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Abstract
Wetlands are under increasing pressure from threatening processes. Efforts to protect and monitor wetlands are hampered 
without datasets capturing the extent, type, and condition. The purpose of this study is to map the distribution of wetland 
type, vegetation type and vegetation condition for wetlands in the Northern Jarrah Forest region, Western Australia. A ran-
dom forest algorithm implemented via Google Earth Engine (GEE) was used to classify wetlands and vegetation condition 
using satellite imagery, topographic indices, and soil mapping. Wetland type was classified using a hierarchical approach 
incorporating increasing level of detail. Wetland type was mapped as system type from the Interim Australian National 
Aquatic Ecosystem (ANAE) Classification framework and at hydroperiod level, with overall accuracy of 83% and 82% 
respectively. Vegetation type was mapped with an accuracy of 78.3%. Mapping of vegetation condition using the Vegetation 
Assets, States and Transitions (VAST) framework achieved an overall accuracy of 79.6%. Results show that wetlands occur 
in greater concentration as narrow seasonally waterlogged sites in the west, more sparsely and seasonally inundated sites in 
the northeast, and as broad seasonally waterlogged sites in the southeast of the study area. Wetland degradation determined 
through vegetation condition is concentrated in the east, and highest in seasonally waterlogged wetlands. Overall, the wet-
lands mapping framework implemented in this study can be used by land managers and other interested parties seeking to 
identify threatened and high conservation value wetlands in other areas.
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Introduction

Wetlands are areas where the soil is saturated or inundated 
for some extended period and ecological communities have 
specifically adapted to these conditions. Wetlands are an 
important component of our environment, providing eco-
logical services such as maintaining water quality (Crump-
ton et al. 2020), flood control (Tang et al. 2020) and carbon 
sequestration (Carnell et al. 2018; Macreadie et al. 2017). 
Wetlands are under increasing stress from threatening pro-
cesses that include, but are not limited to climate change, 
land clearing and development (Burgin et al. 2016; Davis 
and Froend 1999; Edyvane 1999; Kingsford and Thomas 
2002; Finlayson et al. 2013)(Anderson et al. 2023).

Wetlands in the Northern Jarrah Forest in Southwest-
ern Australia face similar threats as wetlands worldwide. 
The wetlands in this region are experiencing decline 
due to pressures from vegetation clearing, altered fire 
regimes, and altered hydrology (Williams and Mitchell 
2003). The task of protecting wetlands in the Northern 
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Jarrah Forest is hampered by the absence of a consist-
ent dataset capturing the location, type and condition of 
the region’s wetlands. Although wetland datasets exist 
in the surrounding landscape (e.g. the Swan Coastal 
Plain), there have not been any recent efforts to map the 
Northern Jarrah Forest. The Swan Coastal Plain has been 
mapped according to geomorphic wetland type (Seme-
niuk and Semeniuk 1995) and conservation importance 
(Department of Biodiversity, Conservation and Attrac-
tions 2017), which incorporates a vegetation condition 
scale (Keighery 1994) (Table 1). This has been achieved 
through a combination of field survey and interpretation 
of aerial imagery over the period 1986–1995. It is impor-
tant that the location, type, and condition of Northern 
Jarrah Forest wetlands is assessed and documented so 
that they can be managed appropriately.

Alternative methodologies are available for mapping 
wetlands. The Interim Australian National Aquatic Eco-
system (ANAE) Classification Framework (Aquatic Eco-
systems Task Group 2012) is used to classify wetland type 
at various scales according to attributes of geomorphic 
setting, dominant water source, hydrologic dynamics and 
habitat. A simplified Vegetation Assets, States and Transi-
tions (VAST) framework exists for vegetation condition 
assessment (Thackway and Leslie 2006) (Table 2). These 
methodologies may be appropriate for classification based 

on remote sensing data and would deliver the added benefit 
of aligning with national guidelines and regional practices.

The last decade has brought about fundamental changes 
in remote sensing and classification methods. A movement 
towards open data policies, development of cloud-based data 
archives coupled with advances in processing power and 
storage capacity mean that analysis can now be applied to 
time-series and provide more than a snapshot of the world. 
These changes combined with refinement of the methods are 
enabling higher quality mapping. With the launch of Senti-
nel 2A and 2B beginning in 2015, there is access to 10 m-by-
10 m resolution imagery with a revisit of 5 days. This has 
enabled classification studies to use satellite imagery with 
finer resolution (Simioni et al. 2020; Araya-López et al. 
2018; DeLancey et  al. 2019; Kaplan and Avdan 2019; 
Minotti et al. 2021; Valenti et al. 2020). Further, convoluted 
neural networks (CNN) and decision trees (such as Random 
Forest™) are generating more accurate classifications. A 
recent meta-analysis has summarised the methodological 
traits which improve outcomes as including: the use of high 
spatial resolution imagery; utilising CNN, Random Forest™ 
or Support Vector Machine learning (SVM); using object-
based image analysis; including time-series; and combining 
imagery with ancillary data (Mahdianpari et al. 2020). As a 
result, it is now possible to map land cover at a finer spatial 
resolution and capture more complexity in class attributes.

