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Abstract The discrete Painlevé III equation (dPIII) possesses a class of special solu-
tions with determinantal structure whose entries are written by the q-difference Bessel
function. In this paper, an ultradiscrete analogue of theq-Bessel function is constructed
by ultradiscretization with parity variables (p-ultradiscretization). Based on this result,
special solutions for the p-ultradiscrete Painlevé III equation are derived from those
of dPIII. The ultradiscrete solutions capture oscillating behaviour of the (differential)
Painlevé III equation.

Keywords Painlevé equation · Bessel function · Ultradiscretization · q-difference
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1 Introduction

Ultradiscretization [23] is a limiting procedure for reducing a given difference equation
to a piecewise linear equation that is written by addition, subtraction, and the max
operation among dependent variables. In this procedure,we first transform a dependent
variable xn in the given difference equation by

xn = e
Xn
ε , (1)
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where ε > 0 is a parameter. Then, we apply ε log to both sides of the equation and
take the limit ε → +0. By using the exponential laws and the identity

lim
ε→+0

ε log
(

e
X
ε + e

Y
ε

)
= max(X, Y ), (2)

multiplication, division, and addition among xn are replaced by addition, subtraction,
and themax operation among Xn , respectively. The resultingpiecewise linear equation,
which is called an ultradiscrete system, is often considered to be the time evolution rule
of a cellular automaton [24] since its dependent variables as well as its independent
variables will take discrete values.

We can regard the transformation (1) as an approximation of the solution xn by its
leading term eXn/ε. In this context, the ultradiscrete system is the balancing relation
among the exponents of leading terms, say Xn . In spite of this drastic approximation,
an ultradiscrete system may inherit essential properties of the original equation. In
particular, if we have an exact solution of the original equation, we can constract a
solution of the corresponding ultradiscrete system. The box-and-ball system (BBS)
[20], which is an ultradiscrete analogue of the Korteweg–de Vries (KdV) equation, is a
good example to observe this feature of ultradiscrete systems. The BBS has an infinite
number of preserving quantities and therefore keeps the integrability of the KdV
equation. Moreover, the BBS admits the N -soliton solutions, which illustrate soliton
interaction in a simple manner. The direct relationship between the soliton solutions
of BBS and those of the KdV equation is also clarified through the limiting procedure.
Because of this interesting feature, ultradiscrete systems are faithfully studied from
viewpoints of mathematical interest and applied possibility (See, for example, [19]).

However, xn must be positive to apply (1). Moreover, the equation that we consider
must be subtraction-free since it is not straightforward to find a meaningful limit of
ε log

(
eX/ε − eY/ε

)
. These conditions strongly restrict a class of equations towhichwe

can apply ultradiscretization procedure. For example, it is difficult to ultradiscretize
a equation describing oscillation. Some attempts have been made to overcome this
difficulty. Instead of (1), the ansatz xn = sinh(Xn/ε) has been studied in [7,10].
Kasman and Lafortune investigated the limit of the form ε log

∑
γi ewi (ε)/ε (γi ∈ C)

in detail [6]. An algebraic approach by means of a non-archimedean valuation was
presented by Ormerod and it was applied to the discrete Painlevé III equation [16].
The present author proposed a new procedure called ultradiscretization with parity
variables (p-ultradiscretization) with coworkers [14]. This procedure keeps track of
the sign of the original variables by introducing the parity (sign) variable ξn = xn/|xn|.
We can study ultradiscrete analogues of a wider class of equations by virtue of these
attempts.

The Painlevé equations are important nonlinear differential equations that have rich
mathematical structures, for example, they admit a class of special solutions written
in terms of a determinant whose entries are given by a hypergeometric-type function.
Their q-difference analogues [17] are simply called the q-Painlevé equations. They
also have rich structures and are actively studied (See, for example, [4,18]). Ultra-
discrete analogues of the q-Painlevé equations and their special solutions are also
investigated vigourously. Ultradiscrete Painlevé equations by traditional procedure
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Bessel-type solutions of the ultradiscrete Painlevé III equation 345

are studied in [13,15,21], and so on. In [16], as mentioned above, hypergeometric
solutions of the ultradiscrete Painlevé III equation and an ultradiscrete Bessel func-
tion were constructed by an algebraic approach. The procedure of p-ultradiscretization
has been applied to the q-Painlevé II equation [3] in [9] and some successive works
have been reported in [8,11,12]. Furthermore, the p-ultradiscrete analogue of the
Painlevé VI equation and its special solutions have been proposed and the asymp-
totic behaviour of the solutions was discussed in [22]. It is an interesting problem to
construct p-ultradiscrete analogues of other Painlevé equations and study their math-
ematical structures including special solutions.

In this study, we focus on a discrete analogue of the Painlevé III equation (dPIII),
which is written as [5]

w(n + 1)w(n − 1) = αw(n)2 + βλnw(n) + γ λ2n

w(n)2 + δw(n) + α
, (3)

where α, β, γ , δ, and λ are parameters. For a special set of parameters

α = −q4N , β = (qν+N − q−ν−N−2)q8N (1 − q)2,

γ = q2(6N−1)(1 − q)4, δ = (qν−N − q−ν+N )q2N , λ = q2, (4)

(3) admits a class of special solutions as follows. A q-difference analogue of the Bessel
equation is written as

Jν(q
2x) − (qν + q−ν)Jν(qx) + {1 + (1 − q)2x2}Jν(x) = 0, (5)

where q is a multiplicative difference interval that satisfies |q| < 1. We write

Jν(q
n) = Jν(n) (6)

and consider a function with determinantal structure,

τ ν
N (n) =

∣∣∣∣∣∣∣∣∣

Jν(n) Jν(n + 1) · · · Jν(n + N − 1)
Jν(n + 2) Jν(n + 3) · · · Jν(n + N + 1)

...
...

. . .
...

Jν(n + 2N − 2) Jν(n + 2N − 1) · · · Jν(n + 3N − 3)

∣∣∣∣∣∣∣∣∣
. (7)

Then, functions defined by

wν
N (n) = τ ν

N+1(n + 1)τ ν+1
N (n)

τ ν
N+1(n)τ ν+1

N (n + 1)
− qν+N (8)

solve (3) with parameters (4). Note that (7) satisfies the bilinear equations

τ ν
N+1(n)τ ν+1

N (n + 1) − q−ν−N τ ν
N+1(n + 1)τ ν+1

N (n) = −(1 − q)qn+2N τ ν+1
N+1(n)τ ν

N (n + 1), (9)

τ ν+1
N+1(n)τ ν

N (n + 1) − qν−N+1τ ν+1
N+1(n + 1)τ ν

N (n) = (1 − q)qn+2N τ ν
N+1(n)τ ν+1

N (n + 1), (10)
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τ ν
N+1(n)τ ν+1

N (n+3)−q−ν−N τ ν
N+1(n+1)τ ν+1

N (n+2)=−(1−q)qnτ ν+1
N+1(n)τ ν

N (n+3), (11)

τ ν+1
N+1(n)τ ν

N (n + 3) − qν−N+1τ ν+1
N+1(n + 1)τ ν

N (n + 2) = (1 − q)qnτ ν
N+1(n)τ ν+1

N (n + 3). (12)

Since (3) is subtraction-free, it is ultradiscretizable in the traditional procedure. How-
ever, the above special solutions may not be captured directly, because (5) shows
oscillating behaviour and the determinant (7) itself includes subtraction. Hence, it
is reasonable to introduce p-ultradiscretization. This is another approach to ultradis-
cretization of the Painlevé III equation by means of a different method from [16].

Our aim is to derive a class of special solutions for p-ultradiscrete analogues of
(9)–(12) from (7). Moreover, we construct some solutions of p-ultradiscrete analogues
of (3) and study their behaviour. This paper is organized as follows. In Sect. 2, we
review the procedure of p-ultradiscretization. In Sect. 3, we evaluate a q-difference
analogue of the Bessel function as preparation for the main content. In Sect. 4, we
evaluate (7) into which we substitute the q-difference Bessel function. In Sect. 5, we
construct an ultradiscrete solution for the p-ultradiscrete analogue of (3) and compare
its behaviour with the corresponding special solution of the Painlevé III (differential)
equation. Finally, concluding remarks are given in Sect. 6.

