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Abstract
We are concerned with accurate eigenvalue decomposition of a real symmetric matrix
A. In the previous paper (Ogita andAishima in Jpn J IndApplMath 35(3): 1007–1035,
2018), we proposed an efficient refinement algorithm for improving the accuracy of
all eigenvectors, which converges quadratically if a sufficiently accurate initial guess
is given. However, since the accuracy of eigenvectors depends on the eigenvalue gap,
it is difficult to provide such an initial guess to the algorithm in the case where A has
clustered eigenvalues. To overcome this problem, we propose a novel algorithm that
can refine approximate eigenvectors corresponding to clustered eigenvalues on the
basis of the algorithm proposed in the previous paper. Numerical results are presented
showing excellent performance of the proposed algorithm in terms of convergence rate
and overall computational cost and illustrating an application to a quantum materials
simulation.
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1 Introduction

Let A be a real symmetric n×nmatrix. Since solving a standard symmetric eigenvalue
problem Ax = λx , where λ ∈ R is an eigenvalue of A and x ∈ R

n is an eigenvector
of A associated with λ, is ubiquitous in scientific computing, it is important to develop
reliable numerical algorithms for calculating eigenvalues and eigenvectors accurately.
Excellent overviews on the symmetric eigenvalue problem can be found in references
[20,23].

We are concerned with the eigenvalue decomposition of A such that

A = XDXT, (1)

where X is an n × n orthogonal matrix whose i th columns are eigenvectors x(i)

of A (called an eigenvector matrix) and D = (di j ) is an n × n diagonal matrix
whose diagonal elements are the corresponding eigenvalues λi ∈ R, i.e., dii = λi for
i = 1, . . . , n. Throughout the paper, we assume that

λ1 ≤ λ2 ≤ · · · ≤ λn,

and the columns of X are ordered correspondingly.
We here collect notation used in this paper. Let I and O denote the identity matrix

and the zero matrix of appropriate size, respectively. Unless otherwise specified, ‖ · ‖
means ‖ · ‖2, which denotes the Euclidean norm for vectors and the spectral norm for
matrices. For legibility, if necessary, we distinguish between the approximate quan-
tities and the computed results, e.g., for some quantity α we write α̃ and α̂ as an
approximation of α and a computed result for α, respectively.

The accuracy of an approximate eigenvector depends on the gap between the
corresponding eigenvalue and its nearest neighbor eigenvalue (cf., e.g., [20, Theo-
rem 11.7.1]). For simplicity, suppose all eigenvalues of A are simple. Let ̂X ∈ R

n×n

be an approximation of X . Let z(i) := x̂(i)/‖x̂(i)‖ for i = 1, 2, . . . , n, where x̂(i) are the
i-th columns of ̂X . Moreover, for each i , suppose that the Ritz value μi := zT(i)Az(i) is
closer to λi than to any other eigenvalues. Let gap(μi ) denote the smallest difference
betweenμi and any other eigenvalue, i.e., gap(μi ) := min j �=i |μi −λ j |. Then, it holds
for all i that

| sin θ(x(i), z(i))| ≤ ‖Az(i) − μi z(i)‖
gap(μi )

, θ(x(i), z(i)) := arc cos(|xT(i)z(i)|).

Suppose ̂X is obtained by some backward stable algorithm with the relative rounding
error unitu in floating-point arithmetic. For example,u = 2−53 for IEEE754binary64.
Then, there exists Δ

(i)
A such that

(A + Δ
(i)
A )z(i) = μi z(i), ‖Δ(i)

A ‖ = O(‖A‖u),
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Iterative refinement for symmetric eigenvalue decomposition II 437

which implies ‖Az(i) − μi z(i)‖ = O(‖A‖u), and hence, for all i ,

| sin θ(x(i), z(i))| ≤ αi , αi = O
( ‖A‖u
gap(μi )

)

. (2)

The smaller the eigenvalue gap, the worse the accuracy of a computed eigenvector.
Therefore, refinement algorithms for eigenvectors are useful for obtaining highly accu-
rate results. For example, highly accurate computations of a few or all eigenvectors are
crucial for large-scale electronic structure calculations in material physics [24,25], in
which specific interior eigenvalues with associated eigenvectors need to be computed.
On related work on refinement algorithms for symmetric eigenvalue decomposition,
see the previous paper [17] for details.

In [17], we proposed a refinement algorithm for the eigenvalue decomposition of
A, which works not for an individual eigenvector but for all eigenvectors. Since the
algorithm is based on Newton’s method, it converges quadratically, provided that
an initial guess is sufficiently accurate. In practice, although the algorithm refines
computed eigenvectors corresponding to sufficiently separated simple eigenvalues, it
cannot refine computed eigenvectors corresponding to “nearly” multiple eigenvalues.
This is because it is difficult for standard numerical algorithms in floating-point arith-
metic to provide sufficiently accurate initial approximate eigenvectors corresponding
to nearly multiple eigenvalues as shown in (2). The purpose of this paper is to rem-
edy this problem, i.e., we aim to develop a refinement algorithm for the eigenvalue
decomposition of a symmetric matrix with clustered eigenvalues.

We briefly explain the idea of our proposed algorithm. We focus on the so-called
sin θ theorem by Davis–Kahan [5, Section 2] as follows. For an index set J with
|J | = � < n, let XJ ∈ R

n×� denote the eigenvector matrix comprising x( j) for all
j ∈ J . For 1 ≤ k ≤ �, letμk denote the Ritz values for the subspace spanned by some
given vectors with μ1 ≤ · · · ≤ μ�, and let zk be the corresponding normalized Ritz
vectors. Assume that the eigenvalues λi for all i /∈ J are entirely outside of [μ1, μ�].
LetGap denote the smallest difference between the Ritz valuesμk for all k, 1 ≤ k ≤ �,
and the eigenvalues λi for all i /∈ J , i.e.,Gap := min{|μk −λi | : 1 ≤ k ≤ �, i /∈ J }.
Moreover, let ZJ := [z1, . . . , z�] ∈ R

n×�. Then, we obtain

| sinΘ(XJ , ZJ )| ≤ ‖AZJ − ZJ (ZT
J AZJ )‖

Gap
,

Θ(XJ , ZJ ) := arc cos(‖XT
J ZJ ‖).

This indicates that the subspace spanned by eigenvectors associated with the clus-
tered eigenvalues is not very sensitive to perturbations, provided that the gap between
the clustered eigenvalues and the others is sufficiently large. That means backward
stable algorithms can provide a sufficiently accurate initial guess of the “subspace”
corresponding to the clustered eigenvalues. To extract eigenvectors from the subspace
correctly, relatively larger gaps are necessary between the clustered eigenvalues as
can be seen from (2). Thus, we first apply the algorithm (Algorithm 1: RefSyEv) in
the previous paper [17] to the initial approximate eigenvector matrix for improving

123



438 T. Ogita, K. Aishima

the subspace corresponding to the clustered eigenvalues. Then, we divide the entire
problem into subproblems, each of which corresponds to each cluster of eigenvalues.
Finally, we expand eigenvalue gaps in each subproblem by using a diagonal shift and
compute eigenvectors of each subproblem, which can be used for refining approximate
eigenvectors corresponding to clustered eigenvalues in the entire problem.

One might notice that the above procedure is similar to the classical shift-invert
technique to transform eigenvalue distributions. In addition, the MRRR algorithm [6]
also employs a shift strategy to increase relative gaps between clustered eigenvalues
for computing the associated eigenvectors. In other words, it is well known that the
diagonal shift is useful for solving eigenvalue problems accurately. Our contribution is
to show its effectiveness on the basis of appropriate error analysis with the adaptive use
of higher precision arithmetic, which leads to the derivation of the proposed algorithm.

