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Abstract
In order to assure the concealment by cryptographic protocols, it is an effective 
measure to prove the concealment in a formal logical system. In the contemporary 
context of cryptographic protocol, the concealment has to be proved by using prob‑
ability theory. There are several concepts of concealment in probability theory. One 
of them is Bayesian concealment. This study proposes a formal logical system to 
prove the Bayesian concealment of a secret sharing scheme.

Keywords Probabilistic concealment · Secret sharing · Formal proof · Bayesian 
theory
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1 Introduction

1.1  Motivation

In order to assure the concealment by cryptographic protocols, it is an effective 
measure to prove the concealment in a formal logical system. In the contemporary 
context of cryptographic protocol, the concealment has to be proved by using prob‑
ability theory. There are several concepts of concealment in probability theory, as 
is explained by Takeuti [9]. One of them is Bayesian concealment. This study pro‑
poses a formal logical system to prove the Bayesian concealment of a secret sharing 
scheme.

Takeuti and Adachi [10] state two reasons of using formal logical system to 
assure the concealment by cryptographic protocols as below.

The first is academic: formal logic can sometimes elicit the essential features 
underlying a proof that may remain hidden if an informal proof is used.
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The second reason is industrial: if you assure only yourself of the concealment 
of a protocol, you may prove the concealment informally. However, to assure 
other people of the concealment, you must demonstrate to them the proof of the 
concealment. Such proofs can be quite difficult to understand, particularly when 
the proof deals with probability. By itself, proof difficulty does not demonstrate 
concealment; however, a formal proof can be verified through mechanical check‑
ing using, e.g., computing. For these reasons, we use a formal logical system in 
this paper.

1.2  Concealment by cryptographic protocol

In this study the word of concealment refers to the concept of hiding some secret 
by a cryptographic protocol as in the study by Takeuti and Adachi [10], in which 
the concealment is explained as below.

In this study a cryptographic protocol refers to a protocol to use in order to 
conceal some data from some party.

As an example of a cryptographic protocol, Diffie–Hellman key exchange pro‑
tocol is a protocol to conceal a secret key from an eavesdropper.

In this protocol, two participants A and B firstly share a finite group G and an 
element e ∈ G . Then, A generates an integer a and sends ea to B. Also B gener‑
ates an integer b and sends eb to A. At last, A and B share a secret key eab . It takes 
too much time for an eavesdropper to obtain the secret key eab even if it knows 
sent messages such as G, e, ea and eb , according to a conjecture of contemporary 
mathematics. The secret key is concealed from the eavesdropper in this sense.

In this study we discuss a secret sharing scheme as a cryptographic protocol. In 
this protocol, the dealer sends a fragment of the secret to each of n participants. 
There is a threshold t such that a group of participants of number t can restore the 
secret from their fragments, although a group of participants of number less than 
t cannot do it. This protocol conceals the secret from a group of participants of 
number less than t.

1.3  Probabilistic variables

In the modern cryptographic theory, the concept of concealment is written in the 
words of probabilistic theory. This study proposes a formal logical system with 
probabilistic variables for proving concealment of cryptography. Some studies on 
formal systems for probabilistic theory implement probabilistic theory in general 
formal system of type theory. One of them is the literature [2] by Affeldt, Gar‑
rigue and Saikawa. Such studies implement the probabilistic theory as a special 
case of measure theory, and do not use probabilistic variables. Probabilistic var‑
iables are familiar for human, and give a nice abstraction which aids human’s 
abstracted thought. That is why we propose a formal system with probabilistic 
variables.
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1.4  Outline

We explain the preliminaries of probability theory and Bayesian theory in Sect. 2. 
We list up six concepts of concealment in Sect. 3, which consists of the quotation 
from the study by Takeuti [9]. We explain secret sharing schemata in Sect. 4. We 
explain the previous studies on formal logical system for proving concealment in 
Sect. 5. We propose our formal logical system in Sect. 6. By using this system, we 
prove the concealment of Shamir’s secret sharing scheme in Sect.  7. We explain 
related works in Sect. 8.

2  Preliminaries of probability theory and Bayesian theory

In this section we put the preliminaries of probability theory and Bayesian theory, 
which we use to define the concepts of concealment.

2.1  Evenness and independency

The probability space consists of a triple (�,B,�) , where � is the set of elementary 
events, B is the set of measurable sets over � , and � is the probability measure. 
In this study, the set � is always finite, and B is always the power set of � . Thus, 
for each E ∈ B , the probability �(E) is expressed by the summation 

∑
�∈E �({�}) . 