Table 1   Geomorphic wetland 
classification matrix taken from 
Semeniuk and Semeniuk (2011)

Water Regime or Hydroperiod

Landform Permanent 
inundation

Seasonal inundation Intermittent 
inundation

Seasonal waterlogging

Basin Lake Sumpland Pirapi Dampland
Channel River Creek Wadi Trough
Vale Palusvale
Flat/Plain Floodplain Barlkarra Palusplain
Slope Paluslope
Cliff Paluscliff
Hill-top Palusmont

Table 2   The VAST framework for vegetation modification from Thackway and Leslie (2006)

Description

State 0: Naturally Bare Areas with naturally little cover and recently, naturally, disturbed areas where native vegetation has been entirely 
removed (i.e. open to “local primary succession”)

State 1: Residual Native vegetation community structure, composition, and regenerative capacity intact – no significant perturba-
tion from land use/land management practices

State 2: Modified Native vegetation community structure, composition, and regenerative capacity intact – perturbed by land use/
land management practices

State 3: Transformed Native vegetation community structure, composition, and regenerative capacity significantly altered by land use/
land management practices

State 4: Replaced or removed Spontaneous occurrence of alien species. Replacement with cultivated vegetation. Alienation to non-vegetated 
cover
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Many different wetland classification schemes have been 
used in remote sensing projects in recent years. Most clas-
sification schemes applied a description of hydrology and 
dominant vegetation (structure and/or species) (Corcoran 
et al. 2013, 2015; Ding et al. 2020; Hunter et al. 2012; Li 
et al. 2018; Liu et al. 2018; Minotti et al. 2021). But other 
classification schemes took approaches such as: percent 
annual inundation (Halabisky et al. 2018); hydrological sys-
tem (emergent, lacustrine, riparian, riverine) (Fickas et al. 
2016); broad grouping of open water, wetland and dryland 
(Araya-López et al. 2018; Heine et al. 2016; Valenti et al. 
2020); hydroperiod (Schlaffer et al. 2016); likelihood of a 
wetland type (Heimhuber et al. 2018; Raney et al. 2018; 
Rebelo et al. 2017); dominant vegetation (Berhane et al. 
2018; Zhu et al. 2017).

The ‘Canadian Wetland Classification System’ (Zoltai 
and Vitt 1995), which describes wetlands according to the 
three characteristics of nutrient availability, chemistry and 
hydrology is of relevance to this research. This classifica-
tion scheme was applied across Canada over numerous stud-
ies and was significant in demonstrating that a structured 
scheme based on hydrology and not considering vegetation 
characteristics can be applied successfully on a large scale 
(Amani et al. 2020, 2021; DeLancey et al. 2019; Mahdian-
pari et al. 2017; Rezaee et al. 2018).

To maximise useful application of mapping for natural 
resource management and conservation the wetlands of the 
Northern Jarrah Forest should be mapped in a format that 
captures their extent, type, and condition. To be fit for pur-
pose this dataset needs to be comprehensive, reliable, and 
aligned with wetland mapping projects from other regions 
of Western Australia. A traditional wetland mapping pro-
ject, involving attentive interpretation of aerial imagery and 
intensive ground truthing is time and resource intensive, and 
as a result the Northern Jarrah Forest region is one of a num-
ber of large areas in the South West of Western Australia 
where wetland mapping does not exist. The use of exist-
ing environmental datasets, remotely sensed resources and 
machine learning offers a cost-effective approach to develop-
ing a wetland dataset for the Northern Jarrah Forest region.

The overall aim of this research was to use machine learn-
ing and remote sensing resources with a variety of existing 
environmental datasets to map wetland type, vegetation type 
and vegetation condition in the Northern Jarrah Forest region 
of Western Australia. Further, the study aimed to determine 
which wetland type and vegetation condition frameworks, or 
combination of, could be applied to produce the most relia-
ble mapping of wetlands using Random Forest™. This study 
set out to achieve this through the following objectives: map 
wetland type; map vegetation type; map vegetation condi-
tion; and compare accuracy achieved using different clas-
sification combinations. Providing wetland delineation and 
degradation mapping, previously unavailable for the region, 

will enable further wetland research, streamline assessments 
of wetland significance, and facilitate conservation efforts. 
This methodology can be applied to numerous other WA 
and international regions lacking wetland mapping. This 
study contributes to the growing literature on using Ran-
dom Forest™, remote sensing, and ancillary datasets to map 
ecosystems in general and/or the impacts of anthropogenic 
land use.

Study Area

The Northern Jarrah Forest region lies east of Perth and west 
of Narrogin in the South West of Western Australia (Fig. 1). 
The study area for this classification included the southern 
portion of the Northern Jarrah Forest subregion from the 
Interim Biogeographic Regionalisation for Australia dataset 
which covers 15,327 km2 (Australian Government Depart-
ment of Sustainability 2012). The Northern Jarrah Forest 
has a warm Mediterranean climate with mean annual rainfall 
ranging from 1200 mm in the west to 400 mm in the north-
east (Bureau of Meteorology 2023a, b). The vegetation of 
the region is typified by Jarrah-Marri forest over lateritic 
soils in the west, Wandoo-Marri woodland over clay soils 
in the east and Agonis shrublands over alluvial deposits.

Methods

The approach followed to map wetlands in the southern por-
tion of the Northern Jarrah Forest the process involved col-
lecting training data, explanatory variables and applying a 
Random Forest algorithm in GEE code. The training data 
was improved upon, and the explanatory and dependent vari-
ables were refined through an iterative approach by assessing 
the output of an initial classification attempt. These steps are 
explained in detail below and a diagrammatic representation 
is provided in Appendix D.