In the same spirit of the previous paper [17], our proposed algorithm primarily
comprises matrix multiplication, which accounts for the majority of the computational
cost. Therefore, we can utilize higher precision matrix multiplication efficiently. For
example, XBLAS [13] and other efficient algorithms [16,19,22] based on so-called
error-free transformations for accurate matrix multiplication are available for practical
implementation.

The remainder of the paper is organized as follows. In Sect. 2, we recall the refine-
ment algorithm (Algorithm 1) proposed in the previous paper [17] together with its
convergence theory. For practical use, we present a rounding error analysis of Algo-
rithm 1 in finite precision arithmetic in Sect. 3, which is useful for setting working
precision and shows achievable accuracy of approximate eigenvectors obtained by
using Algorithm 1. In Sect. 4, we show the behavior of Algorithm 1 for clustered
eigenvalues, which explains the effect of nearly multiple eigenvalues on computed
results and leads to the derivation of the proposed algorithm. On the basis of Algo-
rithm 1, we propose a refinement algorithm (Algorithm 2: RefSyEvCL) that can also
be applied to matrices with clustered eigenvalues in Sect. 5. In Sect. 6, we present
some numerical results showing the behavior and performance of the proposed algo-
rithm together with an application to a quantum materials simulation as a real-world
problem.

For simplicity, we basically handle only real matrices. Asmentioned in the previous
paper [17], the discussions in this paper can also be extended to generalized symmetric
(Hermitian) definite eigenvalue problems.

2 Basic algorithm and its convergence theory

In this section, we introduce the refinement algorithm proposed in the previous paper
[17], which is the basis of the algorithm proposed in this paper.

Let A = AT ∈ R
n×n . The eigenvalues of A are denoted by λi ∈ R, i = 1, . . . , n.

Then ‖A‖ = max1≤i≤n |λi | = max(|λ1|, |λn|). Let X ∈ R
n×n denote an orthogonal

eigenvector matrix comprising normalized eigenvectors of A, and let ̂X denote an
approximation of X with ̂X being nonsingular. In addition, define E ∈ R

n×n such
that
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Iterative refinement for symmetric eigenvalue decomposition II 439

X = ̂X(I + E).

In the previous paper, we presented the following algorithm for the eigenvalue
decomposition of A, which is designed to be applied iteratively. For later use in Sect. 5,
the algorithm also allows the case where an input ̂X is rectangular, i.e., ̂X ∈ R

n×�,
� < n.

Algorithm 1 RefSyEv: Refinement of approximate eigenvectors of a real symmetric
matrix. Higher-precision arithmetic is required for all the computations except line 6.

Input: A = AT ∈ R
n×n , ̂X ∈ R

n×�, 1 ≤ � ≤ n
Output: X ′ ∈ R

n×�, ˜D = diag(˜λi ) ∈ R
�×�, ˜E ∈ R

�×�, ω ∈ R

1: function [X ′, ˜D, ˜E, ω] ← RefSyEv(A, ̂X )
2: R ← I − ̂XT

̂X
3: S ← ̂XTÂX
4: ˜λi ← sii /(1 − rii ) for i = 1, . . . , � � Compute approximate eigenvalues.
5: ˜D ← diag(˜λi )
6: ω ← 2(‖S − ˜D‖2 + ‖A‖2‖R‖2)

7: ẽi j ←
⎧

⎨

⎩

si j +˜λ j ri j
˜λ j −˜λi

if |˜λi −˜λ j | > ω

ri j /2 otherwise
for 1 ≤ i, j ≤ � � Compute ˜E .

8: X ′ ← ̂X + ̂X˜E � Update ̂X by ̂X(I + ˜E).
9: end function

In [17, Theorem 1], we presented the following theorem that states the quadratic
convergence of Algorithm 1 if all eigenvalues are simple and a given ̂X is sufficiently
close to X .

Theorem 1 (Ogita–Aishima [17]) Let A be a real symmetric n× n matrix with simple
eigenvalues λi , i = 1, 2, . . . , n, and a corresponding orthogonal eigenvector matrix
X ∈ R

n×n. For a given nonsingular ̂X ∈ R
n×n, suppose that Algorithm 1 is applied

to A and ̂X in real arithmetic, and X ′ is the quantity calculated in Algorithm 1. Define
E and E ′ such that X = ̂X(I + E) and X = X ′(I + E ′), respectively. If

‖E‖ < min

(

mini �= j |λi − λ j |
10n‖A‖ ,

1

100

)

, (3)

then we have

‖E ′‖ <
5

7
‖E‖, (4)

lim sup
‖E‖→0

‖E ′‖
‖E‖2 ≤ 6n‖A‖

mini �= j |λi − λ j | . (5)

In the following, we review the discussion in [17, §3.2] for exactly multiple eigen-
values. If ˜λi ≈ ˜λ j corresponding to multiple eigenvalues λi = λ j , we compute
ẽi j = ẽ j i = ri j/2 for (i, j) such that |˜λi −˜λ j | ≤ ω.
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To investigate the above exceptional process, define the index sets Mk , k =
1, 2, . . . , nM, for multiple eigenvalues {λi }i∈Mk satisfying the following conditions:

⎧

⎨

⎩

(a)Mk ⊆ {1, 2, . . . , n} with nk := |Mk | ≥ 2
(b) λi = λ j , ∀i, j ∈ Mk

(c) λi �= λ j , ∀i ∈ Mk, ∀ j ∈ {1, 2, . . . , n} \Mk

. (6)

Note that the eigenvectors corresponding to multiple eigenvalues are not unique.
Hence, using the above index sets, let Y be an eigenvector matrix defined such that, for
all k, the nk ×nk submatrices of ̂X−1Y corresponding to {λi }i∈Mk are symmetric and
positive definite. Since then Y is unique, define F such that Y = ̂X(I + F). Define
R := I − ̂XT

̂X and S := ̂XTÂX . Then, using the orthogonality Y TY = I and the
diagonality Y TAY = D, we have

F + FT = R + Δ1, ‖Δ1‖ ≤ χ(ε)ε2, (7)

D − DF − FTD = S + Δ2, ‖Δ2‖ ≤ χ(ε)‖A‖ε2, (8)

where ε := ‖F‖ and

χ(ε) := 3 − 2ε

(1 − ε)2
.

The above equations can be obtained in the same manner as in our previous paper [17,
Eqs. (7) and (11)] by replacing E with F in the equations.

In a similar way to Newton’s method (cf. e.g., [3, p. 236]), dropping the second
order terms in (7) and (8) yields Algorithm 1, and the next convergence theorem is
provided [17, Theorem 2].

Theorem 2 (Ogita–Aishima [17]) Let A be a real symmetric n × n matrix with the
eigenvalues λi , i = 1, 2, . . . , n. Suppose A has multiple eigenvalues with index sets
Mk , k = 1, 2, . . . , nM, satisfying (6). LetV be the set of n×n orthogonal eigenvector
matrices of A. For a given nonsingular ̂X ∈ R

n×n, suppose that Algorithm 1 is applied
to A and ̂X in real arithmetic, and X ′ andω are the quantities calculated inAlgorithm1.
Let Y ,Y ′ ∈ V be defined such that, for all k, the nk × nk submatrices of ̂X−1Y and
(X ′)−1Y ′ corresponding to {λi }i∈Mk are symmetric and positive definite. Define F
and F ′ such that Y = ̂X(I + F) and Y ′ = X ′(I + F ′), respectively. Furthermore,
suppose that

‖F‖ <
1

3
min

(

minλi �=λ j |λi − λ j |
10n‖A‖ ,

1

100

)

.

Then, we obtain

‖F ′‖ <
5

7
‖F‖,
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lim sup
‖F‖→0

‖F ′‖
‖F‖2 ≤ 3

(

6n‖A‖
minλi �=λ j |λi − λ j |

)

.

On the basis of the above convergence theorems, let us consider the iterative refine-
ment using Algorithm 1:

X (0) ← ̂X ∈ R
n×n, X (ν+1) ← RefSyEv(A, X (ν)) for ν = 0, 1, . . .

