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Smith et al. 2019). However, the key attribute influencing a 
wetland’s function, water permanence or inundation dura-
tion (i.e., hydroperiod), is rarely known or quantified. In this 
study, we define hydroperiod as the duration of consecutive 
days with ponded surface water. In regard to amphibians, 
hydroperiod has been shown to be a far stronger determinant 
of taxa richness than wetland size (Snodgrass et al. 2000; 
Babbitt et al. 2003; Babbitt 2005), and many amphibian 
species will only breed in temporary wetlands (Dodd 1992, 
1993). Thus, knowledge of hydroperiod is key to protect-
ing critical habitat and preserving biodiversity of wetland 
obligate species. Furthermore, the lack of knowledge on 
water permanence or connections to permanent waterbod-
ies has led to shifting legal protections for various surface 
water features including geographically isolated wetlands 
(e.g., McLaughlin et al. 2014; Cohen et al. 2016; Rains et 
al. 2016). Even with these uncertainties we are unaware of 
any widespread efforts to better monitor and assess water 

Introduction

Small isolated wetlands are important landscape features 
that provide myriad ecosystem services (Cohen et al. 2016). 
They are known hotspots for nutrient and chemical trans-
formation (Reddy and DeLaune 2008), sequester dispro-
portionately large quantities of carbon relative to their area 
(Mitsch and Gosselink 2015; Marton et al. 2015; Craft et al. 
2018), and harbor an abundance of threatened and endan-
gered species (Williams and Dodd Jr 1978; Murdock 1995; 
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Abstract
The duration of inundation or saturation (i.e., hydroperiod) controls many wetland functions. In particular, it is a key 
determinant of whether a wetland will provide suitable breeding habitat for amphibians and other taxa that often have 
specific hydrologic requirements. Yet, scientists and land managers often are challenged by a lack of sufficient monitor-
ing data to enable the understanding of the wetting and drying dynamics of small depressional wetlands. In this study, 
we present and evaluate an approach to predict daily inundation dynamics using a large wetland water-level dataset and 
a random forest algorithm. We relied on predictor variables that described characteristics of basin morphology of each 
wetland and atmospheric water budget estimates over various antecedent periods. These predictor variables were derived 
from datasets available over the conterminous United States making this approach potentially extendable to other loca-
tions. Model performance was evaluated using two metrics, median hydroperiod and the proportion of correctly classified 
days. We found that models performed well overall with a median balanced accuracy of 83% on validation data. Median 
hydroperiod was predicted most accurately for wetlands that were infrequently inundated and least accurate for permanent 
wetlands. The proportion of inundated days was predicted most accurately in permanent wetlands (99%) followed by fre-
quently inundated wetlands (98%) and infrequently inundated wetlands (93%). This modeling approach provided accurate 
estimates of inundation and could be useful in other depressional wetlands where the primary water flux occurs with the 
atmosphere and basin morphology is a critical control on wetland inundation and hydroperiods.
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permanence in small wetlands beyond localized scales (e.g., 
NCDWR, 2018). This lack of hydrologic information can 
lead to land and species management decisions that might 
ignore a critical piece of information. Hence, tools are 
needed to help predict water permanence (hydroperiod) in 
small, isolated wetlands where data often are lacking, and 
the small size of which precludes the use of most currently 
available (and free of cost) remotely sensed data.

Past efforts to predict wetland hydrology have been based 
on three broad categories of techniques: physically based 
process models, remote sensing approaches, and empirical 
models. Physically based process models have been used 
to simulate the complex hydrology of pine flatwoods pre- 
and post-forest harvest (Sun et al. 1998, 2007) and to more 
broadly examine the role of forest harvest and management 
on wetland hydrology in low relief landscapes (Skaggs et 
al. 2005). Other studies have used these models to investi-
gate potential impacts on wetland hydrology from climate 
change (Kurki-Fox et al. 2019) and to model hydrologic 
processes in various types of depressional wetlands (Kras-
nostein and Oldham 2004; Caldwell et al. 2007; Qi et al. 
2019; Cartwright and Wolfe 2021). This type of model can 
be especially useful when information regarding hydrologic 
processes is needed in addition to simulations of particular 
hydrologic outputs. However, one of the challenges with 
many physically based process models is the relatively high 
and diverse data requirements, such as detailed soil charac-
teristics and water table elevations over the model domain, 
which are rarely available.