We use the letters X, Y, Z,… for probabilistic variables. A probabilistic variable X 
represents a function fX of � into VX which is the set where X ranges. The notation 
Pr[X = x] denotes �({� ∈ �|fX(�) = x}).

We say that the distribution of X is even when, for each x ∈ VX , 
Pr[X = x] = 1∕|VX| . We say that the distributions of X and Y are independent when, 
for each x ∈ VX and each y ∈ VY , Pr[X = x, Y = y] = Pr[X = x] ⋅ Pr[Y = y].

2.2  Prior distribution and posterior distribution

There appear the concepts of joint probability distribution, prior distribution and 
posterior distribution in Bayesian theory. The joint probability distribution of X and 
Y is the distribution

The prior distribution of X is the distribution

The posterior distribution of X after observing Y = y is the distribution

(x, y) ↦ Pr[X = x, Y = y] ∶ VX × VY → [0, 1].

x ↦ Pr[X = x] =
∑
y∈VY

Pr[X = x, Y = y] ∶ VX → [0, 1].

x ↦ Pr[X = x, Y = y] ∶ VX → [0, 1].
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If the distributions of X and Y are independent, then the posterior distribution of X is 
equal to its prior distribution.

3  Concepts of concealment

As discussed by Takeuti [9], there are several concepts of concealment. The follow‑
ing subsections are the list of six concepts of concealment which is the quotation 
from his study [9]. In the following explanation, there appear the concepts of com‑
putational concealment and Bayesian concealment. Although many studies discuss 
computational concealment, we discuss Bayesian concealment in this study.

3.1  Possibilistic concealment and probabilistic concealment

Possibilistic concealment Although it is known that the concealed data X is either 
x1 or x0 , both X = x0 and X = x1 are possible and the adversary cannot tell which of 
them is the case.

Probabilistic concealment When the concealed data X is either x1 or x0 in prob‑
ability 1/2, even if the adversary observes any observable variables, both Pr[X = x1] 
and Pr[X = x0] are still equal or very near to 1/2 for the adversary.

The concept of ‘very near’ in the definition of probabilistic concealment should 
be defined formally. In most cases this concept of ‘very near’ is defined as in the 
concept of asymptotic concealment, which appears below.

The words ‘possibilistic’ and ‘probabilistic’ appear in the study by O’Neill and 
Halpern [7]. The concept of possibilistic concealment is called concealment under a 
non‑probabilistic argument in the study by Takeuti and Adachi [10]. Both the stud‑
ies by O’Neill and Halpern [7] and by Takeuti and Adachi [10] state that possibil‑
istic concealment is weak and probabilistic concealment is desired to discuss the 
safety of cryptographic protocols.

All of the following four concepts of concealment are the refinements of the con‑
cept of probabilistic concealment.

3.2  Asymptotic concealment and information‑theoretic concealment

Asymptotic concealment Suppose that the concealed data X is either x1 or x0 in prob‑
ability 1/2. For an arbitrary polynomial p, there is a large number N such that, for any 
security parameter n > N which is as large as the length of encryption key, in com‑
putation time of polynomial of n, for the computation result X′ , |Pr[X = X�] − 1∕2| 
is smaller than 1/p(n).

Information-theoretic concealment When the concealed data X is either x1 or x0 
in probability 1/2, even if the adversary observes any observable variables, both 
Pr[X = x1] and Pr[X = x0] are still exactly equal to 1/2 for the adversary.

The concept of asymptotic concealment is popular in the context of public‑key 
cryptography, as in the book by Goldreich [5].
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Information‑theoretic concealment can be realised in the settings of some secret 
sharing schemes. One of them is Shamir’s secret sharing scheme [10], although 
Shamir did not show information‑theoretic concealment of his secret sharing scheme 
[8].

Not all secret sharing schemes realise information‑theoretic concealment. Boyle 
et al. [3] discuss asymptotic concealment by a secret sharing scheme.

Information‑theoretic concealment is stronger than asymptotic concealment is. 
Therefore, it is better to realise information‑theoretic concealment than asymptotic 
concealment if it is possible. However, it is impossible to realise information‑theo‑ 
retic concealment and only asymptotic concealment is realisable in some settings, 
namely, the setting of public‑key cryptography.

