

get the following characteristic equation

Using (4.2a), we have

sj(t) = r(t) − �j, u(t) = v(t) − �j.

cos∫
t

t−�

v(s)ds = cos∫
t

t−�

(
u(s) + �j

)
ds = cos�j� − sin�j� ∫

t

t−�

u(s)ds +⋯ ,

sin∫
t

t−�

v(s)ds = sin∫
t

t−�

(
u(s) + �j

)
ds = sin�j� + cos�j� ∫

t

t−�

u(s)ds −⋯ .

(A.1a)s�(t) = −s(t) − s(t − �) + �3
j
sin�j� ∫

�

0

u(t − s)ds,

(A.1b)u(t) = �j sin�j�(s(t) + s(t − �)) + ∫
�

0

u(t − s)ds.

(A.2)det

([
−1 − e−�� �3

j
sin�� ∫ �

0
e−�sds

�j sin�j�
(
1 + e−��

) ∫ �

0
e−�sds

]
−

[
� 0

0 1

])
= 0.
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Therefore, the characteristic equation (A.2) becomes

The Eq. (A.3) can be written as

Therefore, we obtain the characteristic equation (5.3) in the main text.
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