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Abstract The fictitious domain method with H1-penalty for elliptic problems is
considered. We propose a new way to derive the sharp error estimates between the
solutions of original elliptic problems and their H1-penalty problems, which can be
applied to parabolic problem with moving-boundary maintaing the sharpness of the
error estimate. We also prove some regularity theorems for H1-penalty problems. The
P1 finite element approximation to H1-penalty problems is investigated. We study
error estimates between the solutions of H1-penalty problems and discrete problems in
H1 norm, as well as in L2 norm, which is not currently found in the literature. Thanks
to regularity theorems, we can simplify the analysis of error estimates. Due to the
integration on a curved domain, the discrete problem is not suitable for computation
directly. Hence an approximation of the discrete problem is necessary. We provide
an approximation scheme for the discrete problem and derive its error estimates. The
validity of theoretical results is confirmed by numerical examples.

Keywords Fictitious domain methods · Finite element methods ·
Finite volume methods · Error bounds
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1 Introduction

The principle of the fictitious domain method is to solve the problem in a larger domain
(the fictitious domain) containing the domain of interest with a very simple shape. Then,
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the fictitious domain is discretized by a uniform mesh, independent of the original
boundary. The advantage of this approach is that we can avoid the time-consuming
construction of a boundary-fitted mesh. One of these approaches is the penalty fictitious
domain method which is based on a reformulation of the original problem in the
fictitious domain by using a penalty parameter (see [2] for an introduction of other
kinds of fictitious domain methods). In this article, we consider only the fictitious
domain method with penalty. Obviously, the fictitious domain method is of use for
time-dependent moving-boundary problems. Although there exist some ways to derive
the sharp error estimates for elliptic problems (cf. [8,11,12]), it seems none of them
has been applied to parabolic problem such that the sharpness of the error estimates are
maintained. Our motivation lies in the study of the penalty fictitious domain method
which can be applied to these time-dependent moving-boundary problems maintaining
the sharpness of the error boundary. This is of obvious importance, and it seems that
little is known in this direction. The fictitious domain method with penalty for parabolic
problem firstly appeared in [6] to prove the existence of the solution for parabolic
problem in time-dependent domain. Then, in [7], the convergence and finite difference
approximation is given, but without error estimates. The H1-penalty parabolic problem
equals to a special interface problem, and in [1] the error estimate for elliptic and
parabolic interface problem is studied. However, it is not so suitable to the H1-penalty
problem, and still, is only for time-independent domain when considering parabolic
interface problem. As a primary step towards this final end, herein we examine some
new methods of error analysis for elliptic problems that can be easily applied to
parabolic problems in time-dependent domain with sharp error estimate (which has
been presented in our another paper [14]). This is the purpose of this paper.

In order to illustrate our results, we consider the Dirichlet boundary value problem
for the Poisson equation. The weak form (Q) reads as

{
Find u ∈ H1

0 (�) such that
(∇u,∇v)� = ( f, v)�, ∀v ∈ H1

0 (�),
(1.1)

where � ⊂ R
2 denotes a smooth bounded domain, (·, ·)� is the inner product of

L2(�) and f ∈ L2(�). We can find a rectangular domain D ⊃ �, �1 = D\�, and
turn to solve the H1-penalty problem (Qε) with penalty coefficient 0 < ε � 1,

{
Find uε ∈ H1

0 (D) such that
(∇uε,∇v)� + 1

ε
(∇uε,∇v)�1 = ( f̃ , v)D, ∀v ∈ H1

0 (D),
(1.2)

where f̃ is the zero extension of f into D.
Another example of applying the fictitious domain method with penalty to (1.1) is,

(∇uε,∇v)� + 1

ε
(uε, v)�1 = ( f̃ , v), ∀v ∈ H1

0 (D),

which we call the L2-penalty problem. This is of interest; however, the L2-penalty
problem is beyond the scope of this paper, in which we shall concentrate our attention to
the H1-penalty problem. We have presented some results of L2-penalty method in [15].
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Fictitious domain method with penalty for elliptic problems 59

The error ‖uε − u‖1,�( ‖ · ‖1,� = ‖ · ‖0,� + | · |1,�) has been analyzed by many
authors, where ‖ · ‖1,� is the H1(�) norm. In [7], it is bounded by C

√
ε (C is some

constant, so as in the following), and in [8,11,12] the sharp estimate Cε is achieved. In
this paper, we give a new way to derive the sharp estimate. Moreover, we present some
regularity analysis of uε , which is useful for studying the H1 and L2 error between the
solutions of H1 problem (Qε) and its discrete problem, which is denoted as (Qε,h).

A Cartesian mesh can be introduced to the rectangular domain D to get a uniformed
triangulation Th , h is the maximum diameter of the triangles of Th . Vh(D) is the
subspace of all piecewise linear continuous functions subordinate to Th . Then (Qε,h)

reads as:

{
Find uε,h ∈ Vh(D) such that
(∇uε,h,∇vh)� + 1

ε
(∇uε,h,∇vh)�1 = ( f̃ , vh)D, ∀vh ∈ Vh(D).

(1.3)

Although there exist many works on finite element error estimate for elliptic problem
with discontinuous coefficient or boundary unfitted mesh, we notice the discontinuous
coefficient of H1-penalty problem is dependent on the parameter ε, such that methods
on those works may not be so suitable for our problem. And most of those are not easy
to apply to parabolic problem. So, we give a new analysis of the error estimate.

In the literature, there are several works devoted to the study of the H1 error between
uε,h and uε in �. For example, in [12], it is proved that the H1 error is bounded by
C(ε + ε

√
h + h

√
ε + √

h). In our work, we prove a similar result with the analysis
with a much simpler method of the analysis. The analysis of [12] is to consider the
estimate of uε,h − u0 − εu1 to derive the final estimate of uε − uε,h , where u0 is the
zero extension of u, and u1 is the solution of problem:

−�u1 = 0 in �1,
∂u1

∂n− = ∂u0

∂n
, and u1 = 0 on ∂D.

Here, n is the unit outward normal to � viewed as a boundary of�, and n− is opposite
to n. We found the analysis in [12] to be complicated and not directly. Our method for
estimating of uε − uε,h is simpler, which is to find some interpolation of uε , denoted
as vh , and then estimate uε − vh by using a regularity theorem of (Qε).

Moreover, we show the L2 error is bounded by C(ε + h + √
εh). A similar result

of H1 error for the elliptic problem in a specific domain is given in [8].
In discrete problem (Qε,h), we notice that we have to calculate the inner-product

in a curved domain, for example, (∇uε,h,∇vh)�. So the discrete problem cannot be
directly computed. We find that few prior works have provided a sufficient discussion
on this issue; however, it is necessary to give an approximation scheme for solving
(Qε,h) and the associated error estimates when applying the finite element method to
computation.

Herein, we present an approximation scheme, that is, instead of solving (Qε,h) we
solve some problem (Q̂ε,h) approximating to (Qε,h). (Q̂ε,h) reads as:

{
Find ûε,h ∈ Vh(D) such that
(∇ûε,h,∇vh)�̂ + 1

ε
(∇ûε,h,∇vh)�̂1

= ( fh, vh)D, ∀vh ∈ Vh(D),
(1.4)
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where �̂ is a polygon approximating to �, and fh is some interpolation of f̃ . With
assumptions that ‖ fh − f ‖0,D ≤ Ch, �̂ is convex and (�̂\�) ∪ (�\�̂) ⊂ �δ, δ =
O(h2), where�δ = {x ∈ R

2 | dist (x, � = ∂�) ≤ δ}, we find that the error ûε,h−uε,h
is bounded by Ch in H1 norm.