3.3  Computational concealment and Bayesian concealment

Computational concealment When the concealed data X is either x1 or x0 in prob‑
ability 1/2, even if the adversary makes any computation using observable variables 
in the given computation power, the probability that the adversary guesses the col‑
lect value of X is equal to or very near to 1/2.

Bayesian concealment Even if the adversary observes any observable variables, 
the posterior distribution of the concealed variable is equal to its prior distribution.

We say that the data is concealed Bayesianly when the Bayesian concealment is 
realised.

If the probabilistic distribution of the observable variables are independent to that 
of the concealed data, then the concealed data is concealed Bayesianly.

The definition of computational concealment mentions both the concepts of com‑
putation and of probability, while the definition of Bayesian concealment mentions 
only the concept of probability.

3.4  Applicability

The following explanations around the last four concepts in the literature [9].
Two dichotomies are shown around the concept of probabilistic concealment; one 

dichotomy is asymptotic concealment versus information‑theoretic concealment in 
Sect. 3.2, and the other is computational concealment versus Bayesian concealment 
in Sect. 3.3. The former one in Sect. 3.2 captures what phenomenon happens, and 
the latter one in Sect. 3.3 captures the method how to observe the phenomenon. We 
apply the method indicated by the dichotomy in Sect. 3.3 to observing the phenom‑
enon indicated by the dichotomy in Sect. 3.2.

Not both methods are applicable to both phenomena. The concept of asymptotic 
concealment is essentially computational, and Bayesian concealment is not applica‑
ble to asymptotic concealment. Bayesian concealment is applicable to only informa‑
tion‑theoretic concealment. On the other hand, computational concealment is appli‑
cable to both asymptotic concealment and information‑theoretic concealment.



682 I. Takeuti

1 3

3.5  Merit of the concept of Bayesian concealment

As the merit of the concept of Bayesian concealment, the concept of Bayesian 
concealment captures probabilistic concealment more directly than computational 
concealment does. A formal system for proving computational concealment has to 
have some devices of computation theory as well as of probabilistic theory. The 
formal system by Takeuti and Adachi [10] has the undefined function symbol f 
which denote an arbitrary computation as well as the probabilistic modality. On the 
other hand, the formal system which we propose in Sect. 6 has only probabilistic 
predicates.

As the profit of using the concept of Bayesian concealment, the proof of the 
Bayesian concealment is more direct and easier to analyse than the proof of compu‑
tational concealment is. Takeuti and Adachi [10] prove the computational conceal‑
ment of the secret sharing scheme in Sect. 4.3. Although it proves the computational 
concealment explicitly, the proof uses Bayesian concealment implicitly. In Sect. 3.3 
of the literature [10], they prove

In this expression, f �(x1 + l1, x2 + l2,… , xk + lk) is a linear combination of the 
observable variables, and f �(x1, x2,… , xk) is independent to the secrets. Therefore, 
this expression implicitly meaning that the observable variables are independent to 
the secrets, that is, Bayesian concealment is realised here. Their proof of computa‑
tional concealment is a little hard to analyse. However, in order to prove its informa‑
tion‑theoretic concealment, it is sufficient to prove its Bayesian concealment, and it 
is not necessary to prove its computational concealment. It is much clearer to prove 
its Bayesian concealment than to prove its computational concealment.

4  Secret sharing system

4.1  Threshold secret sharing scheme

A typical secret sharing scheme realises the following situation. There are n persons, 
each of which has its own fragment of the secret, and t persons out of them together 
can restore the secret but t − 1 persons cannot. If it realises this situation, then it is 
called (n, t)‑threshold secret sharing scheme.

4.2  Simple secret sharing scheme

We can construct a simple secret sharing system by a finite group G as below.
There are a dealer and two persons P1 and P2 . The group G is open. There is a 

secret X ∈ G . The dealer chooses a fresh key Y from G, that is, the distribution of 
Y is even and independent to that of X. The dealer gives Y to a person P1 and gives 
Z = XY  to another person P2 . The distribution of Z is also even, and X and Z is also 

Pr[j = f �(x1 + l1, x2 + l2,… , xk + lk)] = Pr[j = f �(x1, x2,… , xk)].
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independent, because of the following proposition. Neither P1 nor P2 alone can solve 
the value of X, because X is concealed Bayesianly both from Y and from Z. On the 
other hand, P1 and P2 in collaboration can solve the value of X as X = ZY−1.

