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Abstract

Numerical aspects of large-scale electronic state calculation are explored on flexible
organic device materials. Physical theory, numerical method and real application stud-
ies are discussed in the context of application-algorithm-architecture co-design. An
application study was carried out for disordered organic thin film. Participation ratio,
a measure for the spatial extension of electronic wavefunction is focused on, since it
is crucial for device property. A data scientific research is reported for a classifica-
tion problem of disordered organic polymers, in which participation ratio is used as
descriptor. These application studies indicate the potential need of purpose-specific
solvers for internal eigenpairs.
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1 Introduction

Large-scale quantum material simulation or electronic state calculation is one of the
major fields in computational science with supercomputers. A central problem in this
field is the generalized eigenvalue equation, in which an eigenvalue or eigenvector
is the energy or the wavefunction of an electron, respectively. Although the de fact
standard parallel solver library is ScaLAPACK [1], these routines show severe lim-
itations in parallel efficiency and several scalable solvers, such as ELPA [2,3] and
EigenExa [4,5], were developed recently. Among them, ELPA was developed in the
tight collaboration between numerical researchers and material researchers in Europe.
[3,6] Such a fruitful collaboration requires the co-design approach among applica-
tion, algorithm and architecture, because an optimal algorithm is dependent both on
problem and architecture. For example, a ELPA paper [3] discusses the benchmark
of the calculation that obtains all the eigenvalues and a small fraction (10-50 %) of
eigenvectors, since such calculations are typical among electronic state calculations.

The present paper reports large-scale electronic state calculations in the context of
application-algorithm-architecture co-design. The target application is organic flexible
device materials, and the application study contains (i) large single problem and (ii)
many small problems in data scientific research for the classification of disordered
materials. These researches lead us to a potential need for purpose-specific numerical
solvers for internal eigenpairs. We believe that the present paper is a seed of the
collaboration between numerical researcher and material researcher with the next-
generation or (pre-)exascale supercomputers.

The present paper is organized as follows; Section 2 gives a brief overview of
organic material. Physical theory and related numerical method of large-scale elec-
tronic state calculation appear in Sect. 3. The calculated results appear for organic thin
film in Sect. 4.1 and for organic polymer in Sect. 4.2. The potential need for purpose-
specific solvers is discussed in Sect. 4.3. Section 5 is devoted to summary and future
outlook.

2 Organic materials

Organic semiconductor material is the foundation of flexible devices, such as flexi-
ble displays [7], flexible solar cells [8], and human-friendly wearable electronics [9].
Unlike inorganic semiconductors such as silicon, an organic semiconductor consists of
small molecules or polymers which form solids with weak van der Waals interaction.
An important industrial problem is to control the disorder of the atomic structure with-
out an increase of the fabrication cost. The electronic property is highly anisotropic and
is governed by the spatial extension of the characteristic electrons called  electrons
that lie, for example, on benzene rings. A fundamental issue is a conflicting demand on
opt-electronic devices; An extended wavefuntion is preferable for conduction property,
since an extended wavefunction can induce the electrical current easily. A localized
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wavefunction, by contrast, is preferable for optical property, since a localized wave-
function can strongly interact with light. The above conflicting demand should be a
foundation of material design. Wavefunctions in disordered structures are localized,
while wavefunctions in ideal crystalline (periodic) structures are extended throughout
the whole system.

An investigation on these materials requires large-scale electronic state calculation
in 10-100 nm scales, since complicated disordered structure is crucial for device
properties. The investigation requires also a data scientific research with capacity
computation, or simultaneous computation of many problems, because the real device
property stem from the average among many disordered samples.

Here a crucial issue is to find a proper quantity that characterizes each disordered
sample in the context of device property. In the present paper, the quantity is chosen to
be participation ratio (PR) [10-14], the spatial extension of electronic wavefunctions,
since the spatial extension of wavefunctions governs the device property. The detailed
explanation of PR will be given in the next section. Later in the present paper, PR will
be used as descriptor in a data scientific research for classification.

3 Theory and numerical method
Numerical foundation of electronic state calculations is explained as the basics of the

co-design approach. Details of the physical theory can be found in textbooks, such as
Ref. [15].