In above, we have restricted our attention to Dirichlet boundary problem. For Neu-
mann and mixed boundary problems we also consider the approximation of H1-penalty
problems. Further, for Neumann boundary problem, the discrete problem is investi-
gated. Although some results we obtain are similar to those of [12], as we mentioned in
the beginning, our work is focus on solving parabolic problems with time-dependent
domain, and all methods of analysis are applicable to this class of problems.

The rest of this paper is organized as follows. The H1-penalty problems for original
problems with Dirichlet, Neumann, and mixed boundaries are given in Sect. 2, as well
as the analysis of error estimates between the solutions of original problems and H1-
penalty problems, in a different way from that in [8,11].

In Sect. 3, we present some regularity theorems for H1-penalty problems. The H1-
penalty problem is in a sense equivalent to a kind of interface problem. The regularity
theorem for the interface problem has been studied in [9]. However, we make several
improvements in priori estimates and identify some higher-order regularity for our
problems. The theorems will be used in Sect. 4 to make the error estimate more simple
than that of [12].

The Sect. 4 is devoted to discrete problems. Finite element approximations are
investigated. Using the same separation method of the triangulated domain as in [12],
regularity theorems in Sect. 3 and some lemmas from [3,10], we obtain the error
estimates in H1 norm with the same order as in [8,12]. Moreover, we give the higher-
order L2 norm error estimates.

We consider a scheme approximating to the discrete problem in Sect. 5. We intro-
duce a new discrete problem (Q̂ε,h) to approximate to the discrete problem (Qε,h).
Of necessity, due to insufficient prior reported works on this issue in the literature,
we derive some error estimates of the scheme to make the numerical analysis of the
fictitious domain method with H1-penalty more complete.

Finally, we give some numerical experiments to verify our theoretical results in
Sect. 6.

2 H1-penalty problems of fictitious domain method for elliptic problems

Following the notation given in the previous section, we state the H1-penalty problem
for the original elliptic problem with homogeneous Dirichlet, Neumann and mixed
boundary conditions. In addition, we write � = ∂�.

2.1 Dirichlet boundary value problem

First, we consider the Dirichlet boundary value problem (1.1) and its H1-penalty
problem (1.2).

Theorem 2.1 There exist unique solutions u and uε for (1.1) and (1.2), respectively,
and we have the following estimates:
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Fictitious domain method with penalty for elliptic problems 61

‖uε − u‖1,� ≤ Cε, (2.1)

‖uε‖1,�1 ≤ Cε. (2.2)

Those error estimates themselves are not new: they have been stated in [8] and [11].
The main process to prove those estimates in [8] and [11] are different (see Remark
3 below). We shall give a somewhat new proof which will be used for parabolic
problems. Before stating that, we recall the well-known extension and trace theorems
that we frequently use.

Lemma 2.2 (Theorem 8.1 of Chapter 1 in [5]) Let ω ⊂ R
2 be a bounded domain

with the smooth boundary ∂ω. Then, for any integer k > 0, there exists an operator
Ek(ω) : Hk(ω) → Hk(R2) with the properties

Ek(ω)u = u a.e. on ω (u ∈ Hk(ω)),

‖Ek(ω)u‖Hk (R2) ≤ Ck‖u‖Hk (ω) (u ∈ Hk(ω)),

with a domain constant Ck > 0.

The following lemma is a readily obtainable consequence of Theorem 8.3 of Chapter
1 in [5].

Lemma 2.3 Letω ⊂ R
2 be a bounded domain. Assume that the boundary ∂ω consists

of two disjoint and smooth components ∂ω1 and ∂ω2; ∂ω = ∂ω1 ∪ ∂ω2. Then, the
mapping u → u|∂ω1 of C∞(ω) → C∞(∂ω1) is extended by continuity to a continuous
linear mapping, which is called the trace operator and denoted by γ (ω, ∂ω1), of

H1(ω) → H
1
2 (∂ω1). This mapping is surjective and there exists a continuous linear

right inverse, which is called the lifting operator, g → γ (ω, ∂ω1)
−1g of H

1
2 (∂ω1) →

H1(ω) such that γ (ω, ∂ω1)γ (ω, ∂ω1)
−1g = g.

Remark 1 In view of Lemma 2.2, there exists an operator E1,0(�) : H1(�) →
H1

0 (D) with properties:

E1,0(�)u = u a.e. in � (u ∈ H1(�)),

‖E1,0(�)u‖H1(D) ≤ C‖u‖H1(�) (u ∈ H1(�)).

In fact, taking φ ∈ C∞
0 (D) with 0 ≤ φ ≤ 1 and φ = 1 in �′, where � ⊂ �′ ⊂ D,

then the desired operator is defined as E1,0(�)u = φ · E1(�)u for u ∈ H1(�).

Now, we can state the following proof.

Proof of Theorem 2.1 Firstly, by the Lax-Milgram Theorem, the unique existence of
u and uε is obvious. And we can obtain the estimate for the solution of the H1-penalty
problem (1.2),

‖uε‖1,D ≤ C‖ f ‖0inf

(
1,

1

ε

)
.
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Without loss of generality, we assume 0 < ε ≤ 1 in what follows. Substituting
v = E1,0(�1)uε ∈ H1

0 (D) into (1.2), we obtain

ε(∇uε, v)� + ‖∇uε‖2
0,�1

= ε( f̃ , v)D,

which leads to an estimate of uε |�1 , in particular,

C1‖uε‖2
1,�1

≤ ‖∇uε‖2
0,�1

≤ Cε‖ f ‖0,�‖v‖1,D + ε|uε |1,�|v|1,�.

Therein, the first inequality is deduced by Friedrichs’ inequality, and the second term
of the right-hand side is bounded by C2ε‖ f ‖0‖uε‖1,�1 . Thus we have

‖uε‖1,�1 ≤ Cε.

Next, we consider the trace operators

γ (�,�) : H1(�) → H
1
2 (�); γ (�1, �) : H1(�1) → H

1
2 (�).

Since uε ∈ H1(D), we have γ (�,�)uε = γ (�1, �)uε ∈ H
1
2 (�). Hence,

γ (�,�)(u − uε) = γ (�,�)u − γ (�,�)uε = 0 − γ (�1, �)uε .

Setting w = u − uε |�, we have

‖γ (�,�)w‖ 1
2 ,�

= ‖γ (�1, �)uε‖ 1
2 ,�

≤ C‖uε‖1,�1 ≤ Cε.

We define an operator A : H1(�) → H−1(�) by 〈Au, v〉 = (∇u,∇v)�, ∀v ∈
H1

0 (�). We observe that for any v ∈ H1
0 (�),

〈Aw, v〉 = (∇u,∇v)� − (∇uε,∇v)� = (∇u,∇v)� − (∇uε,∇ṽ)�
= ( f, v)� − ( f̃ , ṽ)D + 1

ε
(∇uε,∇ṽ)�1

= ( f, v)� − ( f, v)� + 1

ε
(∇uε, 0)�1 = 0,

where ṽ means the zero extension of v into D. This implies Aw = 0 in H−1(�).
Since w → {Aw, γ (�,�)w} is an isomorphic map of H1(�) → H−1(�) ×

H
1
2 (�), we obtain that

‖u − uε‖1,� = ‖w‖1,� ≤ C(‖Aw‖H−1(�) + ‖γ (�,�)w‖ 1
2 ,�
) ≤ C(0 + Cε) ≤ Cε,

which completes the proof. ��
Remark 2 The conclusion of Theorem 2.1 remains valid even for f ∈ H−1(�).