Initial Classification – Explanatory Variables

In the first run of the model, 70 explanatory variables were 
tested. These variables included data derived from Sentinel 
2 MSI Level-2A GEE image collection and several relevant 
ancillary datasets. The first group accounting for 44 explana-
tory variables was the seasonal medians of the Sentinel 2 
spectral (11 bands). The seasonal medians were defined as 
summer (335th to 59th day of the year), autumn (60th to 151th 
day of the year), winter (152th to 243th day of the year), and 
spring (244th to 334th day of the year)1, beginning from the 
start of Sentinel coverage in the study area (October 2015) 
to the time of classification (May 2022). The second group 
of variables were normalised difference pond index (NDPI), 
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normalised difference vegetation index (NDV1I) and nor-
malised difference water index (NDWI) derived from the 
seasonal median spectral values. The third group of vari-
ables were topographic, including contributing area, Prescott 

index, topographic position index and topographic wetness 
index (derived from 1″ SRTM DEM-S CSIRO) and a digi-
tal elevation model with 5 m resolution. The fourth group 
of variables were land quality factors from the 2017 Soil 
Landscape Mapping (Department of Primary Industries and 
Regional Development 2017). These factors included flood 
hazard, subsurface acidification susceptibility, salinity hazard, 
water repellence susceptibility, soil water storage capacity, site 
drainage potential, waterlogging and inundation risk, water 
erosion hazard, and wind erosion hazard all of which were 

Fig. 1   Study area (black boundary), the southern portion of the Northern Jarrah Forest IBRA subregion (blue boundary)

1  The thresholds for days of the year were informed by the months 
of Australian seasons, http://​www.​bom.​gov.​au/​clima​te/​gloss​ary/​seaso​
ns.​shtml#:​~:​text=​Spring%​20%​2D%​20the%​20thr​ee%​20tra​nsiti​on%​
20mon​ths,months%​20June%​2C%​20July%​20and%​20Aug​ust

http://www.bom.gov.au/climate/glossary/seasons.shtml#:~:text=Spring%20%2D%20the%20three%20transition%20months,months%20June%2C%20July%20and%20August
http://www.bom.gov.au/climate/glossary/seasons.shtml#:~:text=Spring%20%2D%20the%20three%20transition%20months,months%20June%2C%20July%20and%20August
http://www.bom.gov.au/climate/glossary/seasons.shtml#:~:text=Spring%20%2D%20the%20three%20transition%20months,months%20June%2C%20July%20and%20August
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ordinal ranks for example “3–10% of map unit has a high to 
extreme hazard”. Where required, these explanatory variables 
were transformed into raster and uploaded to GEE code.

Initial Classification—Training Data

Training and validation data was obtained from several 
sources, including historical records (Table 3), as well as 
the interpretation of high-resolution aerial imagery. Coarse 
wetland delineation, the description of wetland habitat or 
the presence of wetland flora in historic records focused 
efforts to delineate reliable wetland polygons through inter-
pretation of aerial imagery, this was conducted by an expe-
rienced wetland scientist. A total of 3,058 polygons were 
delineated and attributed to wetland type categories over 
a 316km2; five points from each polygon were randomly 
selected for the purpose of classification. Each reference 
polygon was classified according to five-tiers of wetland 
type, and a two-tiers of vegetation condition (percent of 
training polygons) (Table 4).

Initial Classification – Training and Classification

The training and classification process was done using the 
‘smileRandomForest’ javascript library available through 
GEE code. The initial training and classification run was 
applied to 19 dependent variable combinations (Table 5).

Initial Classification – Verification

The training data polygons were used to generate 30,520 
random points with the same distribution amongst classes 
as in the training data which were used for verification. The 
output of the classification was sampled with the attributed 
points and confusion matrices were used to derive overall 
accuracy, producer accuracy and consumer accuracy.

Final Classification – Explanatory Variables

The 70 explanatory variables were optimised for the final clas-
sifications by conducting iterative regressions to remove vari-
ables with multicollinearity based on a variance inflation factor 
threshold of 10. Once a minimum set of non-multicollinear 
variables was obtained, explanatory variables were reintro-
duced one at a time to replace variables already in the set. Pref-
erence was accorded to importance indicated by the Gini Index 
reported in the initial classification. The explanatory variables 
for the classification of wetland type (hydroperiod), vegetation 
type and vegetation condition are detailed in Table 6.

Final Classification – Training Data

An additional 1,896 polygons were delineated to balance 
the categories in the training data. The new polygons 
were only attributed for Type Level 3 (hydroperiod). This 
increased the area of the training data to 365km2 (2.4% 

Table 3   Sources of historic records used for deriving model training and validation data when mapping wetlands in the Northern Jarrah Forest, 
Western Australia

Dataset title Source Year Shape Number of features Relevance

Geomorphic Wetlands of the 
Swan Coastal Plain

DBCA WA First published 1996 Polygon 578 Maps geomorphic wetland type 
and management category 
along the western edge of the 
study area (2,282 km2)

Geomorphic Wetlands Darkin 
(Area D)

DBCA WA First published 2009 Polygon 779 Maps geomorphic wetland type 
in the southeast corner of the 
study area

Wheatbelt wetlands DBCA WA First published 2000 Polygon 294 Maps wetlands with information 
such as landform, vegetation 
cover and dominant vegeta-
tion. Coverage along the east-
ern edge of the study area

Threatened and Priority Flora DBCA WA Extracted
2022

Point Unknown Certain plant species are 
associated with wetlands and 
researchers often note habitat

WA Herbarium DBCA WA Extracted
2022

Point Unknown Certain plant species are 
associated with wetlands and 
researchers often note habitat

Small scale linear hydrography DWER WA First published 1995 Polylines and points Up to 6006, useful 
amount unknown

Hydrography including swamps, 
rivers, creeks and lakes. The 
dataset offers complete cover-
age of the study area but is 
coarse
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of the study area). The training polygons divided into 
2-hectare segments and 3 points from each were randomly 
selected resulting in 71,621 training points. The distri-
bution of these training points amongst the wetland type 
classes was: ‘Permanent inundation’ (2%); ‘Seasonal inun-
dation’ (19%); ‘Seasonal waterlogging’ (22%); ‘Upland’ 
(44%); ‘Bare Rock’ (2%); ‘Built up’ (7%); and Artificial 
Lake (4%). The training points for vegetation type and veg-
etation condition were taken from the original set of train-
ing polygons. These polygons were divided into 2-hectare 

sections and 3 points randomly selected from each poly-
gon resulting in 65,652 training points. The distribution 
amongst classes for vegetation type and vegetation condi-
tion remained the same as in the initial classification.