3.1 Physical origin of matrix problem

The fundamental Schrédinger-type equation, a partial differential equation in real
space r, is written for an electronic wavefunction ¢ (r) as

H$(r) = 1 (r) 1
with the Hamilton operator of
. 2
H= —2—A+Veff(r)- (2
m

Here, A is Laplacian, m is the mass of electron and % is the Planck constant, a physical
constant (A ~ 1.0573%Js). Ve (r) is the effective potential, a scalar function. The
normalization condition of

/ lp(r)*dr = 1 3)

is imposed and stems from the fact that the sum of the weight distribution of one
electron should be the unity. The function of n(r) = ¢ (r)|2(> 0) is the weight
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distribution of the electron at the point of r. The normalization condition of Eq. (3)
can be expressed as

/ n(rydr = 1. @)

An eigenvalue of A means the energy of an electron in the material and is called
eigenenergy. The k-th eigenpair of (Ax, ¢x(r)) is defined for k = 1,2, .., M in the
order of A; < Ay < --- < Ay. Each material has a specific integer of kgo called
highest occupied eigenenergy, and the eigenpairs for k = 1, 2, ...kgo are occupied by
the electrons. A para-spin material with Ngec electrons, for example, gives the value
of kno = Nelec/2, if Nelec is even. Semiconductor material has a finite energy gap
between the kyo-th and (kyo + 1)-th eigenenergies (Aiyo+1 — Akyo > 0).

Now we consider, as a typical case, that ¢ (r) is expressed as a linear combination
of given basis functions

M
Pr) = vix ), )
J

where M is the number of the basis functions {x;(r)}. The basis functions {x;(r)}
are normalized to be

/xf(r))(j(r)dr =L (6)

A typical function is called atomic orbital and is localized near the position of an atomic
nucleus. Since each basis function belongs to one atom, the basis index i is equivalent
to the composite indices of an atom index / and an orbital index « (i = (I, «)). The
orbital index « distinguishes the basis functions that belong to the same atom but
different in their shape.

A generalized eigenvalue equation appears, when Eq. (5) is substituted for Eq. (1);

Av = ABv (7

with the M x M matrices of
Ajj = f X' () H yj(r)dr ®)
Bi; = /X,-*(r)x,/(r)dr- 9

The matrices A and B are Hermitian. The matrix B is positive definite and satisfies
Bjj = 1 and |B;j| < 1(i # j). Hereafter we consider, as among many researches,
that the basis functions are real and the matrices A and B are real-symmetric. The
normalization condition of Eq. (3) is reduced to

vIBy =1, (10)
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which is called B-normalization. The present paper will discuss matrix data generated
by our simulation software ELSES [16,17], an electronic-state calculation software
with first-principles-based modeled (tight-binding) electronic-state theory. Sparsity
of the matrices of A;; and B;; are explained briefly. As explained in the previous
subsection, the indices i and j are the composite indices of the atom indices / and J
and the orbital indices « and B, respectively (i =i(I, o), j = j(J, B))). Therefore, an
element of the matrices A and B is expressed by the four indices as A 4.y and Bjq. s,
respectively. Since a matrix element value decreases quickly and monotonically as the
function of the inter-atomic distance between the 7/-th and J-th atoms (r; ), a cutoff
distance ey can be introduced. A matrix element, Ay g Or Bjq: g, is ignored, if
rrj > reut, Which makes the matrices to be sparse.

3.2 Mulliken weight

This subsection introduces Mulliken weight [18], a famous discretized representation
for the weight distribution of n(r). When the quantity of ¢™ is defined as

g™ = Z vi Bijv. (1)

fori = 1,2, ...., M, it is called Mulliken weight at the i-th basis function. The nor-
malization condition of Eq. (10) is reduced to

>4 =1, (12)

i

which is analogous to Eq. (4).
Since the basis index of i is the composite indices of the atom index of I and the
orbital index of @ (i = (I, «)), the Mulliken weight at the /-th atom is defined as

(atm) Z q(bas) (13)

and satisfies

(atm)

g™ =1 (14)

I

If each atom belongs to one molecule, the Mulliken weight at the P-th molecule is
defined as

(atm)e P

q;)mol)E Z q;atm)’ (15)

1
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where Zgatm) <P is the summation among the atoms that belong to the P-th molecule.
The sum is the unity;

(mol)
Y oap =1 (16)
P
In this paper, we will use the definition of ¢ = (g4 l(bas)’ qébas), s ql(";as))T and
gmoh = (ql(mob, qémob, q,(LmOI))T, where p is the number of the molecules in the
system.

3.3 Participation ratio

This subsection introduces participation ratio (PR), as a measure of the spatial exten-
sion of wavefunctions ¢ (r) or how the wavefunction spreads in real space [10-13].
Since the spatial extension of wavefunction governs the electrical conductivity, PR was
used with large-scale electronic state calculations, such as a research on the anomalous
electrical conductivity in quasi crystals [14].