Then, X (ν+1) = X (ν)(I + ˜E (ν)) for ν = 0, 1, . . ., where ˜E (ν) = (̃e(ν)
i j ) are the

quantities calculated in line 7 of Algorithm 1. In practice, it is likely that ordinary
precision floating-point arithmetic, such as IEEE 754 binary32 or binary64, is used
for calculating an approximation ̂X to an eigenvector matrix X of a given symmetric
matrix A by some backward stable algorithm. It is natural to use such ̂X as an initial
guess X (0) in Algorithm 1. However, if A has nearly multiple eigenvalues, it is difficult
to obtain a sufficiently accurate X (0) in ordinary precision floating-point arithmetic
such that Algorithm 1 works well. To overcome this problem, we develop a practical
algorithm for clustered eigenvalues, which is proposed as Algorithm 2 in Sect. 5.

3 Rounding error analysis for basic algorithm

If Algorithm 1 is performed in finite precision arithmetic with the relative rounding
error unit uh , the accuracy of a refined eigenvector matrix X ′ is restricted by uh . Since
̂X is improved quadratically when using real arithmetic, uh must correspond to ‖E‖2
to preserve the convergence property of Algorithm 1. We explain the details in the
following. For simplicity, we consider the real case. The extension to the complex
case is obvious.

Let Fh be a set of floating-point numbers with the relative rounding error unit uh .
We define the rounding operator flh such that flh : R → Fh and assume the use
of the following standard floating-point arithmetic model [11]. For a, b ∈ Fh and
◦ ∈ {+,−,×, /}, it holds that

flh(a ◦ b) = (a ◦ b)(1 + δh), |δh | ≤ uh . (9)

For example, it is satisfied in IEEE 754 floating-point arithmetic barring overflow and
underflow.

Suppose all elements of A and ̂X are exactly representable in Fh , i.e., A, ̂X ∈ F
n×n
h ,

and ‖x̂(i)‖ ≈ 1 for all i . Let ̂R, ̂S, and ̂E denote the computed results of R, S, and ˜E
in Algorithm 1, respectively. Define ΔR , ΔS , and ΔE such that

̂R = R + ΔR, ̂S = S + ΔS, ̂E = ˜E + ΔE .

From a standard rounding error analysis as in [11], we obtain

(ΔR)i j = O(uh), (ΔS)i j = O(‖A‖uh) for 1 ≤ i, j ≤ n.

123
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For the computed resultŝλi of˜λi , i = 1, 2, . . . , n, in Algorithm 1,

̂λi = ŝi i
(1 − r̂i i )(1 + δ1)

(1 + δ2), |δk | ≤ uh, k = 1, 2

= ŝi i
1 − r̂i i

(1 + φ) = sii + (ΔS)i i

1 − rii − (ΔR)i i
(1 + φ), |φ| = O(uh)

= ˜λi + εi , |εi | = O(‖A‖uh).

For all (i, j) satisfying |̂λi −̂λ j | > ω̂, where ω̂ is an approximation of ω computed
in floating-point arithmetic in Algorithm 1,

êi j = (̂si j +̂λ j r̂i j (1 + δ3))(1 + δ4)

(̂λ j −̂λi )(1 + δ5)
(1 + δ6), |δk | ≤ uh, k = 3, 4, 5, 6

= ŝi j +̂λ j r̂i j
̂λ j −̂λi

+ τi j , |τi j | = O(βi juh), βi j := ‖A‖
|λi − λ j |

= si j + (ΔS)i j + (˜λ j + ε j )(ri j + (ΔR)i j )

˜λ j −˜λi + (ε j − εi )
+ τi j

= ẽi j + γ
(1)
i j , |γ (1)

i j | = O(βi juh).

Then

|(ΔE )i j | = |̂ei j − ẽi j | ≤ |γ (1)
i j | = O(βi juh).

For other (i, j), we have

êi j = r̂i j
2

(1 + δ7) = ri j + (ΔR)i j

2
(1 + δ7), |δ7| ≤ uh

= ẽi j + γ
(2)
i j , |γ (2)

i j | = O(uh).

Then

|(ΔE )i j | = |̂ei j − ẽi j | ≤ |γ (2)
i j | = O(uh).

In summary, we obtain

‖ΔE‖ ≤
√

∑

1≤i, j≤n

|(ΔE )i j |2 = O(βuh), β := ‖A‖
minλi �=λ j |λi − λ j | , (10)

where β is the reciprocal of the minimum gap between the eigenvalues normalized by
‖A‖. For the computed result ̂X ′ of X ′ = ̂X(I + ˜E) in Algorithm 1,

̂X ′ = ̂X + ̂X̂E + ̂Δ, ‖ ̂Δ‖ = O(uh)

= ̂X(I + ˜E) + ̂X(̂E − ˜E) + ̂Δ
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= X ′ + ̂XΔE + ̂Δ,

and, using (10),

‖̂X ′ − X ′‖ ≤ ‖̂X‖‖ΔE‖ + ‖ ̂Δ‖ = O(βuh). (11)

Thus, if a given ̂X is sufficiently close to X in such a way that the assumption (3)
holds, combining (5) and (11) yields

‖̂X ′ − X‖ ≤ ‖̂X ′ − X ′‖ + ‖X ′ − X‖ = O(β · max(uh, ‖E‖2)). (12)

If A has nearly multiple eigenvalues and (3) does not hold, then the convergence of
Algorithm 1 to an eigenvector matrix of A is guaranteed neither in real arithmetic nor
in finite precision arithmetic regardless of the value of uh . We will deal with such an
ill-conditioned case in Sect. 5.

Remark 1 As can be seen from (12), with a fixed uh , iterative use of Algorithm 1
eventually computes an approximate eigenvector matrix that is accurate to O(βuh),
provided that the assumption (3) in Theorem 1 holds in each iteration. This will be
confirmed numerically in Sect. 6. ��

Let us consider the most likely scenario where ̂X is computed by some backward
stable algorithm in ordinary precision floating-point arithmetic with the relative round-
ing error unit u. From (2), we have

max
1≤i≤n

| sin θ(x(i), x̂(i))| ≤ α, α = O(βu)

under the assumption that β ≈ ‖A‖/min1≤i≤n gap(μi ). Thus,

‖E‖ ≈ ‖̂X − X‖ = O(βu).

From (12), we obtain

‖̂X ′ − X‖ = O(β · max(uh, β2u2)). (13)

Therefore, uh should be less than β2u2 in order to preserve convergence speed for the
first iteration by Algorithm 1.

Suppose that ‖̂X − X‖ = cβu and ‖̂X ′ − X‖ = c′β3u2 where c and c′ are some
constants. If c′′β2u < 1 for c′′ := c′/c, then an approximation of X is improved in the
sense that ‖̂X ′ − X‖ < ‖̂X − X‖. In other words, if β is too large such that c′′β2u ≥ 1,
Algorithm 1 may not work well.

In general, define E (ν) ∈ R
n×n such that X = ̂X (ν)(I + E (ν)) for ν = 0, 1, . . .,

where ̂X (0) is an initial guess and ̂X (ν) is a result of the νth iteration of Algorithm 1
with working precision u(ν)

h for ν = 1, 2, . . .. To preserve the convergence speed,

we need to set u(ν)
h satisfying u(ν)

h < ‖E (ν−1)‖2 as can be seen from (12). Although
we do not know ‖E (ν−1)‖, we can estimate ‖E (ν−1)‖ by ‖˜E (ν−1)‖ where ˜E (ν−1) is
computed at the (ν − 1)-st iteration of Algorithm 1.
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4 Effect of nearly multiple eigenvalues in basic algorithm

In general, a given matrix A in floating-point format does not have exactly multiple
eigenvalues. It is necessary to discuss the behavior of Algorithm 1 for A with some
nearly multiple eigenvalues λi ≈ λ j such that |˜λi −˜λ j | ≤ ω in line 7. We basically
discuss the behavior in real arithmetic. The effect of the rounding error is briefly
explained in Remark 2 at the end of this section.