123



Fictitious domain method with penalty for elliptic problems 63

Remark 3 The saddle-point method in [8] requires a symmetric variational form, and
the operator method in [11] is not so easy to deal with the operator of time-derivative
when one considers parabolic problems. However, our method of analysis is applicable
to parabolic problems; this is a recent achievement, and will be presented in our future
work.

2.2 Neumann boundary value problem

The original problem (Q) with homogeneous Neumann boundary condition reads as:

{
Find u ∈ H1(�) such that
(u, v)1,� = ( f, v)�, ∀v ∈ H1(�),

(2.3)

where (u, v)1,� := (∇u,∇v)� + (u, v)�.
The H1-penalty problem (Qε) reads as:

{
Find uε ∈ H1

0 (D) such that
(uε, v)1,� + ε(∇uε,∇v)�1 = ( f̃ , v)D, ∀v ∈ H1

0 (D).
(2.4)

Theorem 2.4 There exist unique solutions u and uε for (2.3) and (2.4), respectively,
and we have the following estimates:

‖uε − u‖1,� ≤ Cε, (2.5)

‖uε‖1,�1 ≤ C. (2.6)

Proof Firstly, substituting v = uε into (2.4), we obtain

‖uε‖2
1,� + ε‖∇uε‖2

�1
= ( f, uε)�.

This gives

‖uε‖1,� ≤ C‖ f ‖�.

Since v ∈ H1
0 (D) implies v|� ∈ H1(�), subtracting (2.3) from (2.4), we have

(uε − u, v)1,� + ε(∇uε,∇v)�1 = 0, ∀v ∈ H1
0 (D). (2.7)

Setting v = uε − E1,0(�)uε in (2.7), and noticing that v|� = 0, we have

(uε − u, 0)1,� + ε(∇uε,∇(uε − E1,0(�)uε))�1 = 0.
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And we see that

‖∇uε‖2
�1

= (∇uε,∇E1,0(�)uε)�1

≤ ‖∇uε‖�1‖∇E1,0(�)uε‖�1 ≤ ‖∇uε‖�1‖E1,0(�)uε‖1,D

≤ C‖∇uε‖�1‖uε‖1,� ≤ C‖∇uε‖�1‖ f ‖�.

Together with Friedrichs’ inequality, we have

‖uε‖1,�1 ≤ C‖∇uε‖�1 ≤ C‖ f ‖�.

Thus, we proved (2.6).
In order to derive (2.5), we substitute v = E1,0(�)(uε |� − u) ∈ H1

0 (D) in (2.7).
Then, together with (2.6), we have

‖uε − u‖2
1,� = −ε(∇uε,∇v1)�1 ≤ Cε|v1|1,�1 ≤ C1ε‖uε |� − u‖1,�,

which implies (2.5). We complete the proof. ��
Remark 4 Recall Remark 3 again. It should be noticed that our analysis method is
much simpler than that in [8,11].

2.3 Mixed boundary value problem

Let � = �1 ∪�2, �1 ∩�2 = ∅. The domian D\� is assumed to be split into two part
�1 and �2, which respectively share the boundaries �1 and �2 with �. In addition
both share non-empty measure boundary with D (see Fig. 1). Set

V = {u ∈ H1(�) | γ (�,�1)u = 0}.

The original problem (Q) with homogeneous mixed boundary is stated as:

{
Find u ∈ V such that
(∇u,∇v)� = ( f, v)�, ∀v ∈ V .

(2.8)

The H1-penalty problem (Qε) reads as:

⎧⎨
⎩

Find uε ∈ H1
0 (D) such that

(∇uε,∇v)� + 1
ε
(∇uε,∇v)�1

+ε(∇uε,∇v)�2 = ( f̃ , v), ∀v ∈ H1
0 (D).

(2.9)

Theorem 2.5 There exist unique solutions u and uε for (2.8) and (2.9), respectively,
and we have the following estimates:

‖uε − u‖1,� ≤ Cε, (2.10)
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Fig. 1 On mixed boundary case

‖uε‖1,�1 ≤ Cε, (2.11)

‖uε‖1,�2 ≤ C. (2.12)

Proof The following results have already been achieved (Theorem I-8 in [7]):

uε |� → u in H1(�); (2.13)
uε |�1√
ε

→ 0 in H1(�1); (2.14)

√
εuε |�2 → 0 in H1(�2), (2.15)

as ε → 0. Noting �∗ = � ∪�1 ∪ �1, we set v = uε − E1,0(�
∗)uε ∈ H1

0 (D). From
(2.13) and (2.14), we have

‖E1,0(�
∗)uε‖1,D ≤ C‖uε‖1,�∗ ≤ C. (2.16)

We find that v|�∗ = 0 and substitute this v into (2.9) to obtain

ε(∇uε,∇v)�2 = 0.

This gives

|uε |21,�2
= (∇uε,∇E1,0(�

∗)uε)�2 ≤ |uε |1,�‖E1,0(�
∗)uε‖1,D .

Combining with ‖uε‖1,�2 ≤ C |uε |1,�2 and (2.16), it shows (2.12).
Substitueting v = E1,0(�1)uε into (2.9), we have

(∇uε,∇E1,0(�1)uε)� + 1

ε
‖∇uε‖2

�1
+ ε(∇uε,∇E1,0(�1)uε)�2 =( f̃ , E1,0(�1)uε),

from which we obtain that

‖uε‖2
1,�1

≤ C |uε |21,�1

= C
(
ε(∇uε,∇E1,0(�1)uε)� + ε2(∇uε .∇E1,0(�1)uε)�2 + ε( f̃ , E1,0(�1)uε)

)
≤ Cε(‖ f ‖� + |uε |1,� + ε|uε |1,�2)‖E1,0(�1)uε‖1,D ≤ Cε‖uε‖1,�1 ,
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which implies (2.11).
Setting w = uε |� − u, we have γ (�,�1)w = γ (�,�1)uε − 0 = γ (�1, �1)uε,

which shows

‖γ (�,�1)w‖ 1
2 ,�1

≤ C‖uε‖1,�1 ≤ Cε.

Applying Lemma 2.3, there existsw1 = γ (�,�1)
−1γ (�,�1)w ∈ H1(�), satisfying

‖w1‖1,� ≤ C‖γ (�,�1)w‖ 1
2 ,�1

≤ Cε.

Next, we define a continuous operator A : V → V ′ (V ′ is the dual space of V ) by
〈Aφ, v〉 = (∇φ,∇v)�, φ ∈ V, ∀v ∈ V . Applying Friedrichs’ inequality, we have

(∇v,∇v)� = |v|21,� ≥ C‖v‖2
1,� = ‖v‖2

V .

Hence, the bilinear form a(φ, v) on V ×V defined by a(φ, v) = 〈Aφ, v〉 is V -elliptic.
It follows from the Lax-Milgram theorem that

‖w − w1‖V ≤ C‖A(w − w1)‖V ′ ≤ C(‖Aw‖V ′ + ‖Aw1‖V ′).

As ‖uε − u‖1,� = ‖w‖V ≤ ‖w − w1‖V + ‖w1‖V ≤ ‖w − w1‖V + Cε, to prove
(2.10) we need to show that ‖w − w1‖V ≤ Cε, where we already know ‖Aw1‖V ′ ≤
C‖w1‖1,� ≤ Cε by the continuity of A. To estimate ‖Aw‖V ′ , we observe that ∀v ∈
V, v̄ = E1,0(�)v ∈ H1

0 (D) with E1,0(�)v|�1 = 0,

〈Aw, v〉 = (∇uε,∇v)� − (∇u,∇v)� = (∇uε,∇v̄)� − (∇u,∇v)�
= ( f̃ , v̄)D − 1

ε
(∇uε,∇v̄)�1 − ε(∇uε,∇v̄)�2 − ( f, v)�

= ( f, v)� − 1

ε
(∇uε, 0)�1 − ε(∇uε,∇v̄)�2 − ( f, v)�

≤ ε|uε |1,�2 |v̄|1,�2

≤ Cε‖v‖1,�,

that is ‖Aw‖V ′ ≤ Cε. Thus, we have ‖w − w1‖V ≤ C(‖Aw‖V ′ + ‖Aw1‖V ′) ≤ Cε,
and the proof is completed. ��

Remark 5 Basically, the proof for the mixed boundary case is a combination of those
for the Dirichlet and Neumann boundary cases.