Final Classification – Training and Classification

The training and classification used the ‘smileRandomFor-
est’ javascript library available through GEE code. The initial 
training and classification run was applied to three dependent 
variables separately: wetland type level 3 (hydroperiod), veg-
etation type, and vegetation condition level B. First, we select 
the respective explanatory variables in Table 6 and apply the 
‘sampleRegions’ function using the training points. Secondly, 
the sampled training points are used to train an empty Ran-
dom Forest classifier. Finally, the trained classifier is applied 
to the stacked explanatory variable raster creating a classed 
raster which is exported. The classification results were output 
to a single band TIFF with a resolution of 10 m.

Final Classification – Post‑Processing

To create the final maps, the classification output was post-
processed. The output raster was smoothed using a major-
ity filter with a radius of 1.5 pixels (15 m), which was iter-
ated twenty times. The filtered raster was then transformed 
to a polygon format.

Final Classification – Verification

The training data polygons were used to generate 49,288 ran-
dom points with the same distribution amongst classes as in the 
training data which were used for verification. Verification for 
vegetation type and vegetation condition used 36,977 random 

Table 4   Dependant variable hierarchical classification scheme and proportion of training samples

Dependant variable level in hierarchy Dependant variable description Classes (percent of training data)

Wetland type level 1 Simplified landcover ‘Open water’ (9%), ‘Wetland’ (62%), ‘Upland’ (26%), ‘Bare Rock’ (2%) and 
‘Built up’ (1%)

Wetland type level 2 ANAE system type ‘Lacustrine’ (7%), ‘Palustrine’ (45%), ‘Riverine’ (6%), ‘Floodplain’ (13%), 
‘Upland’ (26%), ‘Bare Rock’ (2%) and ‘Built up’ (1%)

Wetland type level 3 Hydroperiod 'Permanent inundation' (13%), 'Seasonal inundation' (24%), 'Seasonal waterlog-
ging' (34%), ‘Upland’ (26%), ‘Bare Rock’ (2%) and ‘Built up’ (1%)

Wetland type level 4 Geomorphic type 'Lake' (1%), 'Sumpland' (11%), 'Dampland' (6%), 'River' (6%), 'Palusvale' (2%), 
'Floodplain' (13%), 'Palusplain' (21%), 'Paluslope' (5%), ‘Artificial Lake’ (7%), 
‘Upland’ (26%), ‘Bare Rock’ (2%) and ‘Built up’ (1%)

Vegetation type Vegetation type ‘forbs, grasses, sedges and reeds’ (31%), ‘scrubland and shrubland’ (10%), ‘forest 
and woodland’ (41%) and ‘bare’ (18%)

Vegetation condition level A Simplified condition ‘naturally bare’ (7%), ‘vegetated’ (56%) and ‘cleared’ (37%)
Vegetation condition level B VAST classes ‘naturally bare’ (3%), ‘residual’ (43%), ‘modified’ (11%), ‘transformed’ (8%) and 

‘replace or removed’ (35%)

Table 5   Dependant variable combinations explored in the initial pass 
at classification of wetlands in the Northern Jarrah Forest of Western 
Australia

Classification Dependant variable combination

1 Wetland type level 1
2 Wetland type level 2
3 Wetland type level 3
4 Wetland type level 4
5 Wetland type level 1, Vegetation type
6 Wetland type level 2, Vegetation type
7 Wetland type level 3, Vegetation type
8 Wetland type level 4, Vegetation type
9 Wetland type level 1, Condition level A
10 Wetland type level 2, Condition level A
11 Wetland type level 3, Condition level A
12 Wetland type level 4, Condition level A
13 Wetland type level 1, Condition level B
14 Wetland type level 2, Condition level B
15 Wetland type level 3, Condition level B
16 Wetland type level 4, Condition level B
17 Wetland type level 4, Vegetation type, 

Condition level B
18 Condition level A
19 Condition level B
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points. The output of the classification was sampled with the 
attributed points and confusion matrices were used to derive 
overall accuracy, producer accuracy and consumer accuracy.

Results

The initial classification (19 dependent variable com-
binations) gave an indication of which level within 
the classification hierarchy would return meaningful 

results while maximising detail on wetland type. The 
accuracy of both wetland type and vegetation condi-
tion was greater with less refined levels of classifica-
tion (Table 7). When classified at a level of simplified 
land cover (wetland type level 1), the overall accuracy 
was 89.8%. This fell to 83% for ANAE classification 
(wetland type level 2), 79.1% for hydroperiod (wetland 
type level 3) and 72.7% for geomorphic wetland type 
(wetland type level 4) (Table 7).