Proposition 1 Let G be a finite group and X and Y be probabilistic variables 
over G. Suppose that the distribution of Y is even and independent to that of X. Put 
Z = XY  . Then, the distribution of Z is even and independent to that of X.

Proof For any x, z ∈ G , it holds that

On the other hand,

Therefore Pr[Z = z] = 1∕|G| and Pr[X = x, Z = z] = Pr[X = x] ⋅ Pr[Z = z] .   ◻

This is a (2, 2)‑threshold secret sharing scheme.

4.3  Shamir’s secret sharing scheme

Shamir [8] proposes (n, t)‑threshold secret sharing scheme. We will show the con‑
struction of his (3, 3)‑threshold secret sharing scheme as an example.

Take a finite field F of characteristic ≥ 5.
For a secret data M ∈ F , the dealer takes fresh variables X1,X2 ∈ F , that is, their 

distributions are even, and the distributions of them and M are independent.
The dealer calculates

Then the dealer delivers the data Y1 , Y2 and Y3 to three persons P1 , P2 and P3 
respectively.

By knowing all of Y1 , Y2 , Y3 , one can solve the equation system and obtain M. On 
the other hand, one cannot obtain M from only two of Y1 , Y2 , Y3 , because the degree 
of freedom is not enough and one cannot solve the equation system. Therefore, it is 
(3, 3)‑threshold secret sharing scheme.

Pr[X = x, Z = z] = Pr[X = x,XY = z] = Pr[X = x, Y = x−1z]

= Pr[X = x] ⋅ Pr[Y = x−1z] = Pr[X = x]∕|G|.

Pr[Z = z] = Pr[XY = z] =
∑
x∈G

Pr[X = x,XY = z] =
∑
x∈G

Pr[X = x, Y = x−1z]

=
∑
x∈G

Pr[X = x] ⋅ Pr[Y = x−1z] =
∑
x∈G

(Pr[X = x]∕|G|)

=

(∑
x∈G

Pr[X = x]

)
∕|G| = 1∕|G|.

⎛⎜⎜⎝

Y1
Y2
Y3

⎞⎟⎟⎠
=

⎛⎜⎜⎝

1 1 1

1 2 4

1 3 9

⎞⎟⎟⎠

⎛⎜⎜⎝

M

X1

X2

⎞⎟⎟⎠
.
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Shamir [8] discusses (n, t)‑threshold secret sharing schemes for general n and t by 
using general Vandermonde’s matrices.

Although Shamir shows only possibilistic concealment of this scheme, it is actu‑
ally probabilistic concealment, as is shown by Takeuti and Adachi [10].

5  Formal systems in previous studies

There are several previous studies which propose formal systems to prove conceal‑
ment of cryptographic protocol. We point out two of them.

One is the study by Takeuti and Adachi [10] which proposes the formal logical 
system which proves the information‑theoretic concealment of Shamir’s secret shar‑
ing scheme. The other is the study by Abadí and Rogaway [1] which proposes the 
formal system which can show asymptotic concealment of cryptographic protocols 
with an encryption function.

5.1  Previous system for the secret sharing scheme

Takeuti and Adachi [10] prove its computational concealment of the secret sharing 
scheme in Sect. 4.3 by using its Bayesian concealment.

In this secret sharing scheme, the secret is M, the random seeds are X1 and X2 , 
and the observable variables are Y1 , Y2 and Y3 . They prove the following fact. Sup‑
pose that a party knows only two of the three observable variables, namely, Y1 and 
Y2 . Then for an arbitrary function f, the distribution of the result of the calculation 
f (Y1, Y2) is independent to that of M. In other words, the variable M is concealed 
Bayesianly from Y1 and Y2 . By using this fact, they prove computational concealment 
of M from Y1 and Y2.

The logical system is a little heavy, since it has modal operators for denoting 
probability as well as full propositional logical connectives. The proof is also a little 
heavy to analyse.

In order to assure the probabilistic concealment, it is sufficient to prove Bayesian 
concealment and it is not necessary to prove computational concealment. In order to 
prove only Bayesian concealment, we can simplify the system and the proof much 
more.

5.2  Previous system for the cryptographic protocol with an encryption function

Abadí and Rogaway [1] propose the formal system which can show asymptotic con‑
cealment of cryptographic protocols with an encryption function. The system is to 
derive a term from terms. The system is quite simple.