Remark 6 All of the above in this section, which involve homogeneous boundary
conditions are also suitable for the non-homogeneous boundary value problems.
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3 The regularity of the solutions of H1-penalty problems

This section is devoted to the regularity theorems for (Qε)with homogeneous Dirich-
let, Neumann, and mixed boundary conditions respectively. As it is shown in [7], these
(Qε) are equal to certain interface elliptic problems, denoted as (Pε). There are some
regularity theorems for the interface elliptic problems in the literature (see [1,9] for
example), however, these are not specific to our problems. Our particular objective
is to deduce explicit dependence of various norms of uε on the penalty parameter ε.
We show some estimates which are only suitable for our problems, as well as some
higher-order regularity which will be used in the study of the H1-penalty parabolic
problem.

3.1 Dirichlet boundary value problem

As a first step, let us assume D is sufficiently smooth. Then, we have the following
theorem.

Theorem 3.1 Let uε ∈ H1
0 (D) be the solution of the H1-penalty problem (1.2) for

f ∈ L2(�). Then, we have

uε |� ∈ H2(�), uε |�1 ∈ H2(�1),

‖uε‖2,� ≤ C‖ f ‖0,�, (3.1)

‖uε‖2,�1 ≤ Cε‖ f ‖0,�. (3.2)

First, we recall the following basic regularity result:

Lemma 3.2 Let ω ⊂ R
2 be a bounded domain. Assume that the boundary ∂ω is

divided into two disjoint smooth components ∂ω1 and ∂ω2; ∂ω = ∂ω1 ∪ ∂ω2. Let
v ∈ H1(ω) be the unique weak solution of

�v = f in ω, v = g1 on ∂ω1,
∂v

∂n
= g2 on ∂w2,

where f ∈ L2(ω), g1 ∈ H
1
2 (∂ω1) and g2 ∈ L2(∂ω2).

Then, if g1 ∈ H
3
2 (∂ω1) and g2 ∈ H

1
2 (∂ω2), we have v ∈ H2(ω) and

‖v‖2,ω ≤ C

(
‖ f ‖ω + ‖g1‖

H
3
2 (∂ω1)

+ ‖g2‖
H

1
2 (∂ω2)

)
.

Before the proof, we see that, by applying Green’s formula, (1.2) is equivalent to
(Pε), which reads as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Find uε ∈ H1
0 (D) such that

−�uε = f in �,
�uε = 0 in �1,
∂uε
∂n

∣∣∣
�,�

= 1
ε
∂uε
∂n

∣∣∣
�,�1

,

(3.3)
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where, for example,

∂uε
∂n

∣∣∣∣
�,�

= ∇uε · n|�,� .

From (Pε), we see that, if we have uε |� ∈ H2(�)with ‖uε‖2,� ≤ C , then we have

∂uε
∂n

∣∣∣∣
�,�1

= ε
∂uε
∂n

∣∣∣∣
�,�

∈ H
1
2 (�).

Moreover, according to the trace theorem, we have

∥∥∥∥∂uε
∂n

∥∥∥∥ 1
2 ,�

≤ C‖uε‖2,� ≤ C.

Then, applying Lemma 3.2, we obtain

‖uε‖2,�1 ≤ C

⎛
⎝‖0‖� + ‖0‖

H
3
2 (∂D)

+
∥∥∥∥∥
∂uε
∂n

∣∣∣∣
�,�1

∥∥∥∥∥ 1
2 ,�

⎞
⎠

= C

∥∥∥∥∥ε
∂uε
∂n

∣∣∣∣
�,�

∥∥∥∥∥ 1
2 ,�

≤ Cε.

Now, we can state the following proof.

Proof of Theorem 3.1 From the discussion above, we only need to show that uε |� ∈
H2(�) and ‖uε‖2,� ≤ C . This is a well-known result; however, we want to present
a brief proof here, because we will show that, by a slight change of this process, we
can obtain a higher-order regularity, with smoother assumptions on f .

There exist {U j }N
j=1, U j ∈ R

2, � j ∈ C∞(R2; R
2), with � j = �−1

j ,

j = 1, 2, . . . , N .

� ⊂ ∪N
j=1� j (U j ) ⊂ D. U j0 := � j (� j (U j ) ∩�) = R

2+ ∩ U j ,

U j1 := � j (� j (U j ) ∩�1) = R
2− ∩ U j , j = 1, 2, . . . , N .

And also, there exists θ j ∈ C∞
0 (�) with supp θ j ⊂ � j (U j ), j = 1, 2, . . . , N , with

N∑
j=1

θ j = 1, on �.

Hence, (θ j uε)◦� j ∈ H1
0 (U j ), j = 1, 2, . . . , N .Now we write U, U1, U0, �, �, θ

instead of U j , U j1 , U j0 , � j , �, θ j . Setting u2 := (θ j uε) ◦ � j , we investigate u2
in the H2 space for two cases.
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Fictitious domain method with penalty for elliptic problems 69

(1) The case U1 = ∅. We find u1 := θuε satisfies

(∇u1,∇v)� = (θ f − ∇uε∇θ − ∇(uε∇θ), v), ∀v ∈ H1
0 (�).

Since (θ f − ∇uε∇θ − ∇(uε∇θ))|� ∈ L2(�), obviously, we have

u1|� ∈ H2(�), ‖u1‖2 ≤ C.

So, u2 ∈ H2(U ) and ‖u2‖2,U ≤ C.
(2) The case U0 �= ∅, and U1 �= ∅. Writing Di = ∂

∂xi
, (i = 1, 2), we have

u2 ∈ H1
0 (U ) satisfies

2∑
i, j=1

∫
U0

ai j Di u2 D jvdx + 1

ε

2∑
i, j=1

∫
U1

ai j Di u2 D jvdx

−
∫

U0

(uε∇θ) ◦�∇v∇�|D�|dx − 1

ε

∫
U1

(uε∇θ) ◦�∇v∇�|D�|dx

= ( f1 ◦�|D�|, v), ∀v ∈ H1
0 (U ),

where

ai j =
(

2∑
k=1

Dkψi Dkψ j

)
◦�|D�|, i, j = 1, 2, � = (ψ1, ψ2).