Table 6   Explanatory variables used to classify wetlands in the Northern Jarrah Forest of western Australia according to wetland type (hydrop-
eriod), vegetation type, and vegetation condition in the final classification

Dependant variable Explanatory variables

Wetland type (hydroperiod) Band 9 (water vapour) autumn median, band 2 (blue) winter median, band 8A (vegetation red edge) winter median, 
band 9 (water vapour) winter median, band 11 (SWIR) spring median, band 12 (SWIR) summer median, spring 
median NDVI, DEM, TPI, TWI, contributing area, Prescott Index, drainage potential, flood hazard, salinity 
hazard, subsurface acidification, water erosion hazard, water repellence, water storage capacity, and wind erosion 
hazard

Vegetation type Band 4 (red) winter median, band 8A (vegetation red edge) winter median, band 11 (SWIR) winter median, band 
2 (blue) spring median, band 8A summer median, winter median NDWI, DEM, TPI, TWI, contributing area, 
Prescott Index, drainage potential, flood hazard, salinity hazard, subsurface acidification, water erosion hazard, 
water repellence, water storage capacity, and wind erosion hazard

Vegetation condition
(level B)

Band 2 (blue) winter median, band 6 (vegetation red edge) winter median, band 11 (SWIR) winter median, band 
4 (red) spring median, band 6 (vegetation red edge) summer median, summer median NDWI, DEM, TPI, TWI, 
contributing area, Prescott Index, drainage potential, flood hazard, salinity hazard, subsurface acidification, water 
erosion hazard, water repellence, water storage capacity, and wind erosion hazard

Table 7   Overall accuracy 
achieved for different dependant 
variable combinations in the 
initial and final classifications 
when mapping wetlands in 
the Northern Jarrah Forest of 
Western Australia

Dependant variable combination Overall accuracy in 
initial classification 
(%)

Overall accuracy in 
final classification 
(%)

Simplified landcover 89.8 -
Simplified landcover and vegetation type 71.8 -
Simplified landcover and vegetation condition level A 81.2 -
Simplified landcover and vegetation condition level B 69.7 -
ANAE classification 83 -
ANAE classification and vegetation type 66.8 -
ANAE classification and vegetation condition level A 74.8 -
ANAE classification and vegetation condition level B 65.3 -
Hydroperiod 79.1 82
Hydroperiod and vegetation type 64.3 -
Hydroperiod and vegetation condition level A 71.5 -
Hydroperiod and vegetation condition level B 63.2 -
Geomorphic wetland type 72.7 -
Geomorphic wetland type and vegetation type 61 -
Geomorphic wetland type and vegetation condition level A 66.1 -
Geomorphic wetland type and vegetation condition level B 59.6 -
Geomorphic wetland type, vegetation type and vegetation 

condition level B
54.3 -

Vegetation type - 78.3
Condition level A 89.3 -
Condition level B 76.3 79.6
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The overall accuracy for identifying vegetation condition 
when classified alone was 89.3% for condition level A and 
76.3% for condition level B (Table 7). The accuracy fell 
for every class when wetland type, vegetation type and/or 
vegetation condition were merged as the dependent variable 
(Table 7). When classified by hydroperiod or a lower level 
of detail, the output was consistent in producing objects 
which followed expected patterns of wetland occurrence 
across the landscape and were grouped at an appropriate 
scale rather than a large variation of pixels within a small 
area. The lowest performing model was geomorphic wet-
land type combined with vegetation type and condition level 
B with an overall accuracy of 54.3% (Table 7). When clas-
sified according to geomorphic wetland type, the output 
included small, scattered, intermixed areas of geomorphic 
type. Visual inspection confirmed that the best wetland type 
classification level to be targeted for refinement was hydro-
period as the results from geomorphic wetland type were 
too unstable. The results supported the need for further clas-
sification to be applied to wetland type, vegetation type and 
vegetation condition as separate dependent variables.

The final classification improved the overall accuracy of 
the wetland type level 3 (hydroperiod) classification to 82% 
(Table 7) with an out of bag error estimate (OOB) of 0.11. 
The most accurate class in the hydroperiod classification in 
terms of producer accuracy was ‘Upland’ at 92.4%, while 
the least accurate was ‘Artificial Lake’ at 43%. The best 
performing class in the hydroperiod classification in terms 
of user accuracy was ‘Artificial Lake’ at 96.8% while the 
worst was ‘Bare Rock’ at 15.8%. Further, ‘Built Up’ and 
‘Permanent Inundation’ performed well in terms of user 
accuracy (95.7% and 92.4%), but poorly in terms of pro-
ducer accuracy (56.2% and 77.5%), meaning there is high 
confidence that those features captured are correct, but less 
confidence that all features have been captured. The oppo-
site is true for ‘Seasonal Inundation’ and ‘Seasonal Water-
logging’ for which there is high confidence that all features 
have been captured, but less confidence in the accuracy of 
the features in these classes (Table 8). The most important 
explanatory variables were DEM, Prescott Index, the Spring 
B11 median, Spring NDVI and the Summer B12 median 
according to the accumulated GINI index (Appendix A).

The overall accuracy achieved for vegetation condition 
level B increased to 80% (Table 7), from 76% (Table 7) 
with an out of bag error estimate (OOB) of 0.13. The best 
performing class in vegetation condition level B in terms 
of producer accuracy was ‘Residual’ at 92.9% while the 
worst was ‘Modified’ at 50%. The best performing class 
in vegetation condition level B in terms of user accuracy 
was ‘Replaced or Removed’ at 88.7% while the worst was 
‘Modified’ at 64%. Further, ‘Naturally Bare’ performed well 
in terms of user accuracy, but less well in terms of producer 
accuracy, the opposite is true for ‘Residual’, ‘Replaced or 

Removed’ performed well in both forms of accuracy, while 
‘Modified’ and ‘Transformed’ performed poorly in both 
forms of accuracy (Table 8). The most significant explana-
tory variables were DEM, Prescott Index, the Winter B11 
median, Summer NDWI and the Winter B6 median accord-
ing to the accumulated GINI index (Appendix B).