2 Ultradiscretization with parity variables

In this section, we review the procedure of p-ultradiscretization. As an example, we
consider a simple difference equation

xn+1 = −axn + b (a, b > 0, n ≥ 0). (13)

Note that (13) possesses the general solution

xn = x0(−a)n + (−1)n−1anb + b

1 + a
. (14)

One can formally obtain an usual ultradiscrete analogue of (13) by assuming xn >

0. If we deform (13) as xn+1 + axn = b, all terms become positive. Hence, by
putting a = exp(A/ε), b = exp(B/ε) and xn = exp(Xn/ε), the deformed equation is
ultradiscretized as

max(Xn+1, A + Xn) = B. (15)

However, we find no solution of (15) for some specific values of A, B and Xn . For
example, when A = 1, B = 0 and Xn = 1, (15) does not satisfied for any values
of Xn+1. In this meaning, (15) is not well-defined. This failure of ultradiscretization
trivially comes from unreasonable assumption xn > 0.

Introduction of p-ultradiscretization improves this situation. We assume xn �= 0
and introduce the parity (or sign) variable ξn ∈ {1,−1} by

ξn = xn

|xn| , (16)
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which gives the sign number of xn . We consider the following four cases for (13): (i)
ξn+1 = 1 and ξn = 1, (ii) ξn+1 = 1 and ξn = −1, (iii) ξn+1 = −1 and ξn = 1, (iv)
ξn+1 = −1 and ξn = −1. For each case, we deform (13) as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(i) xn+1 + axn = b

(ii) xn+1 = −axn + b

(iii) axn = −xn+1 + b

(iv) 0 = −xn+1 − axn + b.

(17)

Since all terms are positive in (17), each equation is ultradiscretized by introducing
the amplitude variable Xn by |xn| = exp(Xn/ε) and the formal replacement 0 =
exp(−∞/ε) as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(i) max(Xn+1, A + Xn) = B

(ii) Xn+1 = max(A + Xn, B)

(iii) A + Xn = max(Xn+1, B)

(iv) − ∞ = max(Xn+1, A + Xn, B),

(18)

respectively. Now, we regard the obtained set of equations (18) as an ultradiscrete
analogue of (13). A pair (ξn, Xn) includes richer information of xn than usual ultra-
discrete variable. Let us study (18) with A = 1, B = 0 and (ξn, Xn) = (1, 1). For
these values, the cases (ii) and (iv) do not apply to ξn = 1 and the case (i) gives no
solution. However, the case (iii) admits the unique solution Xn+1 = 2 and this means
ξn+1 should be−1. Hence, we have found the solution (ξn+1, Xn+1) = (−1, 2), which
we could not for (15).

We comment on indeterminacy in solving a p-ultradiscrete equation under specific
conditions. Let us study (18) with A = 1, B = 2 and (ξn, Xn) = (1, 1). Although
the cases (ii) and (iv) do not apply again, the other two cases give the same equation
max(Xn+1, 2) = 2. From this equation, we must have the result that the parity is
arbitrary (ξn+1 = ±1) and the amplitude is not unique (Xn+1 ≤ 2). We proceed to the
next step by choosing one of the indeterminate values. Therefore, we have an infinite
number of solutions in this case. We note that a guideline to choose a ‘nice value’,
whose meaning depends on property of the solution which one tries to capture, is
still under study. Through this example, we find that uniqueness of solution is lost
for some specific values of A, B and Xn but a solution always exists. Although this
indeterminacy of solution looks troublesome, the situation becomes better comparing
from (15), in which a solution may not exist. Noticing the existence of solution, we
claim that (18) is well-defined. This example also shows that p-ultradiscretization
does not make the max operation invertible. Hence, a p-ultradiscrete system is not
equivalent to the original equation but its approximation.

In order to give ‘simpler’ representation of (18), we use the following notation. We
define a function

s(ξ) =
{
1 (ξ = 1)

0 (ξ = −1).
(19)
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Note that the sign ξ is represented as ξ = s(ξ) − s(−ξ). Then, we rewrite xn as

xn = {s(ξn) − s(−ξn)}e Xn
ε (20)

and substitute it into (13). In other words, we employ (20) instead of (1). Then,
transposing the negative terms to the other side of the equation, we have

s(ξn+1)e
Xn+1

ε + s(−ξn)e
Xn+A

ε = s(−ξn+1)e
Xn+1

ε + s(ξn)e
Xn+A

ε + e
B
ε . (21)

We apply ε log to both sides of (21) and then take the limit ε → +0. If we define a
function S by

S(ξ) =
{
0 (ξ = 1)

−∞ (ξ = −1),
(22)

the following identity holds:

lim
ε→+0

ε log
(

s(ξ)e
X
ε + e

Y
ε

)
= max(S(ξ) + X, Y ). (23)

Here, the term including −∞ vanishes from max. We may regard S(ξ) as the for-

mal ultradiscrete analogue of s(ξ) with s(ξ) = e
S(ξ)
ε . By utilizing this identity, (21)

reduces to

max(S(ξn+1) + Xn+1, S(−ξn) + Xn + A)

= max(S(−ξn+1) + Xn+1, S(ξn) + Xn + A, B). (24)

By considering all cases for the parity variables, we recover the explicit equations (18)
from the implicit equation (24). That is, we represent the four cases (i)–(iv) in terms
of the function S. We call (24) as well as (18) a p-ultradiscrete analogue of (13). We
hereafter present p-ultradiscrete equations in the implicit expression by the following
reasons. Firstly, the implicit expression has shorter form than its explicit counterpart.
Secondly, one can construct both of forward and backward schemes from the implicit
expression, if necessary. We comment that it is not always reasonable to treat the
implicit expression as an equation on max-plus algebra for characters X and S(ξ).
For example, the distributive law max(S(ξ) + X, Y ) = S(ξ) + max(X, Y − S(ξ))

is not well-defined for ξ = −1, which directly corresponds to zero-dividing for the
original variable. We should treat (24) as equations on max-plus algebra with cases
represented by S(ξ), not on a new algebra.

In closing this section, we review the following lemma [12], which provides a useful
sufficient condition for obtaining a solution of a p-ultradiscrete equation.

Lemma 1 If a solution of a given difference equation xn(ε), where ε is an arbitrary
positive parameter, is evaluated as

xn(ε) = (−1)ξ̂n e
Xn
ε (cn + O(ε)), cn > 0, (25)
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Bessel-type solutions of the ultradiscrete Painlevé III equation 349

the pair of the sign (−1)ξ̂n and the amplitude Xn solve the corresponding p-
ultradiscrete equation.

Wemay simply refer to the pair ((−1)ξ̂n , Xn) obtained by this lemma as p-ultradiscrete
limit of xn . For example, we consider (14) and assume n ≥ 1, A > 0, x0 = eX0/ε > 0
and X0 > B − A for simplicity. Then, we find that ((−1)n, n A + X0) is the p-
ultradiscrete limit of (14).

3 q-Bessel function and its ultradiscrete limit

In this section, we study a special solution of (5) with ν ∈ Z≥0, which we refer to as
the q-Bessel function. It is given by

Jν(x) = (1 − q)νxν
∞∑
j=0

(−1) j (1 − q)2 j

(q2; q2) j (q2; q2)ν+ j
x2 j , (26)

where

(a; q)k =
{
1 (k = 0)

(1 − a)(1 − aq) . . . (1 − aqk−1) (k ∈ Z>0).
(27)

Jackson’s q-Bessel function, which is defined even for ν ∈ C,

J (1)
ν (x; q) = (qν+1; q)∞

(q; q)∞

( x

2

)ν

2φ1

(
0,0

qν+1; q,− x2

4

)
(28)

is well known, where rφs is the basic hypergeometric series

rφs
(a1,...,ar

b1,...,bs
; q, z

) =
∞∑
j=0

(a1; q) j . . . (ar ; q) j

(q; q) j (b1; q) j . . . (bs; q) j
[(−1) j q

j ( j−1)
2 ]1−r+s z j . (29)

The relationship between (26) and (28) for ν ∈ Z≥0

Jν(x) = J (1)
ν (2(1 − q)x; q2) (30)

is readily found.

3.1 Evaluation of the q-Bessel function

Our aim in this subsection is to prove the following proposition.

Proposition 1 (i) The q-Bessel function Jν(x) is deformed as follows:

Jν(x) = (1 − q)νxν

(−(1 − q)2x2; q2)∞

∞∑
k=0

(−1)kq2k(k+ν)(1 − q)2k

(q2; q2)k(q2; q2)k+ν

x2k . (31)
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(ii) The evaluation as q → 0

Jν(q
n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

qnν (1 + O(q)) (n ≥ 1)

qn(n+ν−1)
( 1
2 + O(q)

)
(0 ≥ n ≥ −ν)

(−1)
n+ν
2 q

n(n−2)−ν2
2

( 1
2 + O(q)

)
(n ≤ −ν − 1, n + ν : even)

(−1)
n+ν+1

2 q
n(n−2)−ν2+3

2 (1 + O(q)) (n ≤ −ν − 1, n + ν : odd)

(32)

holds for n ∈ Z.