Remotely sensed data have been used to infer the pres-
ence or absence of surface water in wetlands and time series 
of these remotely sensed data can then be used to estimate 
the duration of inundation (e.g., Jones 2019; Wu et al. 
2019; Hopkinson et al. 2020; Alonso et al. 2020; Kissel et 
al. 2020; Londe et al. 2022). One product designed specifi-
cally for this purpose is the Dynamic Surface Water Extent 
(DSWE, Jones 2015; Jones 2019). This dataset is derived 
from Landsat and therefore has repeat scenes of 8–16 days 
(assuming cloud cover is minimal and multiple sensors are 
used). Given the 30 m resolution of Landsat, this dataset is 
most applicable to larger wetland sites (i.e., those that are at 
least the area of several Landsat pixels). Other studies have 
coupled multiple sources of remote sensing data to backfill 
temporal gaps often present with a single satellite (Murray-
Hudson et al. 2015; Wu et al. 2019). For example, in the 
prairie pothole region of the United States, Wu et al. (2019) 
combined aerial imagery and lidar data to explore wetland 
inundation dynamics. By combing these datasets, they were 
able to identify smaller waterbodies than were evident 
from satellite derived data alone and that provided a denser 
temporal record, which allowed more highly resolved esti-
mates of inundated extent. While these examples of remote 

sensing approaches are highly viable in large, non-forested 
or sparsely forested wetland systems, they are often not 
practical for small, forested wetlands. This is especially true 
in humid regions that have frequent cloud cover, often limit-
ing the consecutive satellite pass-overs that are suitable for 
analysis.

Empirical studies have used field data with statisti-
cal models to relate weather, climate, and characteristics 
of a wetland basin to the duration, depth, or area, of wet-
land inundation. Studies using these techniques have often 
focused more explicitly on hydroperiod determination than 
studies using physically based process models or remotely 
sensed data (e.g. Greenberg et al. 2015; Chandler et al. 
2016; Kissel et al. 2020; Londe et al. 2022). For example, 
in a lowland coastal plain site Riley et al. (2017) showed 
that a neighborhood scale topographic metric was strongly 
related to wetland hydroperiod class (short, long, perma-
nent), and in a nearby study site, Chandler et al. (2016) used 
generalized linear mixed models to predict water presence 
as a function of climatological and meteorological variables 
and wetland characteristics. Other studies have found cli-
mate indices (e.g., Palmer drought severity index, standard-
ized precipitation index [SPI]) (Davis et al. 2019; Londe et 
al. 2022) as well as soil moisture (Kissel et al. 2020) to be 
important for prediction of wetland inundation. While sta-
tistical models have proven very useful for localized appli-
cations, predictors derived from field data often reflect site 
specific variables and may limit their transferability to dif-
ferent wetland sites. Collectively, however, the above stud-
ies suggest that empirical models should consider weather 
forcings and characteristics of the wetland basins for accu-
rate inundation prediction.

The application of machine learning (ML) algorithms 
(another empirical modeling approach) to the broader 
domain of hydrologic prediction has greatly increased in the 
last decade (see Shen et al. 2021; Nearing et al. 2021; Zoun-
emat-Kermani et al. 2021). Many studies that have used ML 
methods for hydrologic prediction have highlighted higher 
accuracy than physically based process and statistical mod-
els (e.g. Galeati 1990; Solomatine and Ostfeld 2008; Best 
et al. 2015; Nearing et al. 2016). Machine learning models, 
and specifically random forests, have many desirable prop-
erties for prediction problems: they are non-parametric (i.e., 
require no assumption regarding data distributions); they are 
not negatively affected by correlated predictors; and they 
can capture interactions between predictors, among others 
(see Tyralis et al. 2019). Despite the large body of literature 
that highlights accurate hydrologic predictions, we are only 
aware of a limited number of studies that have employed 
ML techniques for predicting wetland inundation dynamics 
(Shaeri Karimi et al. 2019; Choi et al. 2020; Cartwright et 
al. 2021; Solvik et al. 2021). Of these, only Cartwright et 
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al. (2021) focused specifically on small depressional wet-
lands, and only Choi et al. (2020) attempted prediction at 
a daily time-step. The wetland community could benefit 
from additional studies using ML approaches to understand 
where they may be viable options for predicting inundation 
dynamics of small depressional wetlands.