The terms are defined by the following grammar:

The derivation rules are the follows:

M∶∶=X|(M,M)|{M}M|M−1 where X is a variable.
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They [1] prove that this system enjoys soundness and completeness, where sound‑
ness means that, if M1,M2,… ,Mn ⊢ M is derivable in this system, then M is 
obtained from M1,M2,… ,Mn , and completeness means that, if M1,M2,… ,Mn ⊢ M 
is not derivable in this system, then M is concealed from M1,M2,… ,Mn.

For example, one asserts that X is concealed from {X}K because X is not derived 
from {X}K.

6  Formal system

6.1  Overview

We propose a formal system which proves Bayesian concealment. The targets of this 
system are formulae without logical connectives. In order to deal with Bayesian con‑
cealment, it is necessary to state evenness and independency of probabilistic distribu‑
tion. Hence the system has the predicates which denote evenness and independency, 
thus the system targets not terms but formulae. However, this system does not have 
logical connectives. Therefore, this system is a little more complicated than the system 
by Abadí and Rogaway [1], but not so as the system by Takeuti and Adachi [10].

We prove the soundness of this system. Its completeness is unknown. Even if it is 
not complete, the system which proves useful theorems is useful.

We fix a finite field where secret sharing scheme is calculated. Its reason is the same 
as that in the study by Takeuti and Adachi [10], which states as below.

The secret sharing scheme uses a finite field. In order to deal with general fields, 
the formal logical system must have a general theory of finite fields, which is a kind of 
complicated. We would like to divide the problem into two parts: one is that of prob‑
ability and the other problem is that of general finite fields. In this paper we discuss 
only probability. Therefore, we fix a particular finite field.

6.2  Syntax

We fix a finite field F.
There are only finite probabilistic variables.
Terms are defined as the following syntax:

where X is a probabilistic variable and e ∈ F.
Formulae are in the following forms:

M,M� ⊢ (M,M�), (M,M�) ⊢ M, (M,M�) ⊢ M�,

M,K ⊢ {M}K , {M}K ,K
−1 ⊢ M.

t∶∶=X ∣ e ∣ t + t ∣ t ⋅ t ∣ t−1.

t = t�, t ≠ t�,E(t) and I(tt, t2,… , tn).
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A formula E(t) denotes that the distribution of t is even. A formula I(tt, t2,… , tn) 
denotes that the distributions of t1, t2,… , tn−1 and tn are independent.

A term t is said to be made of t1, t2,… , tn when t is a term generated from only 
t1, t2,… , tn and some e1, e2,… , em ∈ F with only +, ⋅ and (−)−1.

6.3  Semantics

An assignment � assigns an element e ∈ F to each probabilistic variable. Note 
that there are only finite assignments, because probabilistic variables are finite 
and F is also finite.

The value [[t]]� ∈ F of a term t under an assignment � is defined in the ordi‑
nary way as follows:

We define [[0−1]]� = 0 in order to make [[−]] a total function over terms, although 0−1 
is undefined in mathematics.

The probability space here is (�,B,�) where the underlying set � is the set 
of all the assignment of elements in F to probabilistic variables, the Borel family 
B is the power set of � , and � is a probability measure over B.

In the following text, the notation Pr[t1 = t�
1
, t2 = t�

2
,… , tn = t�

n
] denotes

For a formula � , the truth value [[�]]� ∈ {����, �����} is defined as follows:

One can calculate both of [[t = t�]]� and [[t ≠ t�]]� because � is finite. Note that 
[[t = t�]]� and [[t ≠ t�]]� are independent to �.

We say � is valid and write ⊧ 𝜙 when [[�]]� = ���� for any �.

[[X]]� = �(X) where X is a probabilistic variable,

[[e]]� = e where e ∈ F,

[[t + t�]]� = [[t]]� + [[t�]]�,

[[t ⋅ t�]]� = [[t]]� ⋅ [[t�]]�,

[[t−1]]� = [[t]]−1
�

when [[t]]� ≠ 0, and [[t−1]]� = 0 when [[t]]� = 0.

�({� ∈ �|[[t1]]� = [[t�
1
]]�, [[t2]]� = [[t�

2
]]�,… , [[tn]]� = [[t�

n
]]�}).