To prove Proposition 1 (i), we introduce the well known formula [2]

1

(x; q)∞
=

∞∑
k=0

1

(q; q)k
xk (33)

(x; q)∞ =
∞∑

k=0

(−1)kq
k(k−1)

2

(q; q)k
xk (34)

(a; q)ν+k = (a; q)ν(aqν; q)k (35)

and the following lemma.

Lemma 2 (i) The ‘q-Euler transformation’ [1]

∞∑
j=0

c j d j x j =
∞∑

k=0

(D̂kc0)

[k]! xk B̂k f (x) (36)

holds, where

f (x) :=
∞∑
j=0

d j x j (37)

B̂ f (x) := f (x) − f (qx)

(1 − q)x
(38)

[k] := 1 − qk

1 − q
, [k]! :=

{
1 (k = 0)

[k] [k − 1] . . . [1] (k ∈ Z>0)
(39)

Êc j := c j+1 ( j ∈ Z≥0), D̂k := (Ê − 1)(Ê − q) . . . (Ê − qk−1). (40)

(ii) The formula

D̂kc0 =
k∑

j=0

(−1) j q
j ( j−1)

2

[
k
j

]
ck− j (41)
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holds, where

[
k
j

]
:= [k]!

[k − j]![ j]! = (q; q)k

(q; q)k− j (q; q) j
. (42)

Proof of Proposition 1 (i) We consider a function

Ĵ (1)
ν (t; q) =

∞∑
j=0

(−1) j

(q; q) j+ν(q; q) j
t j . (43)

Note that ( x

2

)ν

Ĵ (1)
ν ((x/2)2; q) = J (1)

ν (x; q). (44)

If we put

c j = 1

(q; q)ν+ j
, d j = (−1) j

(q; q) j
, (45)

we have Ĵ (1)
ν (t; q) = ∑

c j d j t j . Then, f defined by (37) becomes

f (t) = 1

(−t; q)∞
(46)

from (33). Hence, we obtain

B̂k f (t) = (−1)k

(1 − q)k
f (t). (47)

Next, we prove

D̂kc0 = qk(k+ν)

(q; q)k+ν

. (48)

We introduce an identity

(x; q)∞
(q; q)ν

2φ1

(
0,0

qν+1; q, x
)

= 1

(q; q)ν
0φ1

( −
qν+1; q, qν+1x

)
, (49)

which appears in [2], Exercises 3.2 (iii). Note that

(qν+1; q)k−l(q; q)ν = (q; q)ν+k−l = 1

ck−l
. (50)

The left hand side of (49) is deformed as follows:

1

(q; q)ν

{ ∞∑
k=0

(−1)kq
k(k−1)

2

(q; q)k
xk

}{ ∞∑
k=0

1

(q; q)k(qν+1; q)k
xk

}
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=
∞∑

k=0

{
k∑

l=0

(−1)lq
l(l−1)

2

(q; q)l(q; q)k−l
(
(qν+1; q)k−l(q; q)ν

)
}

xk

=
∞∑

k=0

1

(q; q)k

{
k∑

l=0

(−1)lq
l(l−1)

2

[
k
l

]
ck−l

}
xk

=
∞∑

k=0

1

(q; q)k

(
D̂kc0

)
xk . (51)

The right hand side of (49) is rewritten as follows:

1

(q; q)ν

∞∑
k=0

qk(k−1)

(q; q)k(qν+1; q)k
(qν+1x)k =

∞∑
k=0

qk(k+ν)

(q; q)k
(
(qν+1; q)k(q; q)ν

) xk

=
∞∑

k=0

1

(q; q)k

qk(k+ν)

(q; q)ν+k
xk . (52)

We have (48) by comparing these two series.
Now, applying the q-Euler transformation, Ĵ (1)

ν is deformed as follows:

Ĵ (1)
ν (t; q) =

∞∑
k=0

1

[k]!
qk(k+ν)

(q; q)k+ν

tk (−1)k

(1 − q)k
f (t) = f (t)

∞∑
k=0

(−1)kqk(k+ν)

(q; q)k(q; q)k+ν

tk,

(53)

which gives

J (1)
ν (x; q) =

( x

2

)ν 1

(−x2/4; q)∞

∞∑
k=0

(−1)kqk(k+ν)

(q; q)k(q; q)k+ν

( x

2

)2k
(54)

by (44). Moreover, (54) reduces to (31) using (30). �	
Proof of Proposition 1 (ii) Substituting x = qn into (26) and (31), we obtain

Jν(q
n) = (1 − q)νqnν

∞∑
j=0

(−1) j (1 − q)2 j

(q2; q2) j (q2; q2) j+ν

q2nj (55)

Jν(q
n) = (1 − q)νqνn

(−(1 − q)2q2n; q2)∞

∞∑
k=0

(−1)k(1 − q)2k

(q2; q2)k(q2; q2)k+ν

q f̃ν,n(k), (56)

respectively, where

f̃ν,n(k) := 2k(k + ν + n) = 2

(
k + ν + n

2

)2

− (ν + n)2

2
. (57)
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Note that

1

(q2; q2)m
= 1 + O(q2) (q → 0) (58)

1

(−(1 − q)2q2n; q2)∞
= qn(n−1)

(
1

2
+ O(q)

)
(q → 0, n ≤ 0). (59)

If n ≥ 1, the term with j = 0 in (55) is dominant. Hence, we readily obtain

Jν(q
n) = qνn (1 + O(q)) (q → 0). (60)

Since it is difficult to evaluate (55) for n ∈ Z≤0, we focus on the other expression
(56) and study the minimum value of f̃ν,n(k) for k ∈ Z≥0. If 0 ≥ n ≥ −ν, we find
that min f̃ν,n(k) = f̃ν,n(0) = 0 and that the term with k = 0 in the summation in (56)
is dominant. Hence, we obtain

Jν(q
n) = qνn+n(n−1)

(
1

2
+ O(q)

)
(q → 0). (61)

Next, if n < −ν and ν + n is even, we find that

min f̃ν,n(k) = f̃ν,n

(
−ν + n

2

)
= − (ν + n)2

2
. (62)

Hence, the term with k = − ν+n
2 is dominant and then

Jν(q
n) = (−1)

ν+n
2 q

n(n−2)−ν2
2

(
1

2
+ O(q)

)
(q → 0) (63)

holds. Finally, we consider the case where n < −ν and ν + n is odd. We put ν + n =
2μ + 1 (μ = −1,−2, . . . ). We find that

min f̃ν,n(k) = f̃ν,n(−μ) = f̃ν,n(−μ − 1) = −2μ(μ + 1) =: m̃. (64)

Then, the leading term in the summation in (56) may be given by the sum of the terms
with k = −μ and −μ − 1,

(−1)−μ(1 − q)−2μqm̃(1 + O(q2)) + (−1)−μ−1(1 − q)−2μ−2qm̃(1 + O(q2))

= (−1)−μ−1q1+m̃(2 + O(q)). (65)

We also find from | f̃ν,n(−μ)− f̃ν,n(−μ+1)| = 4 that the other terms do not contribute
to the leading term. Therefore, we have
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Jν(q
n) = qνn+n(n−1) · (−1)−μ−1q1+m̃ (1 + O(q))

= (−1)
ν+n+1

2 q
n(n−2)−ν2+3

2 (1 + O(q)) (q → 0). (66)

Now, (32) has been proved. �	

3.2 Ultradiscrete solution and supplementary result

If we put x = qn , q = e
Q
ε (Q < 0), and

Jν(q
n) = {s(βν

n ) − s(−βν
n )}e Bν

n
ε , (67)

(5) reduces to the p-ultradiscrete Bessel equation,

max[S(βν
n+1)+Bν

n+1, S(−βν
n )+Bν

n −νQ, S(βν
n−1)+Bν

n−1+max(0, (2n−2)Q)]
= max[S(−βν

n+1)+Bν
n+1, S(βν

n )+Bν
n −νQ, S(−βν

n−1)

+Bν
n−1+max(0, (2n−2)Q)]. (68)

Applying Lemma 1 to (32), we readily obtain an explicit expression for the p-
ultradiscrete analogue of the q-Bessel function

Bν
n = (

βν
n , Bν

n

)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1, nνQ) (n ≥ 1)

(1, n(n + ν − 1)Q) (0 ≥ n ≥ −ν)(
(−1)

n+ν
2 ,

n(n−2)−ν2

2 Q
)

(n ≤ −ν − 1, n + ν : even)(
(−1)

n+ν+1
2 ,

n(n−2)−ν2+3
2 Q

)
(n ≤ −ν − 1, n + ν : odd).