For simplicity, we assume˜λ1 ≤ ˜λ2 ≤ · · · ≤ ˜λn . In the following analysis, define
Aω := XDωXT where Dω = diag(λ(ω)

i ) with

λ
(ω)
1 = λ1, λ

(ω)
i =

{

λ
(ω)
i−1 if˜λi −˜λi−1 ≤ ω

λi otherwise
for 2 ≤ i ≤ n, (14)

whichmeans that the clustered eigenvalues of Aω are all multiple in each cluster. Then,
Aω is a perturbed matrix such that

Aω = A + Δω, ‖Δω‖ = ‖D − Dω‖ = max
1≤i≤n

|λi − λ
(ω)
i |.

Throughout this section, we assume that

|˜λi −˜λ j | ≤ ω for (i, j) such that λ(ω)
i = λ

(ω)
j . (15)

Importantly, although each individual eigenvector associated with the nearly multiple
eigenvalues is very sensitive to perturbations, the subspace spanned by such eigenvec-
tors is not sensitive. Thus, ̂X computed by a backward stable algorithm is sufficiently
close to an eigenvector matrix of Aω. Below, we show that Algorithm 1 computes ˜E
that approximates an exact eigenvector matrix Yω defined in the same manner as Y in
Sect. 2. Note that Yω is the eigenvector matrix of the above Aω close to A, where Aω

has exactly multiple eigenvalues.
Recall that the submatrices of ̂X−1Yω corresponding to the multiple eigenvalues of

Aω are symmetric and positive definite. Then, we see that Algorithm 1 computes an
approximation of Yω as follows. Define R and Sω as

R := I − ̂XT
̂X , Sω := ̂XTAω

̂X ,

corresponding to Aω. We see Sω is considered a perturbed matrix of S := ̂XTÂX .
Note that, in Algorithm 1, ˜E is computed with R and S. Here, we introduce an ideal
matrix ˜Eω computed with R and Sω, where ˜Eω is quadratically convergent to Fω. In
the following, we estimate ˜Eω − ˜E due to the above perturbation. To this end, we
estimate each element of Sω − S as in the following lemma.

Lemma 1 Let A be a real symmetric n×n matrix with eigenvalues λi , i = 1, 2, . . . , n,
and a corresponding orthogonal eigenvector matrix X. In Algorithm 1, for a given
nonsingular ̂X ∈ R

n×n, define Aω := XDωXT where Dω = diag(λ(ω)
i ) as in (14),
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and

δω := max
1≤i≤n

|λi − λ
(ω)
i |. (16)

In addition, define Sω := ̂XTAω
̂X. Then, we have

|si j − s(ω)
i j | ≤

{

δω(1 + 2εω + χ(εω)ε2ω) if λ(ω)
i = λ

(ω)
j (17)

εωδω(2 + χ(εω)εω) otherwise (18)

for all (i, j), where

εω := ‖Fω‖, χ(εω) := (3 − 2εω)

(1 − εω)2
.

Proof Define Q such that X = YωQ. Then, Q is a block diagonal matrix. More
precisely, for Q = (qi j ), we have

qi j = 0 for (i, j) such that λ(ω)
i �= λ

(ω)
j .

It is easy to see that

S − Sω = ̂XT(A − Aω)̂X = ̂XTYωQ(D − Dω)QTY T
ω

̂X .

Let DQ := Q(D − Dω)QT. In a similar way to (8), we have

DQ − DQFω − FT
ω DQ = (S − Sω) + Δ(δω),

where

‖DQ‖ = δω, ‖Δ(δω)‖ ≤ χ(εω)ε2ωδω.

Then (17) follows. Moreover, noting DQ is a block diagonal matrix,
we obtain (18). ��

For the perturbation analysis of ˜E , the next lemma is crucial.

Lemma 2 Let A be a real symmetric n×n matrix with eigenvalues λi , i = 1, 2, . . . , n,
and a corresponding orthogonal eigenvector matrix X. In Algorithm 1, for a given
nonsingular ̂X ∈ R

n×n, define Aω := XDωXT where Dω = diag(λ(ω)
i ) as in (14).

Assume that (15) is satisfied. Define R = (ri j ) and Sω = (s(ω)
i j ) such that R :=

I − ̂XT
̂X and Sω := ̂XTAω

̂X. Suppose positive numbers ω1 and ω2 satisfy

|si j − s(ω)
i j | ≤

{

ω1 if λ(ω)
i = λ

(ω)
j

ω2 otherwise
for all (i, j).
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We assume that, for all (i, j) in line 7 of Algorithm 1, the formulas of ẽ(ω)
i j are the

same as those of ẽi j , i.e.,

ẽ(ω)
i j =

⎧

⎪

⎨

⎪

⎩

s(ω)
i j +˜λ

(ω)
j ri j

˜λ
(ω)
j −˜λ

(ω)
i

if |˜λi −˜λ j | > ω

ri j/2 otherwise

for all (i, j),

where˜λ
(ω)
i = s(ω)

i i /(1 − rii ) for i = 1, 2, . . . , n, as in line 4. Moreover, let

c := max
1≤i≤n

1

1 − rii
. (19)

Then, for (i, j) such that |˜λi −˜λ j | ≤ ω, we have

ẽ(ω)
i j = ẽi j . (20)

Moreover, for (i, j) such that |˜λi −˜λ j | > ω, we have

|̃e(ω)
i j − ẽi j | ≤ 2cω1

|˜λ j −˜λi | − 2cω1

|s(ω)
i j +˜λ

(ω)
j ri j |

|˜λ j −˜λi | + ω2 + cω1|ri j |
|˜λ j −˜λi | . (21)

Proof For (i, j) such that |˜λi −˜λ j | ≤ ω, since we see

ẽ(ω)
i j = ri j

2
= ẽi j ,

we have (20). Next, for˜λ(ω)
i , i = 1, . . . , n, we have

˜λ
(ω)
i = s(ω)

i i

1 − rii
, |˜λ(ω)

i −˜λi | ≤ ω1

1 − rii
for i = 1, . . . , n. (22)

Thus, from (19), we have

|˜λ(ω)
i −˜λi | ≤ cω1 for i = 1, . . . , n. (23)

For (i, j) such that |˜λi −˜λ j | > ω, since we see

ẽ(ω)
i j = s(ω)

i j +˜λ
(ω)
j ri j

˜λ
(ω)
j −˜λ

(ω)
i

,
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we evaluate the errors based on the following inequalities:

|̃e(ω)
i j − ẽi j | ≤

∣

∣

∣

∣

∣

ẽ(ω)
i j − s(ω)

i j +˜λ
(ω)
j ri j

˜λ j −˜λi

∣

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

ẽi j − s(ω)
i j +˜λ

(ω)
j ri j

˜λ j −˜λi

∣

∣

∣

∣

∣

.

In the right-hand side, using (22) and (23), we see

∣

∣

∣

∣

∣

ẽ(ω)
i j − s(ω)

i j +˜λ
(ω)
j ri j

˜λ j −˜λi

∣

∣

∣

∣

∣

≤ 2cω1

|˜λ j −˜λi | − 2cω1

|s(ω)
i j +˜λ

(ω)
j ri j |

|˜λ j −˜λi | ,

∣

∣

∣

∣

∣

ẽi j − s(ω)
i j +˜λ

(ω)
j ri j

˜λ j −˜λi

∣

∣

∣

∣

∣

≤ ω2 + cω1|ri j |
|˜λ j −˜λi | .

Therefore, we obtain (21). ��
In the following, we estimate ω1 and ω2 in Lemma 2. In the right-hand sides of

(17) and (18) in Lemma 1, we see

{

δω(1 + 2εω + χ(εω)ε2ω) → δω

εωδω(2 + χ(εω)εω) → 2εωδω
as εω → 0.