[[t = t�]]� = ���� ⟺ [[t]]� = [[t�]]� for each � ∈ �,

[[t ≠ t�]]� = ���� ⟺ [[t]]� ≠ [[t�]]� for each � ∈ �,

[[E(t)]]� = ���� ⟺ Pr[t = e] = 1∕|F| for each e ∈ F,

[[I(t1, t2,… , tn)]]� = ����

⟺ Pr[t1 = e1, t2 = e2,… , tn = en] =
∏

i=1,2,…,n

Pr[ti = ei]

for each (e1, e2,… , en) ∈ Fn.
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6.4  Inference rules

The inference rules are listed below:

Rule 1. ⊢ t = t� where [[t = t�]]� = ����,
Rule 2. ⊢ t ≠ t′ where [[t = t�]]� = ����,
Rule 3. t = t�,𝜙(t) ⊢ 𝜙(t�),
Rule 4. I(t1, t2,… , tn) ⊢ I(t�

1
, t�
2
,… , t�

m
) where {t�

1
, t�
2
,… , t�

m
} ⊂ {t1, t2,… , tn},

Rule 5. ⊢ I(t),
Rule 6. I(t1, t2,… , tn) ⊢ I(t1, t2,… , tn, e) where e ∈ F,
Rule 7. I(t1, t2,… , tn, t

�
1
, t�
2
,… , t�

m
) ⊢ I(t1, t2,… , tn, t

�) . where t′ is made of 
t�
1
, t�
2
,… , t�

m
,

Rule 8. E(t), I(t, t1, t2,… , tn) ⊢ I(t + t�, t1, t2,… , tn) . where t′ is made of 
t1, t2,… , tn,
Rule 9. E(t), I(t, t�), t� ≠ 0 ⊢ E(t ⋅ t�).

6.5  Soundness

We show the soundness of the logical system in this section.

Theorem 1 Suppose 𝜙1,𝜙2,… ,𝜙n ⊢ 𝜙 and ⊧ 𝜙i for each i = 1, 2,… , n . Then ⊧ 𝜙.

Proof The proof is done by showing that each rule above preserves the validity.
Rules 1, 2 and 5: They follow from the definition directly.
Rules 3, 4 and 6: Easy.
Rule 7: It follows from Lemma 1.
Rule 8: It follows from Lemma 2.
Rule 9: It follows from Lemma 3.   ◻

In the proofs of the following lemmata, in order to distinguish from compari‑
son of the values of terms, we use the symbol ≡ to denote that two are of the same 
form, that is, we write t ≡ t′ to denote that the term t is the same term as t′.

Lemma 1 Let t̄ be the sequence t1, t2,… , tm and t̄′ be the sequence t�
1
, t�
2
,… , t�

m
 . If 

⊧ I(t̄�, t̄) and u is a term made of t̄, then ⊧ I(t̄�, u).

Proof Let x1, x2,… , xn be variables.
Because u is a term made of t̄ , there is some term u∗(x1, x2,… , xn) which is made 

of x1, x2,… , xn such that u ≡ u∗(t̄).
For e ∈ F , the set u−1

∗
(e) ⊂ Fn is defined as

As the assumption, for any e1, e2,… , en, e
�
1
, e�

2
,… , e�

m
 in F, it holds that

u−1
∗
(e) = {(e1, e2,… , en)|e = u∗(e1, e2,… , en)}.
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Let e, e�
1
, e�

2
,… , e�

m
 be arbitrary elements in F. Then,

Therefore ⊧ I(t̄�, u) .   ◻

Lemma 2 Let t̄ be the sequence t1, t2,… , tn . If ⊧ E(t), ⊧ I(t, t̄) and u is a term made 
of t̄, then ⊧ I(t + u, t̄).

Proof Let x1, x2,… , xn be variables.
Because u is a term made of t̄ , there is some term u∗(x1, x2,… , xn) which is made 

of x1, x2,… , xn such that u ≡ u∗(t̄).
For e ∈ F , the set u−1

∗
(e) ⊂ Fn is defined as

As the assumption, Pr[t = e] = 1∕|F| for each e ∈ F.
As the assumption, for any e, e1, e2,… , en in F, it holds that

Let e, e1, e2,… , en be arbitrary elements in F. Then,

Pr[t1 = e1, t2 = e2,… , tn = en, t
�
1
= e�

1
, t�
2
= e�

2
,… , t�

m
= e�

m
]

=

( ∏
i=1,2,…,n

Pr[ti = ei]

)
⋅

∏
i=1,2,…,m

Pr[t�
i
= e�

i
].