(69)

Note that this result is identical to the ultradiscrete Bessel function by Narasaki (see
Appendix 1), unless n ≤ −ν − 1 and n + ν is odd.

Another supplementary result can be obtained from Proposition 1. It is concerned
with the number of restricted partitions pn(k) defined by the generating function

1

(q; q)n
=

∞∑
k=0

pn(k)qk . (70)

We have the series expression of (43) by utilizing (70),

Ĵ (1)
ν (qn; q) =

∞∑
k=0

(−1)k

⎛
⎝

∞∑
j=0

pk( j)q j

⎞
⎠

⎛
⎝

∞∑
j=0

pk+ν( j)q j

⎞
⎠ qkn

=
∞∑

k=0

∞∑
j=0

(−1)k
j∑

l=0

pk( j − l)pk+ν(l)q
j+kn . (71)
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From (53), we also obtain

Ĵ (1)
ν (qn; q) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 + O(q) (n ≥ 1)

q
n(n−1)

2 ( 12 + O(q)) (0 ≥ n ≥ −ν)

(−1)− n+ν
2 q

n(n−1)
2 −( n+ν

2 )
2
( 12 + O(q)) (n < −ν, n + ν : even)

(−1)− n+ν−1
2 q

n(n−1)
2 − (n+ν−1)(n+ν+3)

4 ( 12 + O(q)) (n < −ν, n + ν : odd).

(72)

Comparing these two expressions, we find that (71) has an infinite number of extra
terms for a negative integer n. From this fact, we have the following formula.

Proposition 2 For given ν ∈ Z≥0 and n ∈ Z<0, fix m ∈ Z such that

m <

⎧
⎪⎨
⎪⎩

n(n−1)
2 (0 > n ≥ −ν)

n(n−1)
2 − ( n+ν

2

)2
(n < −ν, n + ν : even)

n(n−1)
2 − (n+ν−1)(n+ν+3)

4 (n < −ν, n + ν : odd).

(73)

Then
∑
j,k

(−1)k
j∑

l=0

pk( j − l)pk+ν(l) = 0 (74)

holds, where j and k run over all pairs satisfying j + kn = m in the summation.

We do not know a combinatorial meaning of this (formal) formula yet.

4 Evaluation for special solutions of the discrete Painlevé III equation

In this section, we substitute the q-Bessel function into (7) and study the p-ultradiscrete
analogue of the resulting function. If τ ν

N (n) is written in the form of (25), its p-
ultradiscrete analogue is readily obtained by Lemma 1. We first explain a useful
notation and then summarize the main result.

We rewrite (32) in a simpler form since we often use it. We introduce

ψ(n) := n(n + ν − 1) (75)

p1(n) := 3{1 + (−1)n+1}
4

=
{
0 (n: even)
3
2 (n: odd)

(76)

p2(n) := 3 + (−1)n+1

4
=

{
1
2 (n: even)

1 (n: odd)
(77)

ϕν(n) := n(n − 2)

2
− ν2

2
(78)

and the binomial coefficient
(n
2

) = (n −1)n/2. Using (6) and these notations, (32) can
be rewritten as follows:

Jν(n) = qnν (1 + O(q)) (n ≥ 1) (79)
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Jν(n) = qψ(n)

(
1

2
+ O(q)

)
(0 ≥ n ≥ −ν) (80)

Jν(n) = (−1)(
n+ν+1

2 )qϕν(n)+p1(n+ν) (p2(n + ν) + O(q)) (n ≤ −ν − 1).
(81)

For τ ν
N (n), we define the sign yν

N ,n and the amplitude Y ν
N ,n by

yν
N ,n = τ ν

N (n)

|τ ν
N (n)| , |τ ν

N (n)| = e
Yν

N ,n
ε , (82)

respectively. Moreover, we use the formula [22]

s(ξ)s(ζ ) + s(−ξ)s(−ζ ) = s(ξζ ) (83)

to obtain simpler expression for a multiplicative term. Then, p-ultradiscrete analogues
of (9)–(12) are respectively written as

max[S(yν
N+1,n yν+1

N ,n+1) + Y ν
N+1,n + Y ν+1

N ,n+1,

S(−yν
N+1,n+1yν+1

N ,n ) + Y ν
N+1,n+1 + Y ν+1

N ,n − (ν + N )Q,

S(yν+1
N+1,n yν

N ,n+1) + Y ν+1
N+1,n + Y ν

N ,n+1 + (n + 2N )Q,

S(−yν+1
N+1,n yν

N ,n+1) + Y ν+1
N+1,n + Y ν

N ,n+1 + (n + 2N + 1)Q]
= max[S(−yν

N+1,n yν+1
N ,n+1) + Y ν

N+1,n + Y ν+1
N ,n+1,

S(yν
N+1,n+1yν+1

N ,n ) + Y ν
N+1,n+1 + Y ν+1

N ,n − (ν + N )Q,

S(−yν+1
N+1,n yν

N ,n+1) + Y ν+1
N+1,n + Y ν

N ,n+1 + (n + 2N )Q,

S(yν+1
N+1,n yν

N ,n+1) + Y ν+1
N+1,n + Y ν

N ,n+1 + (n + 2N + 1)Q], (84)

max[S(yν+1
N+1,n yν

N ,n+1) + Y ν+1
N+1,n + Y ν

N ,n+1,

S(−yν+1
N+1,n+1yν

N ,n) + Y ν+1
N+1,n+1 + Y ν

N ,n + (ν − N + 1)Q,

S(−yν
N+1,n yν+1

N ,n+1) + Y ν
N+1,n + Y ν+1

N ,n+1 + (n + 2N )Q,

S(yν
N+1,n yν+1

N ,n+1) + Y ν
N+1,n + Y ν+1

N ,n+1 + (n + 2N + 1)Q]
= max[S(−yν+1

N+1,n yν
N ,n+1) + Y ν+1

N+1,n + Y ν
N ,n+1,

S(yν+1
N+1,n+1yν

N ,n) + Y ν+1
N+1,n+1 + Y ν

N ,n + (ν − N + 1)Q,

S(yν
N+1,n yν+1

N ,n+1) + Y ν
N+1,n + Y ν+1

N ,n+1 + (n + 2N )Q,

S(−yν
N+1,n yν+1

N ,n+1) + Y ν
N+1,n + Y ν+1

N ,n+1 + (n + 2N + 1)Q], (85)

max[S(yν
N+1,n yν+1

N ,n+3) + Y ν
N+1,n + Y ν+1

N ,n+3,

S(−yν
N+1,n+1yν+1

N ,n+2) + Y ν
N+1,n+1 + Y ν+1

N ,n+2 − (ν + N )Q,

S(yν+1
N+1,n yν

N ,n+3) + Y ν+1
N+1,n + Y ν

N ,n+3 + nQ,
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S(−yν+1
N+1,n yν

N ,n+3) + Y ν+1
N+1,n + Y ν

N ,n+3 + (n + 1)Q]
= max[S(−yν

N+1,n yν+1
N ,n+3) + Y ν

N+1,n + Y ν+1
N ,n+3,

S(yν
N+1,n+1yν+1

N ,n+2) + Y ν
N+1,n+1 + Y ν+1

N ,n+2 − (ν + N )Q,

S(−yν+1
N+1,n yν

N ,n+3) + Y ν+1
N+1,n + Y ν

N ,n+3 + nQ,

S(yν+1
N+1,n yν

N ,n+3) + Y ν+1
N+1,n + Y ν

N ,n+3 + (n + 1)Q], (86)

max[S(yν+1
N+1,n yν

N ,n+3) + Y ν+1
N+1,n + Y ν

N ,n+3,

S(−yν+1
N+1,n+1yν

N ,n+2) + Y ν+1
N+1,n+1 + Y ν

N ,n+2 + (ν − N + 1)Q,

S(−yν
N+1,n yν+1

N ,n+3) + Y ν
N+1,n + Y ν+1

N ,n+3 + nQ,

S(yν
N+1,n yν+1

N ,n+3) + Y ν
N+1,n + Y ν+1

N ,n+3 + (n + 1)Q]
= max[S(−yν+1

N+1,n yν
N ,n+3) + Y ν+1

N+1,n + Y ν
N ,n+3,

S(yν+1
N+1,n+1yν

N ,n+2) + Y ν+1
N+1,n+1 + Y ν

N ,n+2 + (ν − N + 1)Q,

S(yν
N+1,n yν+1

N ,n+3) + Y ν
N+1,n + Y ν+1

N ,n+3 + nQ,

S(−yν
N+1,n yν+1

N ,n+3) + Y ν
N+1,n + Y ν+1

N ,n+3 + (n + 1)Q]. (87)