If D, F, S in (8) are replaced with Dω, Fω, Sω, respectively, we see s(ω)
i j =

O(‖Aω‖εω) (i �= j) as εω → 0. In addition, ri j = O(εω) (i �= j) as εω → 0
from (7). Hence, letting ω1 = δω and ω2 = 2εωδω in Lemma 2, we obtain

‖˜Eω − ˜E‖ = O
(

εωδω

min|˜λi−˜λ j |>ω |λi − λ j |

)

as εω → 0.

Sincewe suppose δω = O(‖A‖εω) in the situationwhere ̂X is computed by a backward
stable algorithm, we have

‖˜Eω − ˜E‖ = O
(

‖A‖ε2ω
min|˜λi−˜λ j |>ω |λi − λ j |

)

as εω → 0.

Therefore, ˜E is sufficiently close to ˜Eω and Fω under the above mild assumptions.
Although Yω can be very far from any eigenvector matrix of A, the subspace spanned
by the columns of Yω corresponding to the clustered eigenvalues adequately approxi-
mates that by the exact eigenvectors whenever ‖Aω − A‖ is sufficiently small. In the
following, we derive an algorithm for clustered eigenvalues using such an important
feature.

Remark 2 In this section, we proved that ˜E is sufficiently close to Fω under the mild
assumptions. In Sect. 3, the effect of rounding errors on ˜E is evaluated as in (10), i.e.,
ΔE := ̂E− ˜E is sufficiently small, where ̂E is computed in finite precision arithmetic.
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The rounding error analysis is not caused by the perturbation analysis to Fω in this
section. Thus, it is easy to see that ‖̂E − Fω‖ ≤ ‖̂E − Fω‖ + ‖̂E − Fω‖ simply holds
for the individual estimation for each error ‖̂E − Fω‖ and ‖̂E − Fω‖ respectively, and
hence, the computed ̂E is sufficiently close to Fω corresponding to Aω. ��

5 Proposed algorithm for nearly multiple eigenvalues

On the basis of the basic algorithm (Algorithm 1), we propose a practical version
of an algorithm for improving the accuracy of computed eigenvectors of symmetric
matrices that can also deal with nearly multiple eigenvalues.

Recall that, in Algorithm 1, we choose ẽi j for all (i, j) as

ẽi j =

⎧

⎪

⎨

⎪

⎩

si j +˜λ j ri j
˜λ j −˜λi

if |˜λi −˜λ j | > ω (24)

ri j/2 otherwise (25)

where ω is defined in line 6 of the algorithm.

5.1 Observation

First, we show the drawback of Algorithm 1 concerning clustered eigenvalues. For
this purpose, we take

A =
⎡

⎣

1 + ε 1 1 + ε

1 1 −1
1 + ε −1 1 + ε

⎤

⎦ ,

⎧

⎨

⎩

λ1 = −1
λ2 = 2
λ3 = 2 + 2ε

for any ε > 0 (26)

as an example, where λ2 and λ3 are nearly double eigenvalues for small ε. We set
ε = 2−50 ≈ 10−15 and adopt theMATLABbuilt-in function eig in IEEE 754 binary64
arithmetic to obtain X (0) := ̂X . Then, we apply Algorithm 1 iteratively to A and X (ν)

beginning from ν = 0. To check the accuracy of X (ν) with respect to orthogonality
and diagonality, we display R(ν) := I − (X (ν))TX (ν) and S(ν) := (X (ν))TAX (ν).

For X (0) obtained by eig, we obtain the following results.

R(0) ≈
⎡

⎣

-2.7e-16 -1.3e-16 -6.8e-17
-1.3e-16 1.4e-16 -5.0e-17
-6.8e-17 -5.0e-17 -2.2e-16

⎤

⎦ , S(0) ≈
⎡

⎣

-1.0e+00 -1.3e-16 -6.8e-17
-1.3e-16 2.0e+00 1.7e-17
-6.8e-17 1.7e-17 2.0e+00

⎤

⎦

The following shows the results of two iterations of Algorithm 1 in real arithmetic.

R(1) ≈
⎡

⎣

5.4e-32 9.1e-33 2.6e-32
9.1e-33 1.2e-33 4.4e-33
2.6e-32 4.4e-33 4.0e-32

⎤

⎦ , S(1) ≈
⎡

⎣

-1.0e+00 9.1e-33 2.6e-32
9.1e-33 2.0e+00 -8.3e-17
2.6e-32 -8.3e-17 2.0e+00

⎤

⎦

R(2) ≈
⎡

⎣

2.2e-63 1.2e-33 -4.3e-34
1.2e-33 -2.2e-03 9.1e-34

-4.3e-34 9.1e-34 -2.2e-03

⎤

⎦ , S(2) ≈
⎡

⎣

-1.0e+00 1.2e-33 -4.3e-34
1.2e-33 2.0e+00 1.8e-19

-4.3e-34 1.8e-19 2.0e+00

⎤

⎦
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Fig. 1 Relationship between˜λi and Jk (short vertical lines denote˜λi )

In the first iteration, |˜λ2 −˜λ3| ≈ 1.77 · 10−15 and ω ≈ 2.17 · 10−15, so that |˜λ2 −
˜λ3| < ω and Algorithm 1 regards ˜λ2 and ˜λ3 as clustered eigenvalues. Then, the
diagonality corresponding to λ2 and λ3 is not improved due to the choice (24), while
the orthogonality of X (1) is refined due to the choice (25). In the second iteration,
|˜λ2 −˜λ3| ≈ 1.77 ·10−15 and ω ≈ 1.66 ·10−16, so that |˜λ2 −˜λ3| > ω and Algorithm 1
regards˜λ2 and˜λ3 as separated eigenvalues. However, ‖E‖ ≈ 4.69 · 10−2 > 1/100,
i.e., the assumption (3) in Theorem 1 is not satisfied. As a result, the orthogonality of
X (2) corresponding to λ2 and λ3 is badly broken, and the refinement of the diagonality
stagnates with respect to the nearly double eigenvalues λ2 and λ3.

In the following, we overcome such a problem for general symmetric matrices.

5.2 Outline of the proposed algorithm

As mentioned in Sect. 1, the sin θ theorem by Davis–Kahan suggests that backward
stable algorithms can provide a sufficiently accurate initial guess of a subspace spanned
by eigenvectors associated with clustered eigenvalues for each cluster.We explain how
to refine approximate eigenvectors by extracting them from the subspace correctly.

Suppose that Algorithm 1 is applied to A = AT ∈ R
n×n and its approximate

eigenvector matrix ̂X ∈ R
n×n . Then, we obtain X ′, ˜λ, and ω where X ′ ∈ R

n×n

is a refined approximate eigenvector matrix, ˜λi , i = 1, 2, . . . , n, are approximate
eigenvalues, andω ∈ R is the criterion that determines whether˜λi are clustered. Using
˜λ and ω, we can easily obtain the index sets Jk , k = 1, 2, . . . , nJ , for the clusters
{˜λi }i∈Jk of the approximate eigenvalues satisfying all the following conditions (see
also Fig. 1).

⎧

⎪

⎨

⎪

⎩

(a) Jk ⊆ {1, 2, . . . , n} with nk := |Jk | ≥ 2
(b) min

j∈Jk\{i}
|˜λi −˜λ j | ≤ ω, ∀i ∈ Jk

(c) |˜λi −˜λ j | > ω, ∀i ∈ Jk, ∀ j ∈ {1, 2, . . . , n} \Jk

. (27)

Now the problem is how to refine X ′(:,Jk) ∈ R
n×nk , which denotes the matrix

comprising approximate eigenvectors corresponding to the clustered approximate
eigenvalues {˜λi }i∈Jk .
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From the observation about the numerical results in the previous section,we develop
the following procedure for the refinement.