Let ũ2 be the zero extension of u2 onto R
2. Substituting

v = τh − 1

h

τ−h − 1

h
ũ2

into the above equation, where τh is the translation operator with τhφ(x) = φ(x1+
h, x2), φ(x) ∈ L2(R2). Using some lemmas of τh−1

h in Chapter 2 of [3], we can
obtain

2∑
i=1

∥∥∥Di

(
τh − 1

h
ũ2

) ∥∥∥2

U0
+ 1

ε

2∑
i=1

∥∥∥Di

(
τh − 1

h
ũ2

) ∥∥∥2

U1

≤ C
2∑

i=1

(∥∥∥Di

(
τh − 1

h
ũ2

) ∥∥∥
U0

+
∥∥∥Di

(
τh − 1

h
ũ2

)∥∥∥
U1

)

Thus, we get

2∑
i=1

∥∥∥Di

(
τh − 1

h
ũ2

) ∥∥∥
U0

≤ C.
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For i = 1, 2, we consider any sequence h j → 0, as j → ∞. We see that

Di
τh j − 1

h j
ũ2 converges weakly to some function φ ∈ L2(R2), and also

Di
τh j − 1

h j
ũ2 → Di D1ũ2, as j → ∞,

in the sense of distribution. Consequently, Di D1ũ2 = φ ∈ L2(R2+). This shows
that all second derivatives, except D2

2u2, are in L2(R2). We find that the equation
of u2 is also equivelent to

(∇u1,∇v)� + 1

ε
(∇uε,∇v)�1

= (θ f̃ , v)−(∇uε, v∇θ)�− 1

ε
(∇uε, v∇θ)�1 −(∇(uε∇θ))� − 1

ε
(∇(uε∇θ))�1

+
∫
�

(uε∇θv)|�,� · ndσ − 1

ε

∫
�

(uε∇θv)|�,�1 · ndσ

:= ( f3, v)D + (g, v)�, ∀v ∈ H1
0 (D).

As ‖ f3‖0,D ≤ C and ‖g‖ 1
2 ,�

≤ C( since ‖uε‖1,�1 ≤ Cε), there exists

w ∈ H2(�) satisfying that
∂w

∂n
= g. Thus, (u1 − w) ◦ � = u2 − w ◦ �,

and from the equation of u1 above, w satisfies

2∑
i, j=1

D j (ai j (Di (u2 − w ◦�))) = ( f3 +�w) ◦� in U0,

which comes from Green’s formula.

Thus we have D2
2u2 ∈ L2(U0), so that ‖u2‖2,U0 ≤ C . And because for every

j = 1, 2, . . . , N , ‖u2‖2,U j0
≤ C . We have ‖uε‖2,� ≤ C. ��

Remark 7 With the assumption that f ∈ H1(�). In the above proof, we find that by

taking v = τh − 1

h

τh − 1

h

τ−h − 1

h
ũ2 or

τh − 1

h

τ−h − 1

h

τ−h − 1

h
ũ2 on case(2) instead

of
τh − 1

h

τ−h − 1

h
ũ2, we can obtain D3

1u2, D2
1 D2u2, D2

2 D1u2 ∈ L2(U0). Noticing

that in this time f3 ◦� ∈ H1(U0), g ∈ H
3
2 (�), we have‖u‖3,� ≤ C. And applying

the (Pε), we have ‖u‖3,�1 ≤ Cε. Hence, we can obtain higher-order regularity of
(Qε).

By an analogue of the proof of Theorem 3.1 and the Remark 7, we have
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Theorem 3.3 Under the assumption that f ∈ Hk(�), for all non-negative integers
k, we have

uε |� ∈ Hk+2(�), uε |�1 ∈ Hk+2(�1).

‖uε |�‖k+2,� ≤ C‖ f ‖k,�, (3.4)

‖uε |�1‖k+2,�1 ≤ Cε‖ f ‖k,�. (3.5)

Remark 8 In the above two theorems, we both assume that D is sufficiently smooth;
however, in our case, D is a rectangle (a convex polygon). From the discussion in [3,4]
on elliptic problems in non-smooth domains, we can keep Theorem 3.1 remains true
for any convex polygon D.

3.2 Neumann boundary value problem

As a first step, let us assume D is sufficiently smooth. Then, we have the following
theorem.

Theorem 3.4 (Q) is the original problem with homogeneous Neumann boundary.
f ∈ L2(�), then the corresponding H1-penalty problem (Qε) has a unique solution
uε ∈ H1

0 (D). Moreover,

uε |� ∈ H2(�), uε |�1 ∈ H2(�1),

‖uε |�‖2,� ≤ C‖ f ‖0,�, (3.6)

‖uε |�1‖2,�1 ≤ C‖ f ‖0,�. (3.7)

Before the proof, we show that, by applying the Green’s formula, (Qε) is equivalent
to (Pε), which reads as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Find uε ∈ H1
0 (D) such that

−�uε + uε = f in �,
�uε = 0 in �1,
∂uε
∂n

∣∣∣
�,�

= ε ∂uε
∂n

∣∣∣
�,�1

.

(3.8)

From (Pε) we know that, if we have uε |� ∈ H2(�) with ‖uε‖2,� ≤ C , then we
have

uε |�,�1 = uε |�,� ∈ H
3
2 (�).

Since the right-hand-side function is 0, and with the homogeneous Dirichlet boundary
of D, it concludes that uε |�1 ∈ H2(�1) and

‖uε‖2,�1 ≤ C‖uε‖ 3
2 ,�

≤ C.

This means we have left to prove only uε |� ∈ H2(�).
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Proof The process of the proof is very similar to that of Theorem 3.1. In fact, we only

need to replace the
1

ε
in the proof of Theorem 3.1 by ε. ��

Remark 9 The same comments as those in the Dirichlet case apply here, specifically,
we can obtain higher-order regularity for f ∈ Hk(�), and, if D is a convex polygon,
Theorem 3.4 remains true.

3.3 Mixed boundary value problem

The (Qε) for original problem with homogeneous mixed boundary is equivalent to
the problem (Pε):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find uε ∈ H1
0 (D) such that

−�uε = f in �,
�uε = 0 in �1,

�uε = 0 in �2,
∂uε
∂n

∣∣∣
�1,�

= 1
ε
∂uε
∂n

∣∣∣
�1,�1

,

∂uε
∂n

∣∣∣
�2,�

= ε ∂uε
∂n

∣∣∣
�2,�2

,

1
ε
∂uε
∂n

∣∣∣
�3,�1

= ε ∂uε
∂n

∣∣∣
�3,�2

,

(3.9)

where �3 is the common boundary of �1 and �2. By an analogue of the previous
proof, we can obtain that uε |� ∈ H2(�).

Since the domain�1 and�2 have corners at the intersection points of their bound-
aries (see Fig. 1), uε |�1 and uε |�2 would not be in H2 space but H1+α, α ∈ (0, 1)
(see [4,9]).

4 Finite element approximation and discrete problems

Recall that the Cartesian mesh is introduced to the rectangular domain D to get a
uniform triangulation Th , and h is the maximum diameter of the triangles of Th . Each
K ∈ Th is assumed to be a closed set. Vh(D) ⊂ H1

0 (D) is the subspace of all piecewise
linear continuous functions subordinate to Th .

4.1 Dirichlet boundary value problem

We consider the discrete problem (1.3).

Lemma 4.1 There exists a unique solution uε,h ∈ Vh(D) for (1.3). uε is the solution
of (1.2), and we have

‖uε − uε,h‖1,� + 1√
ε
‖uε − uε,h‖1,�1

≤ C inf
vh∈Vh(D)

(
‖uε − vh‖1,� + 1√

ε
‖uε − vh‖1,�1

)
. (4.1)
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Proof Subtracting (1.2) from (1.3), we have

(∇(uε − uε,h),∇vh)� + 1

ε
(∇(uε − uε,h),∇vh)�1 = 0, ∀vh ∈ Vh(D).

Then we find

|uε − uε,h |21,� + 1

ε
|uε − uε,h |21,�1

≤ inf
vh∈Vh(D)

{
(∇(uε − uε,h),∇(uε − vh))� + 1

ε
(∇(uε − uε,h),∇(uε − vh))�1

}

≤ inf
vh∈Vh(D)

{
|uε − uε,h |1,�|uε − vh |1,� + 1

ε
|uε − uε,h |1,�1 |uε − vh |1,�1

}

≤
{
‖uε − uε,h‖1,� + 1√

ε
‖uε − uε,h‖1,�1

}

× inf
vh∈Vh(D)

{
‖uε − vh‖1,� + 1√

ε
‖uε − vh‖1,�1

}
.