These p-ultradiscrete equations are solved by y and Y , as presented below, which are
obtained as the p-ultradiscrete analogue of (7). To give explicit functional forms, we
introduce the following six cases:

(A) n ≥ 1,
(B) 0 ≥ n ≥ max(2 − 2N ,−ν − N ) + 1,

(C-a) ν ≥ N − 1 and 2 − 2N ≥ n ≥ 1 − ν − N ,
(C-b) ν ≤ N − 2 and −ν − N ≥ n ≥ 3 − 2N ,
(D) min(2 − 2N ,−ν − N ) ≥ n ≥ 2 − 2N − ν,
(E) n ≤ 1 − 2N − ν.

Note that there exist values of n such that all antidiagonal elements in (7) are of the
type (80) for ν ≥ N − 1, but such values of n do not exist for ν ≤ N − 2. We also
introduce

AN ,n := 2n + 3N − 3 (88)

Bν(k) := ϕν(k) + p1(k + ν) (89)

M = min(floor(|n|/2) + 1, N ), (90)

where floor(x) denotes the integer part of x . Now, the p-ultradiscrete analogue of (7)
is written as follows.
Case (A):

yν
N ,n = (−1)(

N
2) (91)

Y ν
N ,n = Q

{
νN

2
AN ,n + 2

(
N

2

)
(n + N − 2)

}
. (92)
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Case (B):

yν
N ,n = (−1)(

N
2) (93)

Y ν
N ,n = Q

{
νN

2
AN ,n + 2

(
N − M

2

)
(n + N + M − 2)

+ 1

2

(
M + 1

3

)
+ 2M

(
n + N + M−3

2
2

)}
. (94)

Case (C-a):

yν
N ,n = (−1)(

N
2) (95)

Y ν
N ,n = Q

{
N

4
AN ,n(AN ,n + 2ν − 2) + 1

2

(
N + 1

3

)}
. (96)

Case (C-b):

yν
N ,n = (−1)(

N
2)

−ν−1∏
k=n+N−1

(−1)(
k+ν+1

2 ) (97)

Y ν
N ,n = Q

{
νN

2
AN ,n + 2

(
N − M

2

)
(n + N + M − 2)

+
n+N+M−2∑

k=−ν

k(k − 1) +
−ν−1∑

k=n+N−1

(Bν(k) − νk)

}
. (98)

Case (D):

yν
N ,n = (−1)(

N
2)

−ν−1∏
k=n+N−1

(−1)(
k+ν+1

2 ) (99)

Y ν
N ,n = Q

{ −ν−1∑
k=n+N−1

Bν(k) +
n+2N−2∑

k=−ν

ψ(k)

}
. (100)

Case (E):

yν
N ,n = (−1)(

N
2)

n+2N−2∏
k=n+N−1

(−1)(
k+ν+1

2 ) (101)

Y ν
N ,n = Q

n+2N−2∑
k=n+N−1

Bν(k). (102)

We study each case in the following subsections.
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4.1 Case (A)

In this case, all arguments of Jν(n) in (7) are positive. Substituting (55) into (7) and
using multi-linearity of the determinant, we obtain

τ ν
N (n) = (1 − q)νN

{
N∏

k=1

q(n+3k−3)ν

} ∑
j1,..., jN

Pν
N ( j)

{
N∏

k=1

q2(n+2k−2) jk

}

×

∣∣∣∣∣∣∣∣∣

1 q2 j1 . . . q2(N−1) j1

1 q2 j2 . . . q2(N−1) j2

...
...

. . .
...

1 q2 jN . . . q2(N−1) jN

∣∣∣∣∣∣∣∣∣
, (103)

where

Pν
N ( j) :=

N∏
k=1

(−1) jk (1 − q)2 jk

(q2; q2) jk+ν(q2; q2) jk
=

{
N∏

k=1

(−1) jk

}
(1 + O(q)) (104)

∑
j1,..., jN

:=
∞∑

j1=0

∞∑
j2=0

· · ·
∞∑

jN =0

. (105)

Since the determinant in (103) is theVandermonde determinant, the termswith jk = jl
(k �= l) disappear. Moreover, under any permutation of ( j1, j2, . . . , jN ), the absolute
values of all elements but the factor

∏N
k=1 q2(n+2k−2) jk in (103) are invariant. There-

fore, noting 0 < q < 1, the largest absolute value of themonomial in (103) is achieved
by the jk’s with

0 ≤ jN < · · · < j2 < j1, (106)

whichmaximize
∏N

k=1 q2(n+2k−2) jk . Then, in theVandermonde determinant, the prod-
uct of diagonal elements

∏N
k=1 q2(k−1) jk contributes to the evaluation.Hence,we study

jk’s that maximize
∏N

k=1 q2(n+2k−2) jk+2(k−1) jk ; i.e., jk’s that minimize

N∑
k=1

2(n + 3k − 3) jk (107)

under (106). We readily find that such jk’s are given by

jk = N − k, k = 1, 2, . . . , N . (108)

Moreover, further contributions by the factor
∏N

k=1 q(n+3k−3)ν and sign
∏N

i=1(−1)N−i

= (−1)(
N
2) from Pν

N ( j) must be considered. Accordingly, the leading term of τ ν
N (n)
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is given by

τ ν
N (n) ∼ (−1)(

N
2)

N∏
k=1

q(n+3k−3)(2N−2k+ν)

= (−1)(
N
2)q

νN
2 (2n+3N−3)+N (N−1)(n+N−2). (109)

4.2 Cases (C-a), (D), and (E)

In these cases, all arguments of Jν(n) in anti-diagonal elements of (7) are negative.
The following proposition plays an important role in the evaluation.

Proposition 3 Write the absolute value of the leading term of Jν(n) as qgν (n). For
n ∈ Z and k, l ∈ Z>0,

g̃ := gν(n) + gν(n + 2k + l) − gν(n + 2k) − gν(n + l)

{
= 0 (n ≥ 0)

> 0 (n ≤ −1)
(110)

holds.

Proof This inequality is proved by direct calculation by considering all 46 possible
cases of gν’s. Here, we illustrate three typical cases. First, if n + 2k + l ≤ −ν − 1 and
both n + ν and n + l + ν are even, we have

gν(n) = ϕν(n), gν(n + 2k + l) = ϕν(n + 2k + l),

gν(n + l) = ϕν(n + l), gν(n + 2k) = ϕν(n + 2k)

and g̃ = 2kl ≥ 2 > 0. Second, if n + 2k ≤ −ν − 1, n is even, 0 ≥ n + l ≥ −ν, and
n + 2k + l ≥ 1, then we have

gν(n) = ϕν(n), gν(n + 2k + l) = ν(n + 2k + l),

gν(n + l) = ψ(n + l), gν(n + 2k) = ϕν(n + 2k).

Since n + l +ν −1 ≥ −1, we consider two cases, n + l +ν −1 ≥ 0 and n + l +ν = 0.
When n + l + ν − 1 ≥ 0, gν(n + l) ≤ 0 and therefore g̃ ≥ gν(n) + gν(n + 2k +
l) − gν(n + 2k) = −2k(n + k) + ν(n + 2k + l) + 2k > 0. When n + l + ν = 0, we
obtain 2k − ν ≥ 1 and therefore g̃ = −2k(n + k) + ν(2k − ν) + 2k > 0. Finally, if
n ≤ −ν − 1 and n + ν is even and 0 ≥ n + 2k, n + l, n + 2k + l ≥ −ν, then the gν’s
are given by

gν(n) = ϕν(n), gν(n + 2k + l) = ψ(n + 2k + l),

gν(n + l) = ψ(n + l), gν(n + 2k) = ψ(n + 2k)

and g̃ = {8kl − (n + ν)2}/2. Noting that |n + ν| ≤ l and |n + ν| ≤ 2k, we obtain
(n + ν)2 ≤ 2kl < 8kl. Hence, g̃ > 0 holds. �	
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From Proposition 3, there follows this inequality: |Jν(n)Jν(n + 2k + l)| < |Jν(n +
2k)Jν(n + l)| for n < 0 as q → 0. This inequality implies that the product of anti-
diagonal elements is dominant in (7) for −n � 1 (See (111)).