1. Find clusters of approximate eigenvalues of A and obtain the index sets Jk , k =
1, 2, . . . , nJ for those clusters.

2. Define Vk := X ′(:,Jk) ∈ R
n×nk where nk := |Jk |.

3. Compute Tk = V T
k (A − μk I )Vk where μk := (mini∈Jk

˜λi + maxi∈Jk
˜λi )/2.

4. Perform the following procedure for each Tk ∈ R
nk×nk .

(i) Compute an eigenvector matrix Wk of Tk .
(ii) Update X ′(:,Jk) ∈ R

n×nk by VkWk .

This procedure is interpreted as follows. We first apply an approximate similarity
transformation to A using a refined eigenvector matrix X ′, such as S′ := (X ′)TAX ′.
Then, we divide the problem for S′ ∈ R

n×n into subproblems for S′
k ∈ R

nk×nk ,
k = 1, 2, . . . , nJ , corresponding to the clusters. We then apply a diagonal shift to S′

k ,
such as Tk := S′

k − μk I to relatively separate the clustered eigenvalues around μk .
Rather than using these to obtain Tk , we perform steps 2 and 3 in view of computational
efficiency and accuracy. Finally, we update the columns of X ′ corresponding to Jk

using an eigenvector matrix Wk of Tk by VkWk .

5.3 Proposed algorithm

Here, we present a practical version of a refinement algorithm for eigenvalue decom-
position of a real symmetric matrix A, which can also be applied to the case where A
has clustered eigenvalues.

In Algorithm 2, the function fl(C) rounds an input matrixC ∈ R
n×n to amatrix T ∈

F
n×n , whereF is a set of floating-point numbers in ordinary precision, such as the IEEE

754 binary64 format. Here, “round-to-nearest” rounding is not required; however,
some faithful rounding, such as chopping, is desirable. Moreover, the function eig(T )

is similar to the MATLAB function, which computes all approximate eigenvectors of
an input matrix T ∈ F

n×n in working precision arithmetic. This is expected to adopt
some backward stable algorithm as implemented in the LAPACK routine xSYEV [2].
From lines 13–17 in Algorithm 2, we aim to obtain sufficiently accurate approximate
eigenvectors X ′(:,Jk) of A, where the columns of X ′(:,Jk) correspond toJk . For this
purpose, we iteratively apply Algorithm 1 (RefSyEv) to A − μk I and V (ν)

k until V (ν)
k

for some ν becomes as accurate as other eigenvectors associated with well-separated
eigenvalues. Note that the spectral norms ‖˜E‖2 and ‖˜Ek‖2 can be replaced by the
Frobenius norms ‖˜E‖F and ‖˜Ek‖F.

For the example (26), we apply Algorithm 2 (RefSyEvCL) to A and the same initial
guess X (0) as before. The results of two iterations are as follows.

R(1) ≈
⎡

⎣

5.4e-32 -1.0e-32 2.5e-32
-1.0e-32 1.4e-33 2.9e-49
2.5e-32 2.9e-49 1.4e-33

⎤

⎦ , S(1) ≈
⎡

⎣

-1.0e+00 -1.0e-32 2.5e-32
-1.0e-32 2.0e+00 -1.3e-48
2.5e-32 -1.3e-48 2.0e+00

⎤

⎦

R(2) ≈
⎡

⎣

2.2e-63 -5.5e-64 1.4e-63
-5.5e-64 1.1e-64 -2.6e-64
1.4e-63 -2.6e-64 6.5e-64

⎤

⎦ , S(2) ≈
⎡

⎣

-1.0e+00 -5.5e-64 1.4e-63
-5.5e-64 2.0e+00 -2.6e-64
1.4e-63 -2.6e-64 2.0e+00

⎤

⎦
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Algorithm 2 RefSyEvCL: Refinement of approximate eigenvectors of a real symmetric
matrix with clustered eigenvalues. Higher-precision arithmetic is required for all the
computations except line 11 and the computations of ‖ · ‖2.
Input: A, ̂X ∈ R

n×n with A = AT

Output: X ′ ∈ R
n×n

1: function X ′ ← RefSyEvCL(A, ̂X )
2: [X ′, ˜D, ˜E, ω] ← RefSyEv(A, ̂X) � Apply Algorithm 1 to A and ̂X .
3: if ‖˜E‖2 ≥ 1, return, end if � Improvement cannot be expected.
4: Determine the index sets Jk , k = 1, . . . , nJ , as in (27) for eigenvalue clusters using ˜D = diag(˜λi )

and ω. � nJ : The number of clusters.
5: for k ← 1, 2, . . . , nJ do � Refine eigenvectors for each cluster.
6: Vk ← X ′(:,Jk ) � Pick out Vk ∈ R

n×nk where nk := |Jk |.
7: μk ← (mini∈Jk

˜λi + maxi∈Jk
˜λi )/2 � Determine the shift constant μk .

8: Ak ← A − μk I � Shift A for separating clustered eigenvalues.
9: Ck ← VT

k AkVk � Compute Ck ∈ R
nk×nk .

10: Tk ← fl(Ck ) � Conversion from higher-precision to ordinary precision.
11: [Wk ,∼] ← eig(Tk ) � Compute eigenvectors of Ck in ordinary precision.

12: ν ← 1; V (1)
k ← Vk · Wk

13: repeat
14: [V (ν+1)

k , ∼, ˜Ek ] ← RefSyEv(Ak , V
(ν)
k ) � Apply Alg. 1 to Ak and V (ν)

k .
15: if ‖˜Ek‖2 ≥ 1, return, end if � Improvement cannot be expected.
16: ν ← ν + 1
17: until ‖˜Ek‖2 ≤ ‖˜E‖2
18: X ′(:,Jk ) ← V (ν)

k � Update the columns of X ′ corresponding to Jk .
19: end for
20: end function

Thus, Algorithm 2 works well for this example, i.e., the approximate eigenvectors
corresponding to the nearly double eigenvalues λ2 and λ3 are improved in terms of
both orthogonality and diagonality.

Remark 3 For a generalized symmetric definite eigenvalue problem Ax = λBx where
A and B are real symmetric with B being positive definite, we can modify the algo-
rithms as follows.

– In Algorithm 1 called at line 2 in Algorithm 2, replace R ← I − ̂XT
̂X with

R ← I − ̂XTB̂X .
– Replace Ak ← A − μk I with Ak ← A − μk B in line 8 of Algorithm 2.

Note that B does not appear in Algorithm 1 called at line 14 in Algorithm 2. ��

6 Numerical results

We present numerical results to demonstrate the effectiveness of the proposed algo-
rithm (Algorithm 2: RefSyEvCL). All numerical experiments discussed in this section
were conducted using MATLAB R2016b on our workstation with two CPUs (3.0
GHz Intel Xeon E5-2687W v4 (12 cores)) and 1 TB of main memory, unless oth-
erwise specified. Let u denote the relative rounding error unit (u = 2−24 for IEEE
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binary32 and u = 2−53 for binary64). To realize multiple-precision arithmetic, we
adopt Advanpix Multiprecision Computing Toolbox version 4.2.3 [1], which utilizes
well-known, fast, and reliable multiple-precision arithmetic libraries including GMP
andMPFR. We also use the multiple-precision arithmetic with sufficiently long preci-
sion to simulate real arithmetic. In all cases, we use the MATLAB function norm for
computing the spectral norms ‖R‖ and ‖S− ˜D‖ in Algorithm 1 in binary64 arithmetic,
and we approximate ‖A‖ by max(|˜λ1|, |˜λn|). We discuss numerical experiments for
some dozens of seeds for the random number generator, and all results are similar to
those provided in this section. Therefore, we adopt the default seed as a typical exam-
ple using the MATLAB command rng(‘default’) to ensure reproducibility of
problems.

6.1 Convergence property

Here, we confirm the convergence property of the proposed algorithm for various
eigenvalue distributions.