In the continuum representation, PR is defined for a wavefunction ¢ (r) as

—1
PEV@ () = ( f |¢><r)|“dr> : an

under the L2-normalization of Eq. (3). For example, suppose D is a closed area whose
volume is £2 and ¢ is constant in D as

1
$(r) = { vz reb) (18)

0 (otherwise).

Then the PR of ¢ gives the volume of the non-zero region of ¢

—1
P(cnt)(4)(¢) — <%/ dr> = 0. (19)
D

The above definition of PR can be expressed also by the weight distribution of n(r)
as

-1
PO () = < / |n(r)|2dr> (20)

under the normalization of Eq. (4).
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PR for the eigenvector of v = (v, va, ...., vyr) ! in Eq. (7) can be also defined in a
similar manner. The definition in the present paper is

-1

POy = Jvl* 1)
J

under the B-normalization constraint of Eq. (10). For the discretized representation,
PR indicates a measure of the number of non-zero elements, namely, how broadly the
elements exist on the indices. For example, the case of B = [ and

(] L oo o)T 22)
V= T T =y T e U Uy e ey i

V3 V33

the PR is

—1 1
1 4

PW = 14 = 3<—> =3. 23

;w { = } (23)

Another definition is the one for the Mulliken weight on basis function as

-1
b.
PO g™y = [ g™ (24)
J

or the one for the Mulliken weight on molecules as

-1

(mol)
1
P

The quantity of Eq.(25) is called ‘molecular PR’ in this paper and will appear later in
this paper.

3.4 Sparsity of matrix data

According to the physical origin, the sparsity in matrix data of A and B is determined
by the atomic structure of the simulated system. If a system contains independent
(non-interacting) molecules, for example, the matrices of A and B are block diago-
nal and, each block stems from a molecule. The sparsity of the matrices is crucial
for the efficiency of sparse-matrix solvers. A matrix data library of ‘ELSES matrix
library’ [19] was constructed, so as to enhance the collaboration between material
and numerical researchers. The sparsity is different among the matrix data, as seen
in Fig. 3 of Ref. [20], for example. Two examples are explained; The matrix data
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1000 — 100,000 nm

metal (Au, Ag, etc)

IO.5—4 nm

A
v

10 - 200 nm
semiconductor
molecule
(pentacene, etc)
100 — 500 nm grain boundary

|~ insulator (polymer, oxide)

Gate

Fig. 1 Schematic structure and typical scales of organic field-effect transistors. The electrical current is
depicted as an arrow squiggle

of ‘APF4686° stems from an organic polymer system, poly-(9,9 dioctyl-fluorene), in
a disordered structure with 2076 atoms [17,21]. The matrix size is M = 4686 and
the number of non-zero elements is Nnz = 53950. The ratio of non-zero elements
is y = Nnz/M?* ~ 0.0025. On the other hand, the matrix data of ‘AUNW9180’
stems from a disordered multishell gold nanowires with 1020 atoms [22]. The matrix
size of is M = 9180 and the number of non-zero elements is Nz = 1783313. The
ratio of non-zero elements is y = Nnz/M? ~ 0.021. It is noteworthy that ELSES
matrix library has several features for the convenience of numerical researchers; (1)
The matrix data files are recorded in the Matrix-Market format. [23] (2) Eigenvalues
and PR values are stored as files, as well as the matrix data.

4 Result

The present section is devoted to the results of large-scale electronic state calculations
of organic semiconductor materials. The present paper focuses on p-type semicon-
ductor, in which the electrical current stems from a small number of wavefunctions
that has the internal eigenenergies A; near the highest occupied one Ao (Ax < AHo)-
Therefore, one should calculate only these internal eigenpairs.

We calculated thin film or two-dimensional condensed organic semiconductor
molecules in disordered structures, which is a proto-typical system of organic field-
effect transistors (OFETSs) shown schematically in Fig. 1. OFETs consist of four layers:
a gate electrode layer, an insulating layer, an organic semiconductor layer, and a
source/drain electrode layer, typical scales of which are shown in Fig. 1. The details
of Fig. 1 is explained in textbooks, like Ref. [28]. In the OFETs, the electrical current
flows on several atomic semiconductor layers on the interface region between the poly-
crystalline semiconductor and amorphous insulator layers. So we should investigate
a thin film system with disordered structures.