The goal of this study was to explore a novel applica-
tion of ML to predict daily inundation and estimate hydro-
periods in small depressional wetlands. Specifically, we 
had three objectives: (1) build random forest models using 
widely available meteorological and elevation data to derive 
predictor variables to predict daily inundation and to esti-
mate median hydroperiods; (2) assess model performance 
based on the proportion of days correctly classified and the 
accuracy the of median hydroperiods estimated from daily 
predictions; and (3) evaluate variable importance metrics to 

determine which predictors were most influential in classi-
fication accuracy. This will provide a framework for others 
to build and evaluate similar models to predict daily inunda-
tion where extensive field datasets for predictor variables 
may not exist.

Methods

Study Area and Hydrologic Data

This study was conducted using data from Saint Marks 
National Wildlife Refuge (SMNWR) in the Florida panhan-
dle along the Gulf Coast (Fig. 1). Water levels were moni-
tored in 59 wetlands that covered a variety of wetland types 
(cypress domes, flatwoods, wet prairies, hardwood wetlands, 

Fig. 1 Location of study area and 
monitored wetlands
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that PET was a more important predictor than either of its 
components (air temperature or VPD), so these variables 
were removed from further consideration. The gridMET 
dataset provides daily meteorological data on an approxi-
mately 4-km2 grid across the contiguous United States. 
Given the relatively small study area extent, the grid cell at 
the centroid of the study area was used as the point to extract 
meteorological data.

Most of the monitored wetlands have been field mapped 
(Riley 2016) and those boundaries were used where avail-
able. Where boundaries were not field mapped, the national 
wetlands inventory (NWI) boundaries were used, and, where 
not present in the NWI, boundaries were heads-up digitized 
from the national aerial imagery program (NAIP) and a lidar 
derived digital elevation model (DEM). The dominant vege-
tation class for each wetland was extracted from the LAND-
FIRE (2016) dataset. The LANDFIRE dataset has a 30-m 
resolution and is not intended for high resolution vegetation 
mapping but can represent the vegetation class surrounding 
the wetlands. A lidar-derived 1-m DEM (FDEM 2008) was 
used to derive topographic metrics, including a topographic 
position index (TPI) (Weiss 2001; Jenness et al. 2011; Riley 
et al. 2017). In our study area an annulus shaped neighbor-
hood with inner and outer radius of 20 and 40 cells, respec-
tively, was used. All topographic metrics (mean TPI, mean 
elevation, and elevation range) were summarized within 
each wetland boundary.

Conceptualizing Wetland Hydrology for a Data 
Driven Model

The water budgets of the depressional wetlands in this 
study are primarily controlled by precipitation as the input 
and evapotranspiration (ET) as the output. Groundwater 
exchange certainly occurs but we lack data to adequately 
quantify that exchange. In similar wetlands, McLaughlin 
and Cohen (2012) found groundwater exchange frequently 
reversed directions between the wetlands and the surficial 
aquifer. Thus, the water budget is represented simply as 
ΔStorage = precipitation – potential evapotranspiration.

The differences are summed over various antecedent 
timesteps to represent different aspects of storage. Short lags 
(5–60 days) likely reflect storage conditions in the vadose 
zone and longer lags (60–180 days) may represent saturated 
zone storage conditions. Basin morphology (Fig. 2) along 
with antecedent storage conditions of soils, the surficial 
aquifer, and the wetland basin determines how a wetland will 
respond to precipitation and evapotranspiration. Wetlands 
with small surface areas but deep basins will collect rela-
tively less precipitation but will also be less susceptible to 
evaporative losses as compared to broad shallow wetlands. 
To characterize wetland morphology, we used basin area for 

and sink-hole ponds), sizes (0.01 ha to 1.38 ha), and eleva-
tions (0.94 to 4.31 m, relative to North American Vertical 
Datum of 1988, Supplemental material table S1). Although 
some wetlands were at very low elevations, coastal flooding 
is rare in the study area and has mostly been associated with 
land falling tropical systems (Gunzburger et al. 2010). Spe-
cific monitoring periods in each wetland varied, but most 
had at least five years of record with a maximum of ten 
years. Monitoring equipment at each wetland consisted of a 
total pressure sensor (Hobo U-20, Onset Corporation, Cape 
Cod, MA) and staff gage installed in the deepest portion of 
the wetland’s basin, or in permanent wetlands, as deep as 
possible and in proximity to vegetation that indicated per-
manent inundation. To compensate for atmospheric pres-
sure, a barometer was installed in a dry well below the water 
table. This was to prevent inaccuracies from large tempera-
ture swings that may occur when barometers are exposed to 
ambient air conditions (McLaughlin and Cohen 2011). All 
water level data were converted to a binary classification, 
where a mean daily water level ≤ 0.02 m was classified as 
“dry”; otherwise the wetland was considered inundated and 
classified as “wet.” This cutoff represents the average error 
observed when comparing water level from the pressure 
sensor to the staff gage readings. Furthermore, at a level of 
0.02 m there will be little in the way of wetted habitat for 
aquatic and semi-aquatic organisms, in most cases render-
ing them “functionally dry.”