Pr[t�
1
= e�

1
, t�
2
= e�

2
,… , t�

m
= e�

m
, u = e]

=
∑

(e1,e2,…,en)∈u
−1
∗
(e)

Pr[t1 = e1, t2 = e2,… , tn = en, t
�
1
= e�

1
, t�
2
= e�

2
,… , t�

m
= e�

m
]

=
∑

(e1,e2,…,en)∈u
−1
∗
(e)

( ∏
i=1,2,…,n

Pr[ti = ei]

)
⋅

∏
i=1,2,…,m

Pr[t�
i
= e�

i
]

=

( ∏
i=1,2,…,m

Pr[t�
i
= e�

i
]

)
⋅

∑
(e1,e2,…,en)∈u

−1
∗
(e)

∏
i=1,2,…,n

Pr[ti = ei]

=

( ∏
i=1,2,…,m

Pr[t�
i
= e�

i
]

)
⋅ Pr[u = e].

t−1
∗
(e) = {(e1, e2,… , en)|e = u∗(e1, e2,… , en)}.

Pr[t = e, t1 = e1, t2 = e2,… , tn = en]

= Pr[t = e] ⋅
∏

i=1,2,…,n

Pr[ti = ei] =

( ∏
i=1,2,…,n

Pr[ti = ei]

)
∕|F|.
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Therefore ⊧ I(t + u, t̄) .   ◻

Lemma 3 If ⊧ E(t), ⊧ I(t, t�) and ⊧ t′ ≠ 0, then ⊧ E(t ⋅ t�).

Proof It holds Pr[�, t� = 0] = 0 because ⊧ t′ ≠ 0.
Let e be an arbitrary element in F. Then,

Pr[t + u = e, t1 = e1, t2 = e2,… , tn = en]

=
�
e�∈F

Pr[t + u = e, u = e�, t1 = e1, t2 = e2,… , tn = en]

=
�
e�∈F

Pr[t = e − e�, u = e�, t1 = e1, t2 = e2,… , tn = en]

=
�
e�∈F

Pr[t = e − e�, u∗(e1, e2,… , en) = e�, t1 = e1, t2 = e2,… , tn = en]

=
�
e�∈F

�
(e1,e2,…,en)∈u

−1
∗
(e�)

Pr[t = e − e�, t1 = e1, t2 = e2,… , tn = en]

=
�
e�∈F

�
(e1,e2,…,en)∈u

−1
∗
(e�)

(Pr[t1 = e1, t2 = e2,… , tn = en]∕�F�)

=

⎛
⎜⎜⎝
�
e�∈F

�
(e1,e2,…,en)∈u

−1
∗
(e�)

Pr[t1 = e1, t2 = e2,… , tn = en]

⎞
⎟⎟⎠
∕�F�

=

��
e�∈F

Pr[u∗(e1, e2,… , en) = e�, t1 = e1, t2 = e2,… , tn = en]

�
∕�F�

=

��
e�∈F

Pr[u = e�, t1 = e1, t2 = e2,… , tn = en]

�
∕�F�

= Pr[t1 = e1, t2 = e2,… , tn = en])∕�F� =
� �

i=1,2,…,n

Pr[ti = ei]

�
∕�F�

= Pr[t = e] ⋅
�

i=1,2,…,n

Pr[ti = ei].
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  ◻

7  Proof of Bayesian concealment in secret sharing scheme

In this section we prove Bayesian concealment of the secret sharing system of 
Sect. 4.3 in the formal system of Sect. 6.

In the secret sharing system of Sect. 4.3, there are probabilistic variables M, 
X1 , X2 , Y1 , Y2 and Y3 . The variable where M is a secret, The variables X1 and X2 are 
fresh variables, that is, the distributions of X1 and X2 are even and M, X1 and X2 
are independent, The variables Y1 , Y2 and Y3 are calculated as

Although one can calculate M from all of Y1 , Y2 and Y3 , it is concealed Bayesianly 
from two of them.

We show the formal proof of the Bayesian concealment of M from Y1 and Y2 . 

 1. I(M,X1,X2) … Assumption.
 2. E(X1) … Assumption.
 3. E(X2) … Assumption.
 4. Y1 = M + X1 + X2 … Assumption.
 5. Y2 = M + 2X1 + 4X2 … Assumption.
 6. I(M,M + X1 + X2,X2) … By Rule 8 from 1 and 2.
 7. I(M,M + X1 + X2,X2 + (M + X1 + X2) −M∕2) … By Rule 8 from 3 and 6.
 8. I(M,M + X1 + X2, 2(X2 + (M + X1 + X2) −M∕2)) … By Rule 7 from 7.
 9. I(M,M + X1 + X2,M + 2X1 + 4X2) … By Rule 1 from 8.
 10. I(M, Y1, Y2) … By Rule 3 from 4, 5 and 9.