∣∣∣∣∣∣∣∣∣∣∣

· · · Jν(n) · · · Jν(n + l) · · ·
...

...
. . .

...
...

· · · Jν(n + 2k) · · · Jν(n + 2k + l) · · ·

∣∣∣∣∣∣∣∣∣∣∣

. (111)

Moreover, this is true even for the case in which all anti-diagonal elements have
nonpositive arguments.

We first study the case (E). In this case, all anti-diagonal elements of (7) are of the
type (81), and therefore we have

τ ν
N (n) ∼ (−1)(

N
2)

n+2N−2∏
k=n+N−1

(−1)(
k+ν+1

2 ) p2(k + ν)qϕν(k)+p1(k+ν), (112)

where we have used the notation (76)–(78).
For the case (C-a), all anti-diagonal elements in (7) are of type (80). The leading

term of (7) is given by

τ ν
N (n) ∼ (−1)(

N
2)

n+2N−2∏
k=n+N−1

1

2
qψ(k)

= (−1)(
N
2)2−N q

νN
2 (2n+3N−3)+ N

4 (2n+3N−3)(2n+3N−5)+ (N−1)N (N+1)
12

= (−1)(
N
2)2−N q

N
4 (2n+3N−3)(2n+3N+2ν−5)+ 1

2 (
N+1
3 ), (113)

where ψ is defined by (75).
The case (D) gives a ‘mixed’ situation. The anti-diagonal elements in (7) are of

type (80) or (81). Using (75)–(78), the leading term can be represented as follows:

τ ν
N (n) ∼ (−1)(

N
2)

−ν−1∏
k=n+N−1

(−1)(
k+ν+1

2 ) p2(k + ν)qϕν(k)+p1(k+ν)
n+2N−2∏

k=−ν

1

2
qψ(k).

(114)

4.3 Case (B)

In this case, Jν(n)’s of types (79) and (80) appear as elements in (7). Moreover, there
exist some rows (or a row) that comprise only Jν(n)’s with positive arguments. The
product of anti-diagonal elements is no longer dominant. We consider M defined by
(90). Then, the i th row (M + 1 ≤ i ≤ N ) comprises only Jν(n)’s with positive
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arguments. When n is even, (7) has the form

(M th)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Jν(n) Jν(n + 1) · · · Jν(n + N − 1)
...

...
...

Jν(0) Jν(1) · · · Jν(N − 1)
Jν(2) Jν(3) · · · Jν(N + 1)

...
...

. . .
...

Jν(n + 2N − 2) Jν(n + 2N − 1) · · · Jν(n + 3N − 3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (115)

We present the procedure for calculating its leading term. Although we illustrate the
procedure only for the case in which some anti-diagonal elements are of type (80), this
procedure applies, in a similar manner, for the case in which all anti-diagonal elements
are of type (79) or for odd n. We use the notation {n} := (−(1 − q)2q2n; q2)∞ for
simplicity. Substituting the series expressions of Jν(qn) and employing multi-linearity
of the determinant, we obtain

τ ν
N (n) =(1 − q)νN

{
N∏

k=1

q(n+3k−3)ν

} ∑
j1,..., jN

Pν
N ( j)

{
N∏

k=M+1

q2(n+2k−2) jk

}

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q2 j1( j1+ν+n)

{n}
q2 j1( j1+ν+n+1)

{n+1} · · · q2 j1( j1+ν+n+N−1)

{n+N−1}
...

...
q2 jk ( jk+ν+n+2κ+λ−3)

{n+2κ+λ−3}
...

q2 jM ( jM +ν)

{0} q2 jM · · · q2(N−1) jM

1 q2 jM+1 . . . q2(N−1) jM+1

...
...

. . .
...

1 q2 jN . . . q2(N−1) jN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (116)

where we have used (104) and (105). Let the (κ, λ)-element for the determinant in
(116) be of type (80). It has the form q2 jκ ( jκ+ν+n+2κ+λ−3)/{n + 2κ + λ − 3} and
ν+n +2κ +λ−3 ≥ 0 (see Sect. 2). Hence, the minimum of j ( j +ν+n +2κ +λ−3)
occurs at j = 0. Note that the determinants with jk = jl (1 ≤ k, l ≤ M) do
not disappear, unlike those in case (A). Therefore, the largest absolute value of the
monomial in this determinant occurs with the jk’s given by

jk =
{
0 (1 ≤ k ≤ M, k = N )

N − k (M + 1 ≤ k ≤ N − 1).
(117)

Although other sets of jk’s actually produce the largest absolute value, we discuss

them later. Noting that (1 − q)k ∼ 1 and Pν
N ( j) ∼ (−1)

∑N−1
k=M+1(N−k) = (−1)(

N−M
2 )

under (117), our aim turns into evaluating

τ ν
N (n) ∼ (−1)(

N−M
2 )

{
N∏

k=1

q(n+3k−3)ν

}{
N∏

k=M+1

q2(n+2k−2)(N−k)

}
τ̃ ν

N (n), (118)
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where

τ̃ ν
N (n) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈n〉 〈n + 1〉 · · · 〈n + N − 1〉
...

... 〈n + 2κ + λ − 3〉 ...

〈0〉 1 · · · 1
1 q2(N−M−1) . . . q2(N−1)(N−M−1)

1 q2(N−M−2) . . . q2(N−1)(N−M−2)

...
...

. . .
...

1 1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(119)

〈n〉 := 1/{n} (n ≤ 0). (120)

We deform τ̃ ν
N (n) according to the Procedure presented in Appendix 1. To represent

the resulting expression, we introduce additional notation. For xk = q2(N−M−k),
k = 1, 2, . . . , N − M − 1, we consider the fundamental symmetric expression ãk

among them, i.e.,

ã0 ≡ 1, ã1 = −(x1 + · · · + xN−M−1), ã2 = x1x2 + · · · + xN−M−2xN−M−1,

. . . , ãk = (−1)k
∑

x j1 · · · x jk , . . . ,

ãN−M−1 = (−1)N−M−1x1x2 · · · xN−M−1, ãN−M ≡ 0.

Note that

ãk ∼ (−1)kq2+4+···+2k = (−1)kqk(k+1) (121)

as q → 0. Furthermore, we add a new variable xN−M = 1 to x1, . . . , xN−M−1 and
write the fundamental symmetric expression among them as ak (k = 1, 2, . . . , N −M)

and set a0 = 1. Then, the relations

ak = ãk − ãk−1 (k = 1, 2, . . . , N − M) (122)

hold. For convenience, we extend the definition of 〈n〉 in (120) to

〈n〉 =
{
1/{n} (n ≤ 0)

1 (n ≥ 1).
(123)

Using this notation, we define a function

T (n) =
N−M∑
k=0

ak(−1 + 〈n − k〉). (124)
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Then, after applying the Procedure, τ̃ ν
N (n) is written as follows:

τ̃ ν
N (n) =(−1)M(N−M)

{
N−M−1∏

k=1

q2k(N−M−1−k)

}{
N−M−1∏

k=1

(q2; q2)k

}

× det (T (n + 2κ + λ − 3)) 1≤κ≤M
N−M+1≤λ≤N

, (125)

where, for simplicity, we have used the trivial formula (−1)2(N−M) = 1. Since
(q2; q2)k ∼ 1, our aim reduces to calculating the leading term of det(T (n + 2κ + λ

− 3)), which, from the following lemma, is given by the product of anti-diagonal
elements.

Lemma 3 (i) T (n) is evaluated as follows:

T (n) ∼
{

1
2qn(n−1) (n ≤ 0)
(−1)n−1

2 qn(n−1) (n ≥ 1).
(126)

(ii) Denote ψ0(n) = n(n − 1). For n ∈ Z and k, l ∈ Z>0,

ψ0(n) + ψ0(n + k + l) − ψ0(n + k) − ψ0(n + l) > 0 (127)

holds.