The overall accuracy achieved for vegetation type was 
78%. This dependent variable was not tested alone in the 
initial classification (Table 7) with an out of bag error esti-
mate (OOB) of 0.12. The best performing class in vegeta-
tion type in terms of producer accuracy was ‘Forbs, Grasses 
and Sedges’ at 86.5%, while the worst was ‘Scrubland and 
Shrubland’ at 53.5%. The best performing class in vegeta-
tion type in terms of user accuracy was ‘Bare’ at 94.6%, 
while the worst was ‘Scrubland and Shrubland’ at 69.9%. 
Further, ‘Forbs, Grasses and Sedges’ and ‘Forest and Wood-
land’ performed well in terms of user accuracy, but less 
well in terms of producer accuracy. The opposite is true for 
the class ‘Bare’ (Table 8). The most significant explana-
tory variables were DEM, Prescott Index, the Summer B8A 
median, the Winter B8A median and the Spring B2 median 
according to the accumulated GINI index (Appendix C).

The classification of wetland type across the southern 
portion of the Northern Jarrah Forest indicates that there are 
62km2 of permanently inundated wetland, 766km2 of seasonally 

Table 8   Producer and user accuracy achieved for different classes in 
the final classification of wetlands in the Northern Jarrah Forest of 
Western Australia according to Wetland type (hydroperiod), Vegeta-
tion type, and Vegetation Condition

Class User accuracy
%

Producer 
accuracy
%

Hydroperiod
  Permanent inundation 92.4 77.5
  Seasonal inundation 76.5 85.9
  Seasonal waterlogging 74.2 86.3
  Upland 89.6 92.4
  Built up 95.7 56.2
  Bare rock 15.8 46
  Artificial Lake 96.8 43

Vegetation type
  Forb, grasses and sedges 72.2 86.5
  Scrubland and shrubland 69.9 53.5
  Forest and woodland 73.3 81.6
  Bare 94.6 79.1

Vegetation condition level B
  Naturally bare 86.5 70.8
  Residual 75.9 92.9
  Modified 64 50
  Transformed 66 57.5
  Replaced or removed 88.7 88.8
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inundated wetland, 1,480km2 of seasonally waterlogged wetland 
and 76km2 of artificial lake. Wetlands occur in greatest concen-
tration in the western portion of the study area, where narrow 
seasonally waterlogged wetlands dominate (Figs. 2 and 3). In 
the northeast portion of the study area, wetlands are distributed 
sparsely and seasonally inundated wetlands are the most com-
mon type (Fig. 4). In the southeast portion of the study area wet-
lands occur as broad, seasonally waterlogged systems (Fig. 5).

Vegetation condition varies between the wetland types. 
Half the area of permanently inundated wetlands were cov-
ered by vegetation of residual condition (45%), 19% were 
naturally bare, 14% were replaced or removed, 12% were 
modified, and 10% were transformed (Fig. 6). Half the area 
of seasonally inundated wetlands was covered by vegetation 
of residual condition (52%), 18% were replaced or removed, 
15% were transformed, 13% were modified, and 1% were 
naturally bare (Fig. 6). Half the area of seasonally water-
logged wetlands has been replaced or removed (51%), 35% 
were residual, 8% were transformed, and 6% were modified 
(Fig. 6). Most artificial lakes were replaced or removed (95%), 
2% were residual, 1% was naturally bare, 1% was modified, 
and 0.2% was transformed (Fig. 6).

Most wetland degradation in terms of vegetation condition 
occurs in the east of the study area (Fig. 7). There is also a 
string of heavily impacted subcatchments along the western 
edge of the study area. Despite this and localised impacts 
around dams and mining activities, the inner west of the study 
area is largely intact (Fig. 7).

Vegetation type varied between wetland types. Half the 
area of permanently inundated wetlands was covered by for-
est and woodland (56%), 31% were bare, 12% were forbs, 
grasses and sedges, and 1% were scrubland and shrubland 
(Fig. 8). The area of seasonally inundated wetlands was cov-
ered by forbs, grasses and sedges (42%), forest and wood-
land (40%), scrubland and shrubland (13%), and bare (5%) 
(Fig. 8). Half the area of seasonally waterlogged wetlands 
was covered by forbs, grasses and sedges (58%), 36% were 
forest and woodland, 4% were scrubland and shrubland, and 
2% were bare (Fig. 8). Most artificial lakes were bare (97%), 
2% were forest and woodland, 0.5% were scrubland and 
shrubland, and 0.4% were forbs, grasses and sedges (Fig. 8).

Discussion

This study demonstrates the utility of using machine 
learning, remote sensing datasets and ancillary variables 
to map wetlands in the Northern Jarrah Forest of Western 
Australia which until now, lacked a dataset showing the 
extent, type, and condition of wetlands. The classifica-
tion produced a mapping product that shows indicative 
wetland distribution, while capturing wetland type at a 
hydroperiod level and vegetation condition with accuracy 

above 80%. Wetland type was mapped accurately at the 
hydroperiod level (overall accuracy of 82%). The ANAE 
system type was mapped more accurately with an overall 
accuracy of 83%. Mapping vegetation condition using the 
VAST framework achieved an overall accuracy of 79.6%.