Applying the Poincaré inequality to the left-hand-side, we have

|uε − uε,h |21,� + 1

ε
|uε − uε,h |21,�1

= |uε − uε,h |21,D +
(

1

ε
− 1

)
|uε − uε,h |21,�1

≥ C

(
‖uε − uε,h‖2

1,� + 1√
ε
‖uε − uε,h‖2

1,�1

)

Thus, we have proved the result. ��
To estimate

inf
vh∈Vh(D)

(
‖uε − vh‖1,� + 1√

ε
‖uε − vh‖1,�1

)
,

we need some lemmas, which can be found in [12], and several other similar results in
[10,13]. For a curve γ in C2(R2) and δ > 0, we define a δ-neighborhood γδ = {x ∈
R

2 | dist (x, γ ) ≤ δ}.
Lemma 4.2 Suppose γδ ⊂⊂ R, R is a domain in R

2, and v ∈ H1(R). Then we have

‖v‖0,γδ ≤ C
√
δ‖v‖1,R . (4.2)

If we assume v ∈ H2(R), then we have

‖v‖1,γδ ≤ C
√
δ‖v‖2,R . (4.3)
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Lemma 4.3 Suppose w ∈ H2(D), and we define IKw as the linear interpolation of
w on the vertices of a triangle K ∈ Th. Then, we have

|IKw|1,K �
3∑

i, j=1,i �= j

|w(νi )− w(ν j )|, (4.4)

where νi , i = 1, 2, 3, are vertices of K . (A � B means that there exist constants
depending on the regularity of the triangulation C1,C2 such that C2 B ≤ A ≤ C1 B.)

Theorem 4.4 The following error estimate for (1.2) and (1.3) holds:

‖uε − uε,h‖1,� + 1√
ε
‖uε − uε,h‖1,�1 ≤ C(

√
h + √

ε)(‖uε‖2,� + ‖uε‖2,�1). (4.5)

Before the proof, we define some notations:

�h = the set of all vertices of Th,

�(K ) = {νK
1 , ν

K
2 , ν

K
3 } = the set of all vertices of K ∈ Th,

T� = {K ∈ Th |K ⊂ �, K ∩ � = ∅},
T�1 = {K ∈ Th |K ⊂ �1, K ∩ � = ∅},
T� = {K ∈ Th |K ∩ � �= ∅},
T0 = {K ∈ T�|K ∩ T� �= ∅},
T1 = {K ∈ T�1 |K ∩ T� �= ∅},
ω0 = ∪K∈T0 K ,

ω� = ∪K∈T�\T0 K ,

ω� = ∪K∈T� K .

We may assume that T�\T0 �= ∅ and T�1\T1 �= ∅ without loss of generality.

Proof of Theorem 4.4 We define vh by setting,

vh(ν) =
{

uε(ν) for ν ∈ �(K ), K ∈ T�\T0,

0 for all others vertices ν,

and substitute this vh into the right-hand-side of (4.1). We find that ‖uε − vh‖1,�1 =
‖uε‖1,�1 ≤ Cε. To estimate ‖uε − vh‖1,�, we use the scheme proposed in [12] by
using Lemmas 4.2 and 4.3. However, there are several differences between our analysis
and that of [12], because we apply our regularity theorem presented in the previous
section, which simplifies the analysis.

We find that ‖uε − vh‖2
1,� = ‖uε − vh‖2

1,ω�
+ ‖uε − vh‖2

1,ω0
+ ‖uε − vh‖2

1,ω�
.

For the first term ‖uε − vh‖1,ω� = ‖uε − IK uε‖1,ω� ≤ Ch‖uε‖2,�.

For the third term ‖uε−vh‖1,ω� = ‖uε−0‖1,Tω�
≤ C

√
h‖uε‖2,�, following from

Lemma 4.2.
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Then, for the second term ‖uε − vh‖1,ω0 ≤ ‖uε‖1,ω0 + ‖vh‖1,ω0 , and we have
‖uε‖1,ω0 ≤ C

√
h‖uε‖2,�, again, following from Lemma 4.2. What remains is to

estimate ‖vh‖1,ω0 .
For every K ∈ T0, we have

‖vh‖1,K ≤ ‖vh − IK uε‖1,K + ‖IK uε‖1,K

≤ |vh − IK uε |1,K + ‖vh − IK uε‖0,K + ‖IK uε‖1,K

≤ |vh − IK uε |1,K + ‖vh‖0,K + ‖IK uε‖0,K + ‖IK uε‖1,K .

We want to show that ‖vh‖0,K ≤ C‖IK uε‖1,K . There are two possibilities: (1) if
for all νi = νK

i ∈ �(K ), i = 1, 2, 3, uε(νi ) have the same sign, then obviously,
|vh(x)|2 ≤ |IK uε(x)|2, (x ∈ K ) and ‖vh‖0,K ≤ C‖IK uε‖0,K ; (2) if we consider
the case where for νi , i = 1, 2, 3, ui = uε(νi ) do not all have the same signs, then,
without loss of generality, we assume that |u1| = ‖u‖∞,K and u1u2 ≥ 0 and u3 ≤ 0.
We have ∇(IK u)·−−→ν3ν1 = u1−u3 on K . Hence, |u1| ≤ |u1−u3| ≤ |∇(IK u)|·|−−→ν3ν1| ≤
|∇(IK u)|hK on K , since u1 and u3 have the different signs. Therefore,

‖vh‖0,K ≤ |K | 1
2 ‖vh‖∞,K

≤ |K | 1
2 ‖uε‖∞,K

≤ |K | 1
2 |∇ IK u|hK = hK |∇(IK u)|0,K .

Thus, we have ‖vh‖0,K ≤ (1 + hK )‖IK u‖1,K , which gives

‖vh‖1,K ≤ |vh − IK uε |1,K + C‖IK uε‖1,K

≤ |vh − IK uε |1,K + C‖IK uε − uε‖1,K + C‖uε‖1,K (4.6)

By the standard interpolation error estimates, we have

∑
K∈T0

‖IK uε − uε‖2
1,K ≤ Ch2‖uε‖2

2,�. (4.7)

We notice that there exists C ′ > 0 such that ω� ⊂ γC ′h . By Lemma 4.3, setting
v̂h = vh − IK uε , we obtain

|vh − IK uε |1,K ≤ C
∑

νi ,ν j ∈�(K )
i �= j

|v̂h(νi )− v̂h(ν j )|. (4.8)

Next, we set

��(K ) = {ν ∈ �(K ) | ∃K ′ ∈ T�\T0, s.t. ν in �(K ′)},
��(K ) = {ν ∈ �(K ) | ∃K ′ ∈ T�, s.t. ν in �(K ′′)}.
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By definition, we see that �(K ) = ��(K ) ∪ ��(K ), ��(K ) �= ∅, ��(K ) �= ∅.
There are two possibilities: for {νi = νK

i }3
i=1 = �(K ),

(i) ��(K ) = {ν1, ν2}, ��(K ) = {ν3};
(ii) ��(K ) = {ν1}, ��(K ) = {ν2, ν3}.

(See Figs. 2 and 3.)
For (i), we have

v̂h(νi ) = vh(νi )− (IK uε)(νi ) = 0, i = 1, 2,

v̂h(ν3) = vh(ν3)− (IK uε)(ν3) = −uε(ν3).

Fig. 2 ��(K ) =
{ν1, ν2}, ��(K ) = {ν3}

Fig. 3 ��(K ) =
{ν1}, ��(K ) = {ν2, ν3}
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Hence, |v̂h |1,K ≤ C |uε(ν3)|. Taking arbitrary point ν� ∈ � ∩ K ′′, we have |v̂h |1,K ≤
C(|uε(ν3)− uε(ν�)| + |uε(ν�)|).