Proof We first prove (i). For n ≤ 0, we have

T (n) = −
N−M∑
k=0

ak +
N−M∑
k=0

ak〈n − k〉. (128)

The first summation becomes zero by (122) and we find from (59) that T ∼ a0〈n〉 ∼
1
2qn(n−1). For n ≥ 1, employing (122), (121), and (59), we obtain

T (n) = an(−1 + 〈0〉) + an+1(−1 + 〈−1〉) + · · ·
= (ãn − ãn−1)

(
−1

2
+ o(1)

)
+ · · ·

∼ 1

2
ãn−1 ∼ (−1)n−1

2
qn(n−1). (129)

We can prove (ii) by direct calculation. �	
Therefore, the leading term of det (T (n + 2κ + λ − 3)) is written as follows:

(−1)(
M
2 )

min(0,n+N+M−2)∏
k=n+N−1

1

2
qk(k−1)

n+N+M−2∏
k=max(1,n+N−1)

(−1)k−1 1

2
qk(k−1) (130)
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and then, the leading term of τ̃ ν
n (n) is obtained from (125). However, when n + N +

M − 2 ≥ 1, that is, when T (n) with n ≥ 2 appears in the anti-diagonal elements of
det (T (n + 2κ + λ − 3)), the leading term of τ ν

n (n) is not obtained only from τ̃ ν
n (n).

We must consider other determinants that have the same order of leading terms, in
other words, other sets of jk’s. We present the following lemma:

Lemma 4 Suppose that an anti-diagonal element in det (T (n + 2κ + λ − 3)) is T (ñ)

with ñ ≥ 2 and it is in the i th row (1 ≤ i ≤ M). In (116), consider the determinants
given by the sets of arguments

jk =

⎧⎪⎨
⎪⎩

1, 2, . . . , ñ − 1 (k = i)

0 (1 ≤ k ≤ i, i + 1 ≤ k ≤ M)

N − k (M + 1 ≤ k ≤ N ).

(131)

The order of leading terms of these determinants is identical to that obtained from
(117).

Proof Since we find by observation that other sets of arguments give a larger order
of leading term than that of (117), the cases that we should study are only (131). We
write ji = m (1 ≤ m ≤ ñ − 1), adopt (131) for (116), and then apply the Procedure
but replace “step 0-i” with “Add the (N − m)th row × (−q−2m(2−ñ−2i))”. Then, we
obtain an expression similar to (125) but with T ’s in the i th row replaced by T (m)

defined by

T (m)(n) =
N−M∑
k=n

ak(−q2m(n−k) + 〈n − k〉q2m(m+ν+n−k)). (132)

Since q2m(n−k) � 〈n−k〉q2m(m+ν+n−k), our interest is in evaluating
∑−akq2m(n−k).

For ñ ≥ 1, we find from (122) and (121) that

ak(−q2m(ñ−k)) ∼ ãk−1q2m(ñ−k) ∼ (−1)k−1qk(k−1)+2m(ñ−k). (133)

We put h(k) = k(k − 1) + 2m(ñ − k) and consider k = ñ + 1, ñ + 2, . . . , N − M .
From m ≤ ñ − 1 and k ≤ ñ + 1, we readily obtain m − k + 1 < 0 and therefore
h(k − 1) − h(k) = 2(m − k + 1) < 0. This inequality means that

T (m)(ñ) ∼ ãñ−1 ∼ (−1)ñ−1qñ(ñ−1) ∼ 2T (ñ), (134)

which is independent of m and moreover of i . �	
If we change the original set of jk’s (117) into that of (131), an extra sign (−1) ji

arises from Pν
N ( j). Hence, for ñ ≥ 2, we may replace (129) with

T (ñ) ∼ (−1)ñ−1 1

2
qñ(ñ−1) + (−1)ñ−1qñ(ñ−1)

ñ−1∑
jl=1

(−1) jl = 1

2
qñ(ñ−1). (135)
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We accordingly obtain

τ ν
N ∼ (−1)M(N−M)+(M

2 )+(N−M
2 )

×
N∏

k=1

q(n+3k−3)ν
N∏

k=M+1

q2(n+2k−2)(N−k)
N−M−1∏

k=1

q2k(N−M−1−k)
n+N+M−2∏
k=n+N−1

1

2
qk(k−1)

= (−1)(
N
2)

2M
q

νN
2 (2n+3N−3)+ 2

3 (
N−M
2 )(3n+2N+4M−4)+2(N−M

3 )+ 1
2 (

M+1
3 )+2M(

n+N+ M−3
2

2 )

= (−1)(
N
2)

2M
q

νN
2 (2n+3N−3)+2(N−M

2 )(n+N+M−2)+ 1
2 (

M+1
3 )+2M(

n+N+ M−3
2

2 ). (136)

4.4 Case (C-b)

In this case, all types of Jν(n)’s appear as anti-diagonal elements in (7). Although
our discussion is similar to that for case (B), elements of type (81) contribute to the
dominant term. The result is represented as follows:

τ ν
N ∼ (−1)(

N
2)q

νN
2 (2n+3N−3)+2(N−M

2 )(n+N+M−2)
n+N+M−2∏

k=−ν

1

2
qk(k−1)

×
−ν−1∏

k=n+N−1

{
(−1)(

k+ν+1
2 ) p2(k + ν)qϕν(k)+p1(k+ν)−νk

}
. (137)

5 Behaviour of the special solution

The Painlevé III equation (PIII) is written as follows:

d2u

dx2
= 1

u

(
du

dx

)2

− 1

x

du

dx
+ 1

x
(au2 + d) + cu3 + b

u
, (138)

where a, b, c, d are parameters. Equation (138) can be derived from (3) through the
following continuous limit. That is, (3) reduces to (138) if we introduce a parameter
ε < 0 and put u(n) = λ−n/2w(n), nε = z, α = −1/cε2, β = −d/c, γ = −b/c,
δ = a/c, andλ = 1+2ε; thenwe take the limit ε → −0 and transform the independent
variable by z = ex . For

a = 2(N − ν), b = −1, c = 1, d = 2(ν + N + 1) (N ∈ Z≥0), (139)

(138) admits special solutions written in terms of a solution of the Bessel equation

d2v

dx2
+ 1

x

dv

dx
+

(
1 − ν2

x2

)
v = 0. (140)
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That is, the function uν
N (x) defined by

uν
N (x) = d

dx

(
log

τ ν+1
N

τ ν
N+1

)
+ ν + N

x
(141)

τ ν
N =

∣∣∣Di+ j−2vν(x)

∣∣∣
1≤i, j≤N

(142)

D = x
d

dx
(143)

solves (138) with (139), where vν(x) is a solution of (140).
We consider (3) with (4) and construct its p-ultradiscrete analogue by introducing

wν
N (n) = ωneWn/ε and q = eQ/ε. Applying the procedure of p-ultradiscretization, we

obtain (the special case of) the p-ultradiscrete Painlevé III equation (p-uPIII)

max
[
S(ωn+1ωnωn−1) + Wn+1 + Wn + Wn−1 + (ν + N )Q,

S(−ωn+1ωnωn−1) + Wn+1 + Wn + Wn−1 + (−ν + 3N )Q,

S(ωn+1ωn−1) + Wn+1 + 2Wn + Wn−1,

S(−ωn+1ωn−1) + Wn+1 + Wn−1 + 4N Q,

S(ωn) + Wn + (7N − ν − 2 + 2n)Q,

S(−ωn) + Wn + (9N + ν + 2n)Q, 2Wn + 4N Q
]

= max
[
S(−ωn+1ωnωn−1) + Wn+1 + Wn + Wn−1 + (ν + N )Q,

S(ωn+1ωnωn−1) + Wn+1 + Wn + Wn−1 + (−ν + 3N )Q,

S(−ωn+1ωn−1) + Wn+1 + 2Wn + Wn−1,

S(ωn+1ωn−1) + Wn+1 + Wn−1 + 4N Q,

S(−ωn) + Wn + (7N − ν − 2 + 2n)Q,

S(ωn) + Wn + (9N + ν + 2n)Q, 2(6N − 1 + 2n)Q
]
. (144)

Moreover, the p-ultradiscrete analogue of (8) is written as follows:

Y := Y ν
N+1,n+1 + Y ν+1

N ,n − Y ν
N+1,n − Y ν+1

N ,n+1 (145)

y := yν
N+1,n+1yν+1

N ,n yν
N+1,n yν+1

N ,n+1 (146)

max[S(ωn) + Wn, S(−y) + Y, (ν + N )Q] = max[S(−ωn) + Wn, S(y) + Y].
(147)

We regard this relation as the equation for ωn and Wn and solve this equation. Then
for almost all cases, we obtain the unique transformation

Wn = max[Y, (ν + N )Q] (148)

ωn =
{

y (Y > (ν + N )Q)

−1 (Y < (ν + N )Q or, Y = (ν + N )Q and y = −1)
(149)
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but for the special case inwhichY = (ν+N )Q and y = 1, we obtain the indeterminate
transformation

Wn ≤ (ν + N )Q, ωn = ±1. (150)

Employing this transformation, we construct a special solution to (144) from
(yν

N ,n, Y ν
N ,n) obtained in Section 4. Here, we study the case in which N = 1 and

ν = 1. For n ≤ −3, we uniquely obtain

(ωn, Wn) =

⎧⎪⎨
⎪⎩

(1, 0) (n = −3)

(1, (n + 1)Q) (n < −3, n ≡ 0 mod 2)

(−1, (n + 4)Q) (n < −3, n ≡ 1 mod 2).