6.1.1 Various eigenvalue distributions

In the same way as the previous paper [17], we again generate real symmetric and
positive definite matrices using the MATLAB function randsvd from Higham’s test
matrices [11] by the following MATLAB command.

>> A = gallery(‘randsvd’,n,-cnd,mode);

The eigenvalue distribution and condition number of A can be controlled by the input
arguments mode ∈ {1, 2, 3, 4, 5} and cnd =: α ≥ 1, as follows:

1. one large: λ1 ≈ 1, λi ≈ α−1, i = 2, . . . , n
2. one small: λn ≈ α−1, λi ≈ 1, i = 1, . . . , n − 1
3. geometrically distributed: λi ≈ α−(i−1)/(n−1), i = 1, . . . , n
4. arithmetically distributed: λi ≈ 1 − (1 − α−1)(i − 1)/(n − 1), i = 1, . . . , n
5. random with uniformly distributed logarithm: λi ≈ α−r(i), i = 1, . . . , n, where

r(i) are pseudo-random values drawn from the standard uniform distribution on
(0, 1).

Here, κ(A) ≈ cnd for cnd < u−1 ≈ 1016. As shown in [17], for mode ∈ {1, 2},
there is a cluster of nearly multiple eigenvalues, so that Algorithm 1 (RefSyEv) does
not work effectively.

As in [17], we set n = 10 and cnd = 108 to generate moderately ill-conditioned
problems in binary64 and consider the computed results obtained using multiple-
precision arithmetic with sufficiently long precision as the exact eigenvalues λi , i =
1, 2, . . . , n. We compute X (0) as an initial approximate eigenvector matrix using the
MATLAB function eig in binary64 arithmetic.

In the previous paper [17], we observed the quadratic convergence of Algorithm 1
in the case of mode ∈ {3, 4, 5}, while Algorithm 1 failed to improve the accuracy
of the initial approximate eigenvectors in the case of mode ∈ {1, 2}, since the test
matrices for mode ∈ {1, 2} have nearly multiple eigenvalues. To confirm the behavior
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Fig. 2 Results of iterative refinement by Algorithm 2 (RefSyEvCL) in real arithmetic for symmetric and
positive definite matrices generated by randsvd with n = 10 and κ(A) ≈ 108

of Algorithm 2, we apply Algorithm 2 to the same examples. The results are shown
in Fig. 2, which provides max1≤i≤n |̂λi − λi |/|λi | as the maximum relative error of
the computed eigenvalueŝλi , ‖offdiag(̂XTÂX)‖/‖A‖ as the diagonality of ̂XTÂX ,
‖I−̂XT

̂X‖ as the orthogonality of a computed eigenvectormatrix ̂X , and ‖̂E‖where ̂E
is a computed result of ˜E in Algorithm 1. Here, offdiag(·) denotes the off-diagonal part
of a givenmatrix. The horizontal axis shows the number of iterations ν of Algorithm 2.
As can be seen from the results, Algorithm 2 works very well even in the case of
mode ∈ {1, 2}.

6.1.2 Clustered eigenvalues

As an example of clustered eigenvalues, we show the results for the Wilkinson matrix
[23], which is symmetric and tridiagonal with pairs of nearly equal eigenvalues. The
Wilkinson matrix Wn = (wi j ) ∈ R

n×n consists of diagonal entries wi i := |n−2i+1|
2 ,

i = 1, 2, . . . , n, and super- and sub-diagonal entries being all ones. We apply Algo-
rithm 2 to the Wilkinson matrix with n = 21. The results are displayed in Fig. 3. As
can be seen, Algorithm 2 works well.

Next, we show the convergence behavior of Algorithm 2 with limited computa-
tional precision for larger matrices with various β, which denotes the reciprocal of
the minimum gap between the eigenvalues normalized by ‖A‖ as defined in (10). If
β is too large such as β2u ≥ 1 as mentioned at the end of Sect. 3, we cannot expect
to improve approximate eigenvectors by Algorithm 1. We generate test matrices as
follows. Set k ∈ Nwith k ≤ n−2. Let A = QDQT, where Q is an orthogonal matrix
and D is a diagonal matrix where

dii =
⎧

⎨

⎩

1 − (i − 1)β−1 for i = 1, 2, . . . , k

−1 + n − i

n − k − 1
2−1 for i = k + 1, . . . , n

.
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Fig. 3 Results of iterative refinement by Algorithm 2 (RefSyEvCL) in real arithmetic for the Wilkinson
matrix with n = 21

Then, k eigenvalues are clustered close to 1 with the gap β−1, and n − k eigen-
values are distributed equally in [−1,− 1

2 ]. We compute A ≈ ˜Q˜D˜QT in IEEE 754
binary64 arithmetic, where ˜Q is a pseudo-random approximate orthogonal matrix and
˜D is a floating-point approximation of D. We fix n = 100 and k = 10 and vary β

between 102 and 1014. Tomake the results more illustrative, we provide a less accurate
initial guess X (0) using binary32 arithmetic. In the algorithm, we adopt binary128 (so-
called quadruple precision) for high-precision arithmetic. Then, the maximum relative
accuracy of the computed results is limited to uh = 2−113 ≈ 10−34. For binary128
arithmetic, we use the multiple-precision toolbox, in which binary128 arithmetic is
supported as a special case by the command mp.Digits(34). The results are shown
in Fig. 4. As can be seen, Algorithm 2 can refine the computed eigenvalues until their
relative accuracy obtains approximately uh . Both the orthogonality and diagonality
of the computed eigenvectors are improved until approximately βuh . This result is
consistent with Remark 1. For β ∈ {108, 1014}, Algorithm 1 cannot work because
X (0) is insufficiently accurate and the assumption (3) is not satisfied. We confirm that
this problem can be resolved by Algorithm 2.

6.2 Computational speed

To evaluate the computational speed of the proposed algorithm (Algorithm 2), we
first compare the computing time of Algorithm 2 to that of an approach that uses
multiple-precision arithmetic (MP-approach). Note that the timing should be observed
for reference because the computing time for Algorithm 2 strongly depends on the
implementation of accurate matrix multiplication. Thus, we adopt an efficient method
proposed by Ozaki et al. [19] that utilizes fast matrix multiplication routines such as
xGEMM in BLAS. To simulate multiple-precision numbers and arithmetic in Algo-
rithm 2, we represent ̂X = ̂X1 + ̂X2 + · · · + ̂Xm with ̂Xk , k = 1, 2, . . . ,m, being
floating-point matrices in working precision, such as “double-double” (m = 2) and
“quad-double” (m = 4) precision format [10] and use the concept of error-free trans-
formations [16].
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Fig. 4 Results of iterative refinement by Algorithm 2 (RefSyEvCL) in IEEE 754 binary128 arithmetic
(uh = 2−113 ≈ 10−34) for symmetric matrices with n = 100 and various β

In the multiple-precision toolbox [1], the MRRR algorithm [6] via Householder
reduction is implemented sophisticatedly with parallelism to solve symmetric eigen-
value problems.

For comparison of timing, we generate a pseudo-random real symmetric n × n
matrix with clustered eigenvalues in a similar way to Sect. 6.1.2. To construct several
eigenvalue clusters, we change diagonal elements of D to

dii =

⎧

⎪

⎨

⎪

⎩

1 −
⌊

i − 1

k

⌋

c−1 − (i − 1)β−1 for i = 1, 2, . . . , ck

−1 + n − i

n − ck − 1
2−1 for i = ck + 1, ck + 2, . . . , n

.

Then, there are c clusters close to 1/c, 2/c, . . . , 1 with k eigenvalues and the gap β−1

in each cluster, and n − ck eigenvalues are distributed equally in [−1,− 1
2 ]. We set

n = 1000, c = 5, k = 100, and β = 1012, i.e., the generated 1000 × 1000 matrix
has five clusters with 100 eigenvalues and the gap 10−12 in each cluster. We compare
the measured computing time of Algorithm 2 to that of the MP-approach, which is
shown in Table 1 together with ‖̂E‖ and nJ , where nJ is the number of eigenvalue
clusters identified in Algorithm 2. At ν = 2, Algorithm 2 successfully identifies five
eigenvalue clusters as nJ = 5 corresponding to c = 5.