Pr[tt� = e] =
∑
e�∈F

Pr[tt� = e, t� = e�]

=

( ∑
e�∈F−{0}

Pr[tt� = e, t� = e�]

)
+ Pr[tt� = e, t� = 0]

=
∑

e�∈F−{0}

Pr[t = ee�−1, t� = e�] =
∑

e�∈F−{0}

Pr[t = ee�−1]Pr[t� = e�]

=
∑

e�∈F−{0}

(Pr[t� = e�]∕|F|) =
( ∑

e�∈F−{0}

Pr[t� = e�]

)
∕|F|

=

(( ∑
e�∈F−{0}

Pr[t� = e�]

)
+ Pr[t� = 0]

)
∕|F| =

(∑
e�∈F

Pr[t� = e�]

)
∕|F| = 1∕|F|.

⎛⎜⎜⎝

Y1
Y2
Y3

⎞⎟⎟⎠
=

⎛⎜⎜⎝

1 1 1

1 2 4

1 3 9

⎞⎟⎟⎠

⎛⎜⎜⎝

M

X1

X2

⎞⎟⎟⎠
.
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Therefore, it is proved that the probabilistic distributions of M, Y1 and Y2 are inde‑
pendent, that is, M is concealed Bayesianly from Y1 and Y2.

This proof is the inverse way of row reduction to solve the equation system. The 
concealment of Shamir’s secret sharing system depends on the unsolvability of the 
linear equation system. Thus, the proof of its concealment follows the steps of solv‑
ing the linear equation system. While the proof in the literature [10] uses the inverse 
matrix, the proof in this study follows the inverse way of row reduction step by step.

8  Future work

We proposed a formal logical system which proves the Bayesian concealment. Our 
system shows which operations in field theory preserve the evenness and the inde‑
pendency of probabilistic distributions. Therefore, our system proves the conceal‑
ment of only the cryptographic protocols based on fields theory. Especially, this 
system is applied to only one example which is the concealment of Shamir’s secret 
sharing scheme. To apply this system to more examples is a future work.

9  Related works

As is explained in Sect. 5.2, Abadí and Rogaway [1] define a formal system which 
proves one can computed a term from other terms, and show the completeness of the 
system for a computational model. Their system targets not formulae but a terms. Its 
completeness yields that if a term is not derived from the set of other terms, then the 
term is concealed from the person who knows only the set of terms. The conceal‑
ment which is proved here is asymptotic concealment.

In their theory, the impossibility of derivation yields concealment. Hence its 
completeness is necessary. On the other hand, our system derives the independency 
of terms which implies the concealment. Hence its soundness is sufficient and its 
completeness is not required.

As is explained in Sect.  5.1, Takeuti and Adachi [10] propose a formal logi‑
cal system which proves the probabilistic concealment of Shamir’s secret sharing 
scheme. Their system has full Boolean logical connectives and modal operators for 
denoting probability. The system is a little heavy, and the proof is a little hard to 
analyse. On the other hand, our system in this study has no logical symbols and the 
proof is easy to analyse.

Affeldt et  al. [2] implement probabilistic theory in the general logical sys‑
tem Coq, and develop the theory of conditional probability. The theory of condi‑
tional probability can describe independency of events, therefore it can deal with 
Bayesian concealment. They regard probabilistic theory as a special case of meas‑
ure theory. The implementation does not use probabilistic variables but uses the 
functions represented by propositional variables, that is, they use the expression 
�{� ∈ �|fX(�) = x} instead of Pr[X = x] . They use probabilistic variables in infor‑
mal expressions, but do not give formal expressions with probabilistic variables.
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Some studies on formal systems for probability discuss modal logic for proba‑
bilistic transitions. One of them is the literature [6] by Aviad Heifetz and Philippe 
Mongin. They axiomatise modal logic for probabilistic transitions and prove the 
soundness and completeness of the axiomatisation. The logic for probabilistic tran‑
sitions cannot write independency of events, therefore it cannot deal with Bayesian 
concealment.

Dougherty and Guttman [4] define a formal theory of fields in order to prove the 
security of a modification of Diffie–Hellman key exchange protocol against man‑
in‑the‑middle attack. The result is not a direct theorem of the formal system but a 
conclusion of a discussion of informal logic with an aid of formal theory.
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