Results show that wetlands occur in greater concentration 
in the western portion of the study area, specifically as nar-
row seasonally waterlogged sites. In the northeast, wetlands 
tend to be more sparse and seasonally inundated, while in 
the southeast they occur as broad systems that are seasonally 
waterlogged. The geographic variation in wetland type may 
be attributed to climatic and landform influence. Climate 
may influence wetland distribution with rainfall increasing 
and temperatures decreasing going south. The mean annual 
rainfall since records began for Dwellingup in the west of the 
study area is 1227.1 mm; this drops to 644.7 mm for Ban-
nister in the east of the study area (Bureau of Meteorology 
2022). Landform may influence wetland distribution with a 
greater prevalence of steep gullies on the scarp and broad 
basin in the southeast. The wetlands in the western portion 
of the study are more likely to be seasonally waterlogged and 
smaller than those in the east. This might be attributed to 
shallower valleys with smaller contributing area, or it could 
be an impact of the vegetation influencing the training data. 
The wetlands in the northeastern portion of the study area 
were more sparsely distributed but more likely to be classed 
as seasonally inundated and cover larger elongated areas. 
This may be attributed to larger catchments creating sys-
tems with more contributing area. The southeastern portion 
of the study area was the only place that broad seasonally 
inundated and waterlogged flats were identified which can 
be attributed to the flat topography in this area. This relation-
ship is similar to that described by another study in Mary-
land, USA, which found that TWI (closely related to contrib-
uting area) and normalised relief were an effective predictor 
in the periodicity of wetland inundation (Lang et al. 2012).

Degradation in terms of vegetation condition is concen-
trated in the eastern part of the study area. Most impacts are 
on seasonally waterlogged wetlands where 51% of wetlands 
by area were replaced or removed, compared to 14% and 
18% in permanently inundated and seasonally inundated 
wetlands respectively. The distribution of degraded wet-
lands being concentrated in the east of the study area and 
most impacting seasonally waterlogged wetlands reflects the 
distribution of arable land. This trend is repeated in other 
parts of the country where flat seasonally waterlogged land 
is primarily cleared for agriculture such as on the Swan 
Coastal Plain where 95% of palusplain by area is cleared 
(Department of Biodiversity, Conservation and Attrac-
tions 2017). This information on wetland degradation in 
subcatchments can be used to steer conservation efforts in 
the Northern Jarrah Forest, however, as roughly a tenth of 
the subcatchments in the study area were smaller than 100 
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hectares, the use of subcatchments as management blocks 
to guide conservation prioritisation are too granular. In con-
trast, whole catchments are too coarse to derive meaningful 

insights. Managers should direct efforts towards aggregat-
ing smaller subcatchments into conservation units to match 
some of the larger subcatchments.

Fig. 2   Classification of wetlands by hydroperiod in the northwest of the Northern Jarrah Forest of Western Australia study area
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In this study, the greatest level of detail which could be 
classified was hydroperiod. Unfortunately, mapping at the 
geomorphic type achieved an accuracy of 73%. Although 

the difference in overall accuracy between the hydroperiod 
and geomorphological approach seems small, the effective 
difference in performance at producing interpretable results 

Fig. 3   Classification of wetlands by hydroperiod in the southwest of the Northern Jarrah Forest of Western Australia study area
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was considerable. This may be due to two factors: the lack 
of an explanatory variable for morphology and the training 
data quality. None of the explanatory variables tested in this 

study held a meaningful connection to morphology. A recent 
study applied a CNN to extract features from DEM to classify 
plains, platforms, hills and mountains in Shangdong, China, 

Fig. 4   Classification of wetlands by hydroperiod in the northeast of the Northern Jarrah Forest of Western Australia study area
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with up to 84.35% overall accuracy (Xu et al. 2021). This 
suggests that future models that tie topographic variables 
to morphology if interpreted by a model using object-based 

image analysis are likely to increase the applicability of these 
methods for mapping geomorphology. Furthermore, the dis-
tinction between geomorphic types is prone to subjectivity. 

Fig. 5   Classification of wetlands by hydroperiod in the southeast of the Northern Jarrah Forest of Western Australia study area
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For instance, it is difficult to distinguish between a very broad 
dampland and a small palusplain. As such, there will be over-
lap between adjacent classes in terms of geomorphology in 
both the historic wetland data and the newly derived training 
data. The study by Semeniuk and Semeniuk (1995) which 
led to the adoption of geomorphic wetlands in Western Aus-
tralia, did not provide a methodology for delineating wetland 
geomorphology which could be applied programmatically. If 
clear metrics to describe geomorphic wetlands could be deter-
mined, the study Xu et al. (2021) shows that there is a good 
prospect for geomorphic classification using remote sensing.

While the overall accuracy for wetland hydroperiod was 
high, there were examples of misaligned mapping when the 
output is visually assessed. There is overtraining error in the 
northeast quadrant of the mapping due to sparse training data 
and poor generalisation. Nevertheless, the output from this 
study can be considered a useful source of indicative infor-
mation for wetland distribution and condition in the southern 
portion of the Northern Jarrah Forest. The results can be used 
to guide focused investigation of reportedly heavily impacted 
subcatchments. Definitive wetland mapping for the Northern 
Jarrah Forest can be achieved through remote sensing if follow 
up efforts are made to balance the training data and conduct 
field verification of training attribution.

Another finding from this study is that the classifier 
performed better when dependent variables were mapped 
independently. For instance, mapping wetland type alone 
produced better results than mapping wetland type com-
bined with vegetation condition. The initial hypothesis 
was that two degraded wetlands of different types might be 
more similar than a pristine and a degraded wetland of the 

same type. To the contrary, the best results were obtained by 
mapping dependent variables separately and then overlay-
ing the results. This reflects the outcomes of a classification 
of freshwater wetlands and aquatic habitats in Lake Baikal, 
Russia, where the overall accuracy fell as more detail was 
targeted in a hierarchical class structure (Lane et al. 2014).