Datasets for Predictor Development

Daily precipitation depth, daily minimum and maximum 
air temperature, mean daily vapor pressure deficit (VPD), 
and daily reference evapotranspiration (PET) data were 
obtained from gridMET (Abatzoglou 2013), using the cli-
mateR R-package (Johnson 2021). Initial testing indicated 

Fig. 2 Hypothetical configurations of wetlands size (top – plan view) 
and basin morphology (bottom – cross sectional view) that when com-
bined alter water storage and duration for a given depth of rainfall. All 
combinations of the plan and cross section forms are present in the 
current study
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predicting those values alone will result in high accuracy 
and relatively low misclassification (Chen and Breiman 
2004). We used variables within the randomForest imple-
mentation to achieve balance; namely, strata can be used to 
define the variable that sampling should be split over (in this 
case, wet and dry observations) and sampsize can be used to 
specify the same number of samples from each class. The 
minimum number of observations in a class (dry class) were 
used for setting up the balanced sampling. This resulted in 
downsampling the majority class, so that each class con-
tributed an equal number of observations to the training 
data. We also used a cutoff value of 0.30 to assign a day 
as ‘dry,’ which indicates if 30% of all votes for a given site 
and day are “dry,” then that day should be classified as dry. 
This threshold was determined by stepping down the cutoff 
value from 0.50 (the default) to 0.25 by 0.05 and selecting 
the value that resulted in the greatest balanced accuracy of 
the validation set.

While random forests are robust to multicollinearity, 
the addition of correlated variables can make any attempt 
at drawing inference using variable importance metrics 
more difficult (Toloşi and Lengauer 2011). We used the 
usdm R-package (Naimi et al. 2014) to examine the vari-
ance inflation factors (VIF) of all paired predictor variables 
and used a VIF value of 5 as a cutoff for variable removal. 
This procedure resulted in the removal of 11 of the original 
22 quantitative predictor variables (see Table 1). All vari-
ables removed due to high correlation were different lags of 
precipitation and potential evapotranspiration, and elevation 
standard deviation. This left the final models to consider the 
remaining topographic metrics, dominant vegetation class, 
ordinal day, and the water budget deficit over different ante-
cedent periods for predicting inundation (Table 1).

Model Evaluation

It has been shown that error rates estimated from training 
data are often overly optimistic (James et al. 2021), which 
suggests relying on OOB error rates alone could lead to 
models with poor performance on unseen data. Therefore, 
we undertook a rigorous multi-faceted approach to model 
evaluation that tested performance on unseen wetlands and 
on unseen observations from wetlands in the training set. 
First, we split the data into training and validation groups 
using a stratified Monte Carlo cross validation approach 
(Kuhn and Johnson 2013), where all data from six randomly 
selected wetlands (2 each from permanent, frequently inun-
dated, and infrequently inundated wetlands) were set aside 
as the “validation set.” The classification of “frequently” 
and “infrequently” inundated wetlands were based on the 
relative frequency of days that were observed to be inun-
dated. The former class was greater than the median across 

the 2-dimensional surface area and proxy variables, such as 
the TPI and elevation range, to represent the z-axis (depth) 
of wetlands. It is important to note, however, that TPI does 
not precisely represent the depth of the actual wetland but 
rather reflects the mean elevation of the wetland relative to 
the surrounding landscape. For example, a more negative 
TPI indicates a wetland is more deeply recessed in relation 
to the surrounding landscape compared to a wetland with 
less negative TPI. The TPI variable may also reflect the rela-
tive likelihood of a wetland intersecting the surficial aquifer 
and provides potential context for groundwater influence. 
Dominant vegetation type was also included which could 
be important for modulating the hydrologic response via 
interception and transpiration amongst the different types of 
wetlands (e.g., emergent vs. forested wetlands).