At this stage, we apply the Sobolev and Morrey’s inequalities. Let ω be a Lipschitz
domain in R

2. They are given as

‖u‖L∞(ω) ≤ C‖u‖H2(ω), (∀u ∈ H2(ω))

‖u‖W 1,q (ω) ≤ C‖u‖H2(ω), (1 ≤ q < ∞, ∀u ∈ H2(ω))

|u(x)− u(y)| ≤ C‖u‖W 1,q (ω)|x − y|α,

(x, y ∈ ω, 2 < q, α = 1 − 2

q
, u ∈ W 1,q(ω))

We choose q = 4, and define K ′′
� = K ′′ ∩�, K ′′

�1
= K ′′ ∩�1, and we have

|uε(ν3)− uε(ν�)| ≤ C‖uε‖W 1,4(K ′′
�)

|ν3 − ν�| 1
2 ≤ Ch

1
2 ‖uε‖2,K ′′

�
,

|uε(ν�)| ≤ C‖uε‖2,K ′′
�1
.

Hence, we obtain |v̂h |1,K ≤ C‖uε‖2,K ′′
�1

+ Ch
1
2 ‖uε‖2,K ′′

�
.

Then, applying the same trick to (ii), we can show that

v̂h(ν1) = vh(ν1)− (IK uε)(ν1) = 0,

v̂h(νi ) = vh(νi )− (IK uε)(νi ) = −uε(νi ), i = 2, 3,

|v̂h |1,K ≤ C(|uε(ν2)− uε(ν3)| + |uε(ν2)| + |uε(ν3)|)
≤ C

∑
i=2,3

|uε(νi )− uε(ν�)| + C |uε(ν�)|

≤ C‖uε‖2,K ′′
�1

+ Ch
1
2 ‖uε‖2,K ′′

�
.

Combining (i) and (ii), we have

∑
K∈T0

|v̂h |21,K ≤ C
∑

K∈T0

(
‖uε‖2

2,K ′′
�1

+ Ch‖uε‖2
2,K ′′

�

)

≤ C‖uε‖2
2,�1

+ Ch‖uε‖2
2,�. (4.9)

From (4.6), (4.7), (4.8), (4.9), we can easily derive that

‖vh‖2
1,ω0

=
∑

K∈T0

‖vh‖2
1,K

≤
(
‖uε‖2

2,�1
+ h‖uε‖2

2,�h2‖uε‖2
2,� + h‖uε‖2

2,�

)

≤ ε2‖ f ‖2
0,� + C(h2 + h)‖ f ‖2

0,�,
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where the last inequality is from Theorem 3.1. Hence, we get

‖vh‖1,ω0 ≤ C(ε + h + h
1
2 )‖ f ‖0,�.

Recalling that ‖uε − vh‖1,�1 = ‖uε‖1,�1 ≤ Cε and other estimates from the
beginning of the proof, we have

‖uε − vh‖1,� + 1√
ε
‖uε − vh‖1,�1 ≤ C(

√
ε + √

h).

Hence, the theorem follows from Lemma 4.1. ��

Remark 10 Since we have ‖uε‖2,�1 ≤ Cε, other choices for vh than that above can
be taken, such as

vh =
{

uε(ν) for ν ∈ �(K ), K ∈ T�\T0,

ūε(ν) for ν ∈ �(K ), K ∈ T�1 ∪ T�,

where ūε is the extension of uε |�1 onto D with ‖ūε‖2,D ≤ C‖uε‖2,�1 , and the estimate
result still holds.

To estimate ‖uε − uε,h‖0,D , we need the adjoint boundary value problem, which
reads as:

{
For any given f ∈ L2(�), find uε f ∈ H1

0 (D) such that
(∇v,∇uε f )� + 1

ε
(∇v,∇uε f )�1 = ( f̃ , v), ∀v ∈ H1

0 (D).
(4.10)

( f̃ is the zero extension of f .) We see that there exists a unique solution uε f ∈ H1
0 (D),

with

‖uε f ‖2,� ≤ C‖ f ‖0,�, ‖uε f ‖2,�1 ≤ Cε‖ f ‖0,�,

which follows from Theorem 3.1.

Theorem 4.5 We have the error estimate in L2 norm for (1.2) and (1.3),

‖uε − uε,h‖0,D ≤ C(ε + h + √
hε). (4.11)

Proof Let f = (uε − uε,h)|� and substitute v = uε − uε,h into the equation of the
adjoint problem, we get
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‖uε − uε,h‖2
0,� = ( f, uε − uε,h)0,�

= ( f̃ , uε − uε,h)0,D

= (∇(uε − uε,h),∇uε f )� + 1

ε
(∇(uε − uε,h),∇uε f )�1

≤ (∇(uε−uε,h),∇(uε f − vh))� + 1

ε
(∇(uε − uε,h),∇(uε f − vh))�1, ∀vh ∈Vh(D)

≤ ‖uε − uε,h‖1,�‖uε f − vh‖1,� + 1

ε
‖uε − uε,h‖1,�1‖∇uε f − vh‖1,�1

≤ C(
√
ε + √

h)(
√
ε + √

h)‖ f ‖0,� + C
1

ε

√
ε(

√
ε + √

h)
√
ε(

√
ε + √

h)‖ f ‖0,�

The last inequality follows from Theorems 3.1 and 4.4. Noticing that f =
(uε − uε,h)|�, we get

‖uε − uε,h‖0,� ≤ C(
√
ε + √

h)2

With ‖uε‖1,�1 ≤ Cε and ‖uε,h‖1,�1 ≤ Cε, we have proved the result. ��

4.2 Neumann boundary value problem

The discrete problem (Qε,h) reads as:

{
Find uε,h ∈ Vh(D) such that
(uε,h, vh)1,� + ε(∇uε,h,∇vh)�1 = ( f̃ , vh)D, ∀vh ∈ Vh(D).

(4.12)

Lemma 4.6 There exists a unique solution uε,h ∈ Vh(D) for (4.12). uε is the solution
of (2.4), and we have

‖uε − uε,h‖1,� + √
ε‖uε − uε,h‖1,�1

≤ C inf
vh∈Vh(D)

(‖uε − vh‖1,� + √
ε‖uε − vh‖1,�1

)
. (4.13)

Proof The proof of this lemma is an analogue of that of Lemma 4.1. ��
Then, we have the error estimate theorem:

Theorem 4.7 We have the error estimate for (2.4) and (4.12)

‖uε − uε,h‖1,� + √
ε‖uε − uε,h‖1,�1 ≤ C(h + ε + √

hε)(‖uε‖2,� + ‖uε‖2,�1).

(4.14)

Proof By taking

vh =
{

uε(ν) for ν ∈ �(K ), K ∈ T� ∪ T�,
ūε(ν) for ν ∈ �(K ), K ∈ T�1\T1,

the proof is an analogue of that of Theorem 4.4. ��
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With the analogue of the proof of the Dirichlet case, we have the error estimate in
L2 norm for Neumann case.

Theorem 4.8 For uε and uε,h are the solutions of (2.4) and (4.12), respectively, we
have

‖uε − uε,h‖0,D ≤ C(ε + h + √
hε)2. (4.15)

4.3 Mixed boundary value problem

Since the regularity theorem of (Qε) for mixed boundary case is weak, we will not
put a discussion on the error estimates of the discrete problem for this case. Also, we
could not find any discussion on this issue in [8,12] etc.