The model did not perform the same for all classes. The 
classes which performed best in accuracy were those that 
represented terminal states. ‘Permanent Inundation’ and 
‘Upland’ performed best in the wetland type category while 
‘Naturally Bare’, ‘Residual’, and ‘Replaced or Removed’ 
performed best in the vegetation condition category. Wet-
lands of transitory vegetation condition will have a variety 
of spectral signatures reflecting different types of disturbance 
and degrees of disturbance. Similarly, seasonal wetlands can 
vary greatly between more and less saturated before becom-
ing inundated. As a result, they support different ecological 
communities with unique spectral signatures. Similar results 
were reported by Li et al. (2018) in their efforts to classify 
coastal wetlands, the author reported low producer accuracy 
for the class ‘Impervious Surface Area’ which they attributed 
to mixed land use associated with diverse spectral signatures.

Elevation and Prescott index were the most important input 
classification features. For each of the classification classes 
wetland type, vegetation type and vegetation condition eleva-
tion had the highest accumulated Gini index values, followed 
by Prescott index. There is a direct link between these vari-
ables and wetland type where accumulation of surface water 
is determined by relative elevation, similarly Prescott index is 
a measure of water balance. The link between these variables 
and vegetation type may simply be that dryland was much 

Fig. 6   Vegetation condition within different wetland types by hydroperiod in the Northern Jarrah Forest of Western Australia
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more likely to host woodland and grassland, while wetlands 
were more likely to host shrubland and sedgeland. The link 
between elevation and Prescott index and vegetation condition 

may be less causal and reflect the increased land clearing in 
the lower drier half of the study area. The importance of 
elevation has been reported in numerous wetland mapping 

Fig. 7   Subcatchments with percent of wetlands by area in a modified or better condition in the Northern Jarrah Forest of Western Australia
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studies (Franklin and Oumer 2017; Valenti et al. 2020). Top-
ographic indices and spectral information were consistently 
more important than soil characteristics in the classification of 
classes. This was expected with topography driving wetland 
distribution and spectral information reflecting the outcome 
of increased moisture and dense vegetation.

This study utilised the ‘smileRandomForest’ javascript 
library, future efforts should investigate the use of other clas-
sification algorithms. A Random Forest based algorithm was 
chosen because this approach yielded positive results in the 
literature (Berhane et al. 2018; Liu et al. 2018; Mahdianpari 
et al. 2017). The aim of this study was to demonstrate that 
wetland type, vegetation type and condition can be delineated 
in regional Australia over a broad area using sparse historic ref-
erence material and without excessive labour. In application of 
similar methodology in other under-surveyed regions the appli-
cation of other classification algorithms should be explored 
with aim of achieving more reliable wetland delineation.

Conclusion

This study set out to map wetland extent, type, and condi-
tion in the Northern Jarrah Forest of Western Australia 
using machine learning, remote sensing datasets and ancil-
lary variables. We found that wetlands occur in greater 
concentration as narrow seasonally waterlogged sites in the 
west, more sparsely and seasonally inundated sites in the 
northeast, and as broad seasonally waterlogged sites in the 
southeast of the southern half of the Northern Jarrah For-
est. The broad condition of wetlands in the Northern Jarrah 
Forest is found to be good, relative to surrounding IBRA 

regions, but the distribution of vegetation degradation is 
uneven. Degradation determined through vegetation condi-
tion is concentrated in the east of the southern half of the 
Northern Jarrah Forest and most impacts are on seasonally 
waterlogged wetlands.

Our study suggests that satellite imagery and topographic 
indices can be used to map wetland with a fine level of detail 
in the Southwest of Western Australia. Using easily accessible 
cloud resources and existing datasets, it is possible to map wet-
land type to the level of hydroperiod and vegetation condition 
using the VAST framework to produce a product with suitable 
reliability for indicative wetland mapping for land use manage-
ment. While the results can only be considered as indicative, 
applying this methodology to other regions which lack wetland 
mapping would provide great value for conservation efforts. 
The methods detailed in this study can be adopted with mini-
mal expense in terms of computing power and labour and are 
readily replicable. Early investigation indicated that mapping 
wetlands by remote sensing at the ANAE system type would 
yield more reliable results and align the Western Australian 
wetland mapping products with national standards. Future 
works should investigate alternative approaches to gathering 
training data efficiently in regions where there is low survey 
coverage in historic resources. The novel insight offered by 
this study is in the comparison of prevalent Australian wet-
land classification schemes suitability as dependant variables 
for mapping wetland at broad scales. Wetland delineation in 
a region that is only coarsely mapped is invaluable for wet-
land management. This classification methodology should be 
improved and repeated to monitor change in wetland condition 
in the Northern Jarrah Forest as threatening processes such as 
land clearing and climate change progress.

Fig. 8   Vegetation classes found across different wetland types (by hydroperiod) in the Northern Jarrah Forest of Western Australia
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Appendix A

Fig. 9

Fig. 9   Accumulated GINI for 
Wetland Type (Hydroperiod)
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Appendix B

Fig. 10

Appendix C

Fig. 11

Fig. 10   Accumulated GINI for 
Vegetation Condition (Level B)
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Fig. 11   Accumulated GINI for 
Vegetation Type
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Appendix D Fig. 12

Fig. 12   Methodology flow chart
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