Model Description and Set-up

We used a random forest algorithm (Breiman 2001) imple-
mented using R statistical software (R-Core Team 2019) 
and the randomForest package (Liaw and Wiener 2002) 
to predict daily inundation status (wet or dry) for individ-
ual wetlands. The random forest algorithm is an ensemble 
learning method that uses a collection of randomized deci-
sions trees (James et al. 2013). Specifically, the random for-
est algorithm creates many decision trees from bootstrapped 
samples of training data. Each tree is grown from a random 
subset of predictor variables which helps to decorrelate the 
individual trees. For binary classification problems, the pre-
dicted classification results from the most frequent classifi-
cation (i.e., majority votes) across all trees. Default values 
for random forest implementations often perform well even 
without hyperparameter tuning (Kuhn and Johnson 2013). 
However, there are several hyperparameters that can be 
tuned, often resulting in improved accuracy.

We used a grid search approach for the hyperparameters 
mtry (number of predictor variables available for splitting 
within a tree) and nodesize (minimum size of terminal 
nodes) and searched values ranging from 2 to 11 and 1–10, 
respectively, to find the best combination of values. Many 
combinations resulted in highly accurate predictions and 
very low out of bag error rates (OOB). Hyperparameter val-
ues were selected based on low OOB error rates that would 
also allow for greater randomization (i.e., smaller mtry) to 
help ensure decorrelated trees (James et al. 2021). For sub-
sequent analyses of model performance and predictions the 
hyperparameters were set to mtry = 5 and nodesize = 2. We 
also set the number of trees to grow (ntree) to 300.

Another consideration in classification problems is the 
balance of observations within classes. In this case, the data 
were highly imbalanced (~ 5:1 – wet:dry). When this occurs, 
the models may simply target the majority class, because 
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by the models. The relatively good and stable performance 
on the unseen wetlands indicated that the random forest 
classifier was a useful tool to explore the predictability of 
wetland inundation and hydroperiod.

all wetlands (79% of days) but non-permanent, and the lat-
ter class was wetlands whose inundation frequency was less 
than the median. This allowed an assessment of the effect of 
inundation frequency on model performance. The remain-
ing data were randomly split into a 70/30 train/test sets (see 
Table S2 for evaluation of different data splitting strategies). 
Accuracy metrics on the test set demonstrate the predict-
ability of the model on unseen observations from wetlands 
that had been used in training the model (similar to OOB 
error), whereas accuracy metrics on the validation set quan-
tify the accuracy of the model predictions on completely 
unseen wetlands. This evaluation approach was conducted 
on 100 iterations to evaluate the stability of model predic-
tions when different combinations of data were used to 
train, test, and validate the model predictions. To test for 
statistical differences in the observed and predicted median 
hydroperiods among the inundation classes we used the 
Brown-Mood median test in the coin R-package (Hothorn 
et al. 2006).

Results

Model Performance

From the 100-iteration cross validation routine, OOB error 
was 0.05–0.06, and the median balanced accuracy was 
96% and 83% for the test and validation data, respectively 
(Fig. 3). Not surprisingly, performance was better on the test 
set because other data from these wetlands had been “seen” 

Table 1 Candidate predictor variables considered for use in the random forest and the data source. Variable names in bold were used in the final 
models
Category Variablea Short name Data Source
Weather Cumulative 5, 30, 60, 120, and 180 day-precipi-

tation (PPT) and Cumulative 5, 30, 60, 120, and 
180 day-Potential Evapotranspiration (PET)b

ppt5, ppt30, ppt60, ppt120, 
ppt180, pet5
pet30, pet60, pet120, pet180

Derived from gridMET (Abatzoglou 
2013) - https://www.climatologylab.
org/gridmet.html

Water budget Cumulative 5-day deficit
Cumulative 30-day deficit
Cumulative 60-day deficit
Cumulative 120-day deficit
Cumulative 180-day deficit

def5
def30
def60
def120
def180

Derived from GRIDMET (Abat-
zoglou 2013): PPT – PET = deficit 
(e.g., def5 = ∑ PPT over prior 5 
days - ∑PET over prior 5 days)

Elevation derivatives Mean wetland TPI
Range of elevation in wetland
Mean elevation of wetland
Standard deviation of wetland elevation