5 An approximation for discrete problems

In the discrete problem, we find the inner-product (∇uε,h,∇vh)� or �1 and ( f̃ , vh)D

(since f̃ is the zero extension of f from� onto D) are not applicable to computation,
because we assumed that � has a curved boundary �. The integral of the elements
crossing � becomes a problem when doing computation. Thus, we need a proper
approximation. One way is to replace the integral in the open triangle K , K ∩� �= ∅, of

(∇uε, vh)K∩� + 1

ε
(∇uε, vh)K∩�1

by the integral of

(∇uε, vh)K∩�̂ + 1

ε
(∇uε, vh)K∩�̂1

where �̂ is a polygon with vertices which are the points of intersection between � and

the triangles’ edges. �̂ satisfies (�\�̂)∪ (�̂\�) ⊂ �δ, δ = O(h2). �̂1 = D\�̂. The
approximation problem of (Qε,h) is denoted as (Q̂ε,h).

5.1 Dirichlet boundary value problem

The problem (1.4) is considered. We assume that fh is some interpolation of f̃ , such
that ( fh, vh)D is applicable to computation and has ‖ fh − f̃ ‖0 ≤ Ch holds. For
example, suppose f ∈ C1(�); then we can choose fh is the linear interpolation of f
on the vertices ν of triangles for every ν ∈ �̂ and zero on other vertices. Before giving
the estimate of ‖ûε,h − uε,h‖1,D , we quote a lemma from [13]. For any open triangle
K , we denote

πK = (�1\�̂1) ∩ K = (�̂\�) ∩ K
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and

π̂K := (�̂1\�1) ∩ K = (�\�̂) ∩ K .

π := ∪KπK .

π̂ := ∪K π̂K .

Lemma 5.1 As we have (�\�̂) ∪ (�̂\�) ⊂ �δ, δ = O(h2), the following estimates
hold for any vh ∈ Vh,

|vh |1,π ≤ h
1
2 |vh |1,�1 ( or h

1
2 |vh |1,�̂), (5.1)

|vh |1,π̂ ≤ h
1
2 |vh |1,�̂1

( or h
1
2 |vh |1,�). (5.2)

Then we have the following theorem.

Theorem 5.2 There exists a unique solution ûε,h for (1.4). uε,h is the solution of (1.3),
and we have

‖uε,h − ûε,h‖1,D ≤ Ch. (5.3)

Proof Subtracting the equation in (1.4) from that in (1.3), we have

(∇(uε,h − ûε,h),∇vh)�∩�̂ + 1

ε
(∇(uε,h − ûε,h),∇vh)�∩�̂1

+ (∇uε,h,∇vh)�\�̂

+ 1

ε
(∇uε,h,∇vh)�1\�̂1

− (∇ûε,h,∇vh)�̂\� − 1

ε
(∇ûε,h,∇vh)�̂1\�1

= ( f̃ − fh, vh)D, ∀vh ∈ Vh .

Since �1\�̂1 = �̂\� and �̂1\�1 = �\�̂, the above equation can be written as

(∇(uε,h − ûε,h),∇vh)�∪�̂ + 1

ε
(∇(uε,h − ûε,h),∇vh)�∩�̂1

=
(

1

ε
− 1

)
(∇ûε,h,∇vh)�̂1\�1

+
(

1 − 1

ε

)
(∇uε,h,∇vh)�1\�̂1

+ ( f̃ − fh, vh)D.

We apply Lemma 5.1 to obtain

|ûε,h |1,�̂1\�1
≤ C

√
h|ûε,h |1,�̂1

≤ C
√

hε,

|vh |1,�̂1\�1
≤ C

√
h|vh |1,�̂1

( or
√

h|vh |1,�),
|uε,h |1,�1\�̂1

≤ C
√

h|uε,h |1,�1 ≤ C
√

hε,

|vh |1,�1\�̂1
≤ C

√
h|vh |1,�1 ( or

√
h|vh |1,�̂).
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Since we have ‖ f̃ − fh‖0,D ≤ Ch, for vh = uε,h − ûε,h , we get

|uε,h − ûε,h |2
1,�∪�̂ + 1

ε
|uε,h − ûε,h |2

1,�1∩�̂1

≤ Ch(|uε,h − ûε,h |1,�∪�̂ + ‖uε,h − ûε,h‖0,D).

This, together with the Poincaré inequality, implies the desired result. ��

5.2 Neumann boundary value problem

(Q̂ε,h) reads as:

{
Find ûε,h ∈ Vh(D) such that
(ûε,h, vh)1,�̂ + ε(∇ûε,h,∇vh)�̂1

= ( fh, vh)D, ∀vh ∈ Vh(D).
(5.4)

Lemma 5.3 (�\�̂) ∪ (�̂\�) ⊂ �δ, δ = O(h2) implies that:

‖vh‖0,�\�̂ ≤ Ch‖vh‖1,� ( or h‖vh‖1,�̂1
). (5.5)

‖vh‖0,�̂\� ≤ Ch‖vh‖1,�̂ ( or h‖vh‖1,�1). (5.6)

(This lemma is quoted form [10].)

Theorem 5.4 There exists a unique solution ûε,h for (5.4). If f̃ − fh = 0 on�1 ∩ �̂1,
and uε,h is the solution of (4.12), then we have,

‖uε,h − ûε,h‖1,�∪�̂ ≤ Ch. (5.7)

The proof is an analogue of that of Theorem 5.2, with using Lemmas 5.1 and 5.3.

6 Numerical experiments

Let ũ ∈ H1
0 (D) be the zero extension of the solution u ∈ H1

0 (�) of the Dirichlet
boundary value problem (1.1). Then, from the results of previous sections, we find
that

‖ûε,h − ũ‖1,D ≤ ‖ûε,h − uε,h‖1,D + ‖uε,h − uε‖1,D + ‖uε − ũ‖1,D

= ‖ûε,h − uε,h‖1,D + ‖uε,h − uε‖1,D + ‖uε |� − u‖1,� + ‖uε‖1,�1 (6.1)

≤ Ch + C(
√

h + √
ε)+ Cε + Cε

≤ C(
√

h + √
ε).

In addition, for the error in L2 norm, we also have

‖ûε,h − ũ‖0,D ≤ C(ε + h + √
hε). (6.2)
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Fig. 4 �, D and the mesh

Fig. 5
‖uε,h−ũ‖0,D

‖ũ‖0,D
with different ε and h

So in our computation, to calculate L2 and H1 errors of ûε,h − ũ on D is sufficient
to verify the theoretical results, which is more practical than computing the norm of
ûε,h |� − u in �, because of the curved boundary of �. Now, let � = {(x, y) ∈ R

2 |
x2 + y2 < 4}. The original problem reads as:

{−�u = 4 in �,
u = 0 on �.

The exact solution is u = 4 − x2 − y2. Let D = {(x, y) | −3 < x < 3, −3 < y <
3}, � ⊂ D, and generate an N × N grid in the square D as the Cartesian mesh (see
Fig. 4). For N = 30, 60, 120, 300, 600, 1200, setting h = 6

N ,
√

2h is the diameter of
the triangles.

The error estimates are showed in Figs. 5 and 6 with the logarithm (log) to base
10, from which we see that for fixed ε, L2 error behaves as Ch (in Fig. 5, log Er

log h ≈ 1)

and H1 error behaves as C
√

h (in Fig. 6, log Er
log h ≈ 1

2 ). But at the same time, they
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Fig. 6
‖uε,h−ũ‖1,D

‖ũ‖1,D
with different ε and h

also have lower bounds even if we allow h to become arbitrarily small, since the error
estimates are also bounded by ε, according to (6.1) and (6.2). And we can observe
that, for different ε, L2 error has the lower bound approximate to Cε, and H1 error is
bounded by C

√
ε. This confirms our theoretical results.
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