(151)

For n ≥ −2, we encounter the indeterminate transformation

Wn ≤ 2Q, ωn = ±1. (152)

Therefore, we substitute (ω−3, W−3) = (1, 0) and (ω−4, W−4) = (1,−3Q) into
(144) with n = −3 and solve the resulting equation for (ω−2, W−2). Then, we have
an indeterminate solution

W−2 ≤ Q, ω−2 = ±1. (153)

Let us choose (ω−2, W−2) = (1, K Q) with K > 2, which satisfies both of (152) and
(153). On substituting (ω−2, W−2) = (1, K Q) and (ω−3, W−3) = (1, 0) into (144)
with n = −2 and solving it, we obtain the unique solution (ω−1, W−1) = (−1,−2Q),
which does not satisfy (152). Another choice (ω−2, W−2) = (−1, K Q) with K > 2
gives the same result. Hence, we consider (ω−2, W−2) = (1, 2Q) and (−1, 2Q). In
both cases, we have the indeterminate solution

ω−1 = ±1, W−1 ≤ −2Q. (154)

If we choose W−1 ≤ 2Q, the solution is consistent with (152). Hence, (ω−2, W−2)

should be (1, 2Q) or (−1, 2Q) in order to obtain (ω−1, W−1) to be compatible with
(152). Next, we substitute (ω−2, W−2) = (±1, 2Q) and (ω−1, W−1) = (±1, K Q)

with K ≥ 2 into (144)with n = −1 and search (ω0, W0)which solves the equation and
satisfies (152). Thoughwe omit details, we find thatω−2 is arbitrary but (ω−1, W−1) =
(1, 4Q) is required to obtain such (ω0, W0). Continuing these experiments, we guess
a special solution

(ωn, Wn) = (1, 2(n + 3)Q) (n ≥ −2). (155)

We can check that this function satisfies (144) by direct substitution. Now, we have
obtained a special solution given by (151) and (155). From this example, we find that
(152) does not give a unique solution to (144), but it does give important information
about the solution, which we want to consider.
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Fig. 1 Special solution of p-uPIII with N = 1, ν = 1 and Q = −1/5

Fig. 2 Special solution of PIII with N = 1 and ν = 1

We study the behaviour of this ultradiscrete solution by introducing the variable
ωneWn . This variable shows qualitative behavior similar to that of w(n) since it is
obtained from wν

N (n) = ωneWn/ε with ε = 1. Moreover, it corresponds to the
continuous variable e−x uν

N (e−x ), where uν
N (x) is defined by (141). We find this cor-

respondence from variable transformations in the continuous limit. Figure 1 shows a
plot of ωneWn . Its behaviour is similar to that shown in Fig. 2 for e−x uν

N (e−x ). That
is, both solutions tend to zero as n or x → ∞, and both show oscillating behaviour for
negative values of the independent variables. Since only discrete points are considered
in the ultradiscrete equation and scaling by ε is ignored, the divergence in Fig. 2 is
unclear in Fig. 1.

6 Concluding remarks

We have obtained the p-ultradiscrete Bessel function by evaluating the q-Bessel func-
tion Jν(qn). Although the function Jν(x) may be studied in the context of q-analysis,
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the evaluation has become non-trivial because of the special independent variable
x = qn . The key to the evaluation for n ≤ 0 is to deform the known series expression
for Jν(qn) by the q-difference Euler transformation.

Based on the evaluation for Jν(qn), we have derived the explicit functional forms of
special solutions for the p-ultradiscrete analogues of the bilinear equations for dPIII, for
general values of system parameters N ∈ Z≥1 and ν ∈ Z≥0. These special solutions
are obtained by evaluating those of dPIII represented by the Casorati determinants
whose elements are given by the q-Bessel function. The evaluation for determinantal
solutions of the q-Painlevé II equation was discussed in [12]. Compared with its
calculation, we have needed a new technique to evaluate the determinant for dPIII as
shown in Sects. 4.3 and 4.4.

We have also constructed a special solution of p-uPIII through the variable trans-
formation. We have found that the behaviour of the obtained ultradiscrete solution
is qualitatively similar to the corresponding continuous solution. Although the trans-
formation locally takes the indeterminate form (150), it enables us to find a special
solution in a fairly specified form by considering its global behaviour. Such application
of indeterminate form has newly observed in this research.

It is a future problem to give ultradiscrete special solutions corresponding to the
q-Neumann function and to the general solution as studied in [8]. Another future
problem is to construct ultradiscrete analogues of other Painlevé equations and to
investigate their mathematical structures, such as degeneration structures or Bäcklund
transformations.We hope that the results in this paper will contribute to future analysis
of discrete Painlevé equations.
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Appendix 1

The p-ultradiscrete Bessel function (βν
n , Bν

n ) for ν > 0 inMr. Narasaki’sMaster thesis
(Aoyama Gakuin University (2011), in Japanese) is written as

βν
n =

⎧⎪⎨
⎪⎩

βν
0 (n ≥ −ν)

(−1)
n+ν
2 βν

0 (n ≤ −ν − 1, n + ν : even)
(−1)

n+ν−1
2 βν

0 (n ≤ −ν − 1, n + ν : odd)

Bν
n =

⎧⎪⎪⎨
⎪⎪⎩

Bν
0 + nνQ (n ≥ 0)

Bν
0 + n(n + ν − 1)Q (−1 ≥ n ≥ −ν)

Bν
0 + n(n−2)−ν2

2 Q (n ≤ −ν − 1, n + ν : even)
Bν
0 + n(n−4)−(ν+3)(ν−1)

2 Q (n ≤ −ν − 1, n + ν : odd)

(156)

and that for ν = 0 is
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β0
n =

⎧
⎪⎨
⎪⎩

β0
0 (n ≥ 1)

(−1)
n
2 β0

0 (n ≤ −1 : even)
(−1)

n−1
2 β0

0 (n ≤ −1 : odd)

B0
n =

⎧
⎨
⎩

B0
0 (n ≥ 1)

B0
0 + n(n−2)

2 Q (n ≤ −1 : even)
B0
0 + (n−1)(n−3)

2 Q (n ≤ −1 : odd).

(157)

This solution was constructed as a solution to the specific initial value problem for
(68).

Appendix 2

We present the procedure used to deform τ̃ ν
N (n) in Sect. 4.3.

Procedure:

step 0-1 : Add the N th row × (−1) to the first row.
step 0-2 : Add the N th row × (−1) to the second row.

...

step 0-M : Add the N th row × (−1) to the M th row.
step 1-1 : Add the (N −1)th column × −q2(N−M−1) to the N th column.
step 1-2 : Add the (N − 2)th column × −q2(N−M−1) to the (N − 1)th

column.
...

step 1-(N − 1) : Add the first column × −q2(N−M−1) to the second column.
step 1-Ex. : Expand the determinant with the (M + 1)th row. We obtain a

determinant of size (N − 1) × (N − 1).
step 2-1 : For the resulting determinant, add the (N − 2)th column ×

−q2(N−M−2) to the (N − 1)th column.
step 2-2 : Add the (N − 3)th column × −q2(N−M−2) to the (N − 2)th

column.
...

step 2-(N − 2) : Add the first column × −q2(N−M−2) to the second column.
step 2-Ex. : Expand the determinant with the (M + 1)th row. We obtain a

minor of size (N − 2) × (N − 2).
...

step (N − M)-1 : For the resulting determinant of size (M + 1) × (M + 1), add
the M th column × (−1) to the (M + 1)th column.

step (N − M)-2 : Add the (M − 1)th column × (−1) to the M th column.
...

step (N − M)-M : Add the first column × (−1) to the second column.
step (N − M)-Ex. : Expand the determinant with the (M + 1)th row. We obtain a

minor of size M × M .
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