TPI_av_m
elv_rng_m
elv_av_m
elv_sd_m

Derived from lidar (FDEM 2008)

Vegetation 
community

Dominant vegetation class dom_veg LANDFIRE – EVT CLASS - 
LANDFIRE (2016)

Wetland footprint 
(area)

Wetland area area_ha Field mapped/National wetlands 
inventory (NWI)/ digitized from 
aerial imagery (2021 NAIP imagery)

Time Ordinal day of year jday observed
aVariable derivation is described in methods section
bInital model testing found PET was a more important predictor than either of its components therefore air temperature and VPD were removed 
from further consideration and not included in the table

Fig. 3 Boxplots of balanced accuracy across the 100 iterations to 
assess stability of model performance. Test data refers to unseen (held 
out) observations from wetlands used in the training dataset and vali-
dation refers to observations from wetlands not included in the train-
ing dataset. Boxes represent the interquartile range, the horizontal line 
within the box is the median, vertical lines extend to ± 1.5-times the 
interquartile range, and dots are outlying data points
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Prediction of Wetland Inundation

The first check of model performance was to compare the 
number of wet and dry days between observations and pre-
dictions. We selected two infrequently inundated wetlands, 
one frequently inundated wetland, and one permanent wet-
land to highlight the dynamics reproduced by the model 
(Fig. 6). The top two plots of Fig. 6 represent infrequently 
inundated wetlands where predictions were relatively accu-
rate. Wetland hawk demonstrated very accurate predictions 
of wet and dry periods capturing the general patterns and 
short-term dynamics (Fig. 6). The model also performed 
reasonably well on wetland rnd117; however, the short-term 
dynamics were not as well reproduced as those in hawk. At 
wetlands wpt79 (frequently inundated) and wpt150 (per-
manent) the general patterns were well reproduced by the 
models.

Considering model performance at the inundation class 
level, it is apparent that the median classification accuracy 
of infrequently inundated wetlands (0.92) was less similar to 
the observations than the frequently inundated wetlands or 
permanent wetlands (median = 0.98 and 0.99, respectively, 
Fig. 7). There was a greater occurrence of overprediction for 
the infrequent class compared to the frequent class, but all 
had a similar occurrence of under prediction (Fig. 7).

An examination of individual wetlands revealed addi-
tional insight regarding predictability and the stability of 
predictions. For example, wetland wpt57 (‘infrequent’ 

Variable Importance and Interpretation

Variable importance was scaled to determine the propor-
tional contribution of each predictor variable to overall clas-
sification accuracy (Fig. 4). Across most of the of model 
evaluations, topographic metrics were consistently in the top 
four most important variables regardless of which impor-
tance metric was used. Water budget deficit at a 60-day lag 
(def60) was also consistently among the most important 
predictor variables. The other variables also contributed to 
increasing classification accuracy but not as strongly, or as 
consistently, as the three topographic metrics and def60.

Considering the patterns of the top four variables, while 
holding all other variables constant, we observed highly 
non-linear relationships with inundation status (Fig. 5). A 
relatively linear relationship was present when def60 was 
below zero but rapidly leveled off above 100 mm. The 
relationships were more complex with the topographic pre-
dictors showing stepped, non-linear, and non-monotonic 
patterns. For example, the stepped pattern of basin averaged 
TPI (tpi_av_m) may indicate the presence of threshold val-
ues, where a decrease in the proportion of wet days occurred 
when the tpi_av_m is > -1 m and a further sharp decline as 
tpi_av_m approached − 0.5 m (Fig. 5).

Fig. 4 Variable importance according to the Gini impurity (left) and mean decrease in accuracy (right) for a single model iteration. Note, impor-
tance was scaled to highlight the relative contribution of each predictor. See Table 1 for variable description
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biota, such as some rapidly developing anuran species (e.g., 
Gastrophryne carolinensis, Daszak et al. 2005) and reduced 
skewness of summary statistics associated with inclusion of 
a single to a few days of a particular inundation status (wet 
or dry).

Overall, prediction of hydroperiod was most accurate 
among the infrequent class, followed by the frequent class, 
with permanent wetlands having the greatest discrepancies 
(Fig. 9). For the infrequently inundated class, the test sta-
tistic for the Brown-Mood median test indicated a signifi-
cant difference between the observed and predicted median 
hydroperiod (z = 3.325, p = < 0.0001, α = 0.05); however, 
the predicted and observed median hydroperiods only dif-
fered by 14 days. The frequently inundated wetlands also 
demonstrated a significant difference based on the median 
test (z = 7.2117, p = < 0.0001, α = 0.05), and the median 
predicted hydroperiod was 144 days less than the observed. 
While the permanent wetlands were not a primary focus, it 
is worth noting that they had the greatest discrepancy of a 
wetland class (Fig. 9).