The present calculated system is a thin film of pentacene molecules (CooHjs).
Pentacene is one of the most famous organic semiconductors. The present study is
motivated by an experimental data of electron spin resonance (ESR) experiment for
pentacene OFETSs [29,30]. The analysis of hyperfine interaction between hole carriers
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Fig.2 Preparation of disordered pentacene thin film sample. a The initial structure of a three-layered sample
in the crystalline geometry. b The result of finite-temperature simulation

and protons in pentacene thin film in ESR spectra gives a molecular PR defined in
Eq. (25) [29]. The molecular PR is denoted as P hereafter. The experimental data
indicates the appearance of ‘semi-localized’ wavefunction that is extended among
a few tens of molecules (P = O(10)). Such semi-locality is crucial for the device
performance.

The generalized eigenvalue problem was solved by the mini-application of
EigenKernel [24-26]. EigenKernel is a middleware for the various solvers in ScalLA-
PACK, ELPA, and EigenExa and their hybrids. Although we have developed a
massively parallel electronic state calculation method without eigenvalue problem
[16,17,27], we still need eigenvalue solver, so as to obtain eigenpairs in the discussion
of electronic property.

4.1 Large-scale calculation of thin film organic material

The calculated system is a thin-film (single molecular layer) system with an artificial
two-dimensional periodic simulation cell. The simulation cell contains Ny =1800
molecules, and the matrix size of the generalized eigenvalue problem is M = 183600.
Thousands of molecules are required in the simulation cell, so as to observe a semi-
localized state extended among tens of molecules (N > O(10)).

The initial atomic structure of the disordered thin film sample was generated in
classical molecular dynamics simulations by GROMACS [31,32] with the general-
ized AMBER force field (GAFF) parameter set [33]. The software and parameter set
are standard for organic materials. The sample was prepared in the following stages;
(1) A layered structure of pentacene in the crystalline geometry was prepared with
three layers, shown in Fig. 2a. (2) Several finite temperature simulations were car-
ried out at the temperature of 300-1000 K for the dynamics in 0.1-100 ns, so as to
generate a finite-temperature disordered structure, as shown in Fig. 2b. In the sim-
ulation, only the middle layer in Fig. 2a was set to be mobile, and the upper and
lower layers were set to be fixed, so as to impose the boundary condition on the
middle layer. The temperature of the simulation should be distinguished from the
experimental one, owing to the boundary condition and we have not yet compared
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Fig.3 Example of semi-localized wavefunction that appears on a pentacene thin-film system. The wavefunc-
tion ¢ (r) has the eigenenergy of A ~ —0.15eV, where the energy origin (A = 0) is set to be the eigenenergy
of the highest occupied wavefunction. The wavefunction of ¢ (r) is depicted as two iso-surfaces in the oppo-
site signs (¢ (r) = £C, where C is a positive constant). The two surfaces are painted by different colors.
a The whole region of the periodic simulation cell. b A close-up of a. ¢ A picture of a single pentacene
molecule with the view point of b

the detailed results among different temperature and/or simulation time. A long-time
(nano-second) dynamics is difficult for quantum simulation, owing to huge CPU time
and we used the classical simulation. Classical simulations, however, do not treat
electronic wavefunction, and the electronic state calculation is required for the dis-
ordered structure, so as to obtain wavefunctions. The total computational time of the
classical molecular dynamics simulation is Ttomp A 5 h for a nano-second dynam-
ics by six nodes of a Intel-Xeon-based Supercomputer at the Academic Center for
Computing and Media Studies, Kyoto University. The time of the quantum sim-
ulation is Tcomp ~ 6 h by 36 nodes of a Intel-Xeon-based Supercomputer at the
Institute for Solid State Physics, the University of Tokyo, when the ScaLAPACK
solver was used. It is noteworthy that the computational time of the quantum sim-
ulation with a dense-matrix solver is proportional to Ngml and will be severe for a
larger sample, while the time of the classical simulation is proportional to Nglol with
1<d<2.

Figure 3 shows a typical wavefunction with the molecular PR of P =~ 35,
which agrees with the experimental observation of semi-localized wavefunction
(P = 0(10)). We should say, however, that the present simulation is the one
for an isolated thin film system of pentacene layer and ignores the affects the
neighboring layers, whereas the experimental result [29,30] indicates the impor-
tance of the neighboring insulator layer shown in Fig. 1. Now the calculations
are on going for the interface system including pentacene layer and insulator
layers.
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4.2 Data scientific research of organic polymers

This subsection gives a data scientific research with capacity computation, or simulta-
neous computation of many middle-size problems. The purpose of the research is how
to characterize the disordered structure in the context of device property. In general,
the spatial extension of wavefunction plays a crucial role on device property and is
rigorously measured by PR for each wavefunction. Therefore a set of PR values among
wavefunctions in a sample can be a candidate of the measure of the disorder for the
sample. In other words, the set of PR values can be a descriptor that characterizes the
sample.