For comparison of timing on a lower performance computer, we also conducted
numerical experiments using MATLAB R2017b on our laptop PC with a 2.5 GHz
Intel Core i7-7660U (2 cores) CPU and 16 GB of main memory. In a similar way
to the previous example, we set n = 500, c = 5, k = 10, and β = 1012, i.e., the
generated 500 × 500 matrix has five clusters with 10 eigenvalues and the gap 10−12

in each cluster. As can be seen from Table 2, the result is similar to that in Table 1.
Next, we address more large-scale problems. The test matrices are generated

using the MATLAB function randn with n ∈ {2000, 5000, 10,000}, such as B =
randn(n) and A = B + B’. We aim to compute all the eigenvectors of a given
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Table 1 Results for a pseudo-random real symmetric matrix with clustered eigenvalues on our workstation:
n = 1000, 5 clusters, 100 eigenvalues, and β = 1012 in each cluster

Algorithm 2 eig (binary64) ν = 1 ν = 2 ν = 3

‖̂E‖ 6.4 × 10−4 2.1 × 10−7 8.4 × 10−25 1.1 × 10−38

nJ 0 5 0

Elapsed time (s) 0.15 6.63 23.14 45.19

(accumulated) 0.15 6.77 29.91 75.10

MP-approach mp.Digits(d) d = 34 d = 36 d = 49

Elapsed time (s) 16.21 256.67 285.33

Table 2 Results for a pseudo-random real symmetric matrix with clustered eigenvalues on our laptop PC:
n = 500, 5 clusters, 10 eigenvalues, and β = 1012 in each cluster

Algorithm 2 eig (binary64) ν = 1 ν = 2 ν = 3

‖̂E‖ 4.5 × 10−4 1.4 × 10−7 5.8 × 10−26 2.6 × 10−39

nJ 0 5 0

Elapsed time (s) 0.07 1.41 5.99 9.20

(accumulated) 0.07 1.48 7.47 16.67

MP-approach mp.Digits(d) d = 34 d = 37 d = 50

Elapsed time (s) 5.12 33.89 35.93

real symmetric n × n matrix A with the maximum accuracy allowed by the binary64
format. To make the results more illustrative, we provide a less accurate initial guess
X (0) using eig in binary32, and we then refine X (ν) by Algorithm 2. For efficiency,
we use binary64 arithmetic for ν = 1, 2, and accurate matrix multiplication based on
error-free transformations [19] for ν = 3. As numerical results, we provide ‖̂E‖, nJ ,
and the measured computing time. The results are shown in Table 3. As can be seen,
Algorithm 2 improves the accuracy of the computed results up to the limit of binary64
(u = 2−53 ≈ 10−16). For n ∈ {5000, 10,000}, Algorithm 2 requires much computing
time in total compared with eig in binary32 as nJ increases. This is because the prob-
lems generally become more ill-conditioned for larger n. In fact, on the minimum gap
between eigenvalues, β = 2.71 · 10−5 for n = 2000, β = 2.31 · 10−6 for n = 5000,
and β = 2.26 · 10−6 for n = 10,000. Thus, it is likely that binary32 arithmetic cannot
provide a sufficiently accurate initial guess X (0) for a large-scale random matrix.

6.3 Application to a real-world problem

Finally, we apply the proposed algorithm to a quantum materials simulation that aims
to understand electronic structures in material physics. The problems can be reduced
to generalized eigenvalue problems, where eigenvalues and eigenvectors correspond
to electronic energies and wave functions, respectively. To understand properties of
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Table 3 Results of iterative refinement byAlgorithm 2 (RefSyEvCL) for pseudo-random symmetric matrices
on a workstation

n = 2000 eig (binary32) ν = 1 ν = 2 ν = 3

‖̂E‖ 2.2 × 10−3 2.6 × 10−6 9.5 × 10−12 9.4 × 10−17

nJ 0 0 0

Elapsed time (s) 0.35 1.68 0.98 1.76

(accumulated) 0.35 2.03 3.01 4.77

n = 5000 eig (binary32) ν = 1 ν = 2 ν = 3

‖̂E‖ 3.0 × 10−3 4.6 × 10−6 3.0 × 10−11 9.4 × 10−17

nJ 80 16 0

Elapsed time (s) 1.69 15.09 10.67 13.68

(accumulated) 1.69 16.78 27.45 41.13

n = 10,000 eig (binary32) ν = 1 ν = 2 ν = 3

‖̂E‖ 3.9 × 10−3 8.6 × 10−6 9.4 × 10−11 9.4 × 10−17

nJ 1276 587 0

Elapsed time (s) 15.81 406.52 211.36 82.93

(accumulated) 15.81 422.33 633.68 716.61

materials correctly, it is crucial to determine the order of eigenvalues [12] and to obtain
accurate eigenvectors [24,25].

We deal with a generalized eigenvalue problem Ax = λBx arising from a vibrating
carbon nanotube within a supercell with s, p, d atomic orbitals [4]. The matrices A
and B are taken from ELSES matrix library [7] as VCNT22500, where A and B are
real symmetric n×n matrices with B being positive definite and n = 22500. Our goal
is to compute accurate eigenvectors and separate all the eigenvalues of the problem for
determining their order. To this end, we use a numerical verification method in [14]
based on the Gershgorin circle theorem (cf. e.g. [9, Theorem 7.2.2] and [23, pp. 71ff]),
which can rigorously check whether all eigenvalues are separated and determine an
existing range of each eigenvalue.

Let Λ(B−1A) be the set of the eigenvalues of B−1A. Here, all the eigenvalues of
B−1A are real from the assumption of A and B. Let ̂X ∈ R

n×n be an approximate
eigenvector matrix of B−1A with ̂X being nonsingular. Then, it is expected that C :=
̂X−1B−1ÂX is nearly diagonal. Although it is not possible, in general, to calculate
C = (ci j ) exactly in finite precision arithmetic, we can efficiently obtain an enclosure
of C . Note that we compute neither an enclosure of B−1 nor that of ̂X−1 explicitly.
Instead, we compute an approximate solution ̂C of linear systems (B̂X)C = ÂX
and then verify the accuracy of ̂C using Yamamoto’s method [26] with matrix-based
interval arithmetic [18,21] for obtaining an enclosure of C . Suppose ̂D = diag(̂λi ) is
a midpoint matrix and G = (gi j ) is a radius matrix with gi j ≥ 0 satisfying

ci j ∈
{

[̂λi − gii ,̂λi + gii ] if i = j

[ − gi j , gi j ] otherwise
for all (i, j).
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Then, the Gershgorin circle theorem implies

Λ(B−1A) ⊆
n

⋃

i=1

[̂λi − ei ,̂λi + ei ], ei :=
n

∑

j=1

gi j .

It can also be shown that if all the disks [̂λi − ei ,̂λi + ei ] are isolated, then all the
eigenvalues are separated, i.e., each disk contains precisely one eigenvalue of B−1A
[23, pp. 71ff].

We first computed an approximate eigenvector matrix ̂X of B−1A using the MAT-
LAB function eig(A, B) in binary64 arithmetic as an initial guess, and ̂X was obtained
in 235.17 s. Then, we had max1≤i≤n ei = 2.75 × 10−7, and 10 eigenvalues with 5
clusters could not be separated due to relatively small eigenvalue gaps.We next applied
Algorithm 2 to A, B, and ̂X in higher precision arithmetic in a similar way to Sect. 6.2,
and obtained a refined approximate eigenvector matrix ̂X ′ in 597.52 s. Finally, we
obtained max1≤i≤n ei = 1.58 × 10−14 and confirmed that all the eigenvalues can
successfully be separated.
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