The present paper focuses on a research on poly-(phenylene-ethynylene) (PPE)
[34], a typical conducting polymer. The paper measures the device property or the
mobility for isolated polymers and found the importance of structural disorder. The
first stage of theoretical research on disordered polymers is to define the descriptor of
disordered polymers. The present paper proposes that the set of PR values can give a
descriptor for a disordered sample.

Figure 4 shows a classification problem among Ngmple = 200 disordered PPE
polymer samples by the K-means clustering method, a typical classification algorithm.
The structure of PPE polymers consists of 240 atoms, and a part is drawn in the inset
of Fig. 4. A polymer sample consists of 20 benzene rings. The structural disorder was
introduced in the relative rotation angles between adjacent benzene rings shown in 6
in Fig. 4. The angles were set from the normal distribution with standard deviation of
20° or 60° . The samples were generated 100 times for each class (total Ngample = 200
samples). After the rotations, small fluctuations taken from the normal distribution
with standard deviation of 0.01 A were given to all the coordinates of all atoms to
remove degeneracy. For each sample (i = 1, ..., Ngample), the generalized eigenvalue
problem of

H(i)v;i) - x;“s(%j.") G=1,..., M. (26)

was solved numerically with the matrix size of M = 714. Here, the list of PR value
of all the eigenvectors

dV = (PP, .. POwy)” 27

was used as the descriptor vector for the i-th sample.

The classification in the K-means clustering algorithm was carried out with the
descriptor vectors of {d ) }i=1....m. The number of clusters was two. The classification
resultis shown in Fig. 4. Each sample is plotted on the plane by two statistical quantities
with markers corresponding to the cluster labels given by the K-means algorithm. As
a result, the two clusters perfectly matched to the structure classes. Namely, all the
samples with adjacent rotation angles in standard deviation of 20° are clustered into
one group, and all the samples with adjacent rotation angles in standard deviation
of 60° are clustered into the other group. We should note the generality of PR as
descriptor, since PR is calculated uniquely for any material without any preknowledge.
The present result implies that the PR of wavefunctions can be a important quantity
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Fig.4 K-means clustering of polymer structures by their eigenvector participation ratios. Each structure is
plotted by two statistical quantities. The x-axis is the mean of the rotation angles between adjacent benzene
rings. The y-axis is the resulting standard deviation of the small fluctuation to the coordinates. Two markers,
red circle and blue triangle, correspond to the two clusters labeled by the K-means algorithm

that bridges between disordered structure and device property. A more extensive study
with principal component analysis is on going [35] and will be reported elsewhere. It
is noted that the present data scientific research is one among single polymer samples
and a challenging future problem is the data scientific research for condensed polymer
samples, as a foundation of device material research.

4.3 Potential need of purpose-specific solvers

The application studies in the previous sections are carried out by the dense-matrix
solver and implies the potential need of novel solvers. The largest matrix size in the
present paper is M = 2 x 10°. In general, the computational cost of dense-matrix
solvers is proportional to M> and a previous paper [27] reported that the dense-matrix
solver solved a million dimensional generalized eigenvalue problem (M = 10%) by
1.5 h with the whole system of the K computer. Since the above calculation indicates
the practical upper limit of the dense-matrix solver, novel solvers are needed, at least,
for a problem with M > 106,

Here we discusses the potential need of purpose-specific solvers suitable to the
present problem. The need is the one for the solver of internal eigenpairs, like z-
PARES [36,37], FEAST [38,39], the filtering method [40], k-ep [20,41], because
we would like to calculate only internal eigenpairs with the eigenenergies Ay near
the highest occupied one Axo (Ax < Apo). Internal eigenpair solvers are desirable
both for a solution of large problems, or a faster solution of middle-size problems.
Application researchers, however, find sometimes the difficulty in choosing a solver,
since the performance can be dependent on problem and machine. For example, the
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performance is dependent not only the matrix size M but also the sparsity, when
one uses a sparse-matrix solver. A possible remedy for the difficulty is to develop
a ‘middleware’ that provides a universal interface for various solver routines, like
EigenKernel.

5 Summary and future outlook

The present paper discusses the generalized eigenvalue problem in large-scale elec-
tronic state calculation for flexible organic device materials. The application studies
were carried out for disordered organic thin film and polymer. The calculation of par-
ticipation ratio is focused on, since it is a measure of the spatial extension of electronic
wavefunctions and governs the device property. The present application research indi-
cates the potential need of purpose-specific solvers with internal eigenpairs.
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