The distribution of hydroperiods for individual wetlands 
provided additional insight regarding where the model 
performed best. Figure 10 displays the distribution of the 

inundation category) showed an exceptional case where 
wetlands included in the training data were critical to accu-
rate predictions (a value of 1 indicates perfect prediction, 
Fig. 8). At this wetland, five of the eight models from the 
cross-validation routine predicted the number of inundated 
days with 81–99% agreement; however, the other two mod-
els over predicted the number of days by 62% and 98%. 
Similar inaccuracies occurred at other wetlands (e.g., fn 
and rnd52); however, most of the extreme inaccuracies 
(those > 30%) were due to one or two outlying data points as 
most models were relatively precise. Wetlands in the other 
two inundation classes showed less variation in accuracy in 
response to changes in the training data, although there were 
exceptions (Fig. 8).

Estimating Hydroperiod

Because the ultimate goal of this study was predicting wet-
land hydroperiod – the duration of continuous inundation 
– we primarily focused our analysis on the non-permanent 
wetlands, and in these wetlands, we excluded periods of con-
tinuous inundation less than 30 days. This approach consid-
ered minimal periods that are meaningful for semi-aquatic 

Fig. 5 Partial dependence plots 
from a single model iteration for 
the top four most important vari-
ables based on mean decrease in 
accuracy. All variables (x-axes) 
are in meters except def60 which 
is in millimeters and the y-axis 
indicates the proportion of votes 
for classifying a day as wet
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in wetland rnd75, with the predicted median hydroperiod 
68 days longer than observed. Wetlands from the frequently 
inundated category showed much greater variability and 
discrepancy between observed and predicted hydroperiods 
(Fig. 10). Wetlands jr36 and borrow405 were predicted the 
most accurately of those in Fig. 10 (right panel), but they 
still differed considerably from the observed median hydro-
period by 61 and 101 days, respectively. The remaining wet-
lands in the frequently inundated category had much greater 

estimated hydroperiods for individual wetlands across all 
the cross-validation iterations compared to the observed 
distribution of hydroperiods. Figure 10 demonstrates that 
the predictability of hydroperiod was inconsistent across 
wetlands even within a given inundation class. For exam-
ple, the infrequently inundated category wetlands fn and 
wbf demonstrated good agreement in the median hydro-
periods, only differing by 6 and 14 days, respectively. In 
contrast, the models generally overpredicted hydroperiods 

Fig. 6 Daily observed and predicted inundation for select wetlands 
January 2014 – October 2015. The “cloud” of points results from jit-
tering the data; this was done so that all observations are visible and 

to avoid obscuring the observed data. Only a single model run is dis-
played for each wetland
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more appropriate for classification with imbalanced classes. 
However, in this study both metrics generally agreed and 
ranked the same four variables as the most important, albeit 
in a slightly different order.

Many studies spanning a wide range of wetland types 
and climates have also observed basin morphology (topog-
raphy or depth) to be a key variable related to hydroperiod 
(Brooks and Hayashi 2002; Pyke 2004; Garmendia and 
Pedrola-Monfort 2010; Greenberg et al. 2015; Chandler et 
al. 2016). Thus, this study’s modeling approach could be 
useful in other areas where topography exerts a strong con-
trol on water permanence, such as in northeastern United 
States vernal pools or in the prairie pothole region of North 
America. Many studies attempting to predict wetland inun-
dation dynamics have found antecedent precipitation to be 
important for accurate prediction (e.g. Bartuszevige et al. 
2012; Chandler et al. 2016; Solvik et al. 2021; Londe et 
al. 2022). In this study, however, antecedent water budget 
deficits (precipitation minus potential evapotranspiration) 
were more important predictors of inundation than precipi-
tation. The transferability of the water budget deficit at a 
60-day lag to other regions is less straightforward and the 
importance of this variable likely varies depending on soil 
texture, water table depth, and the hydroclimatology of a 
region. We believe this intermediate antecedent period (60 
days) may integrate aspects of storage from the vadose and 
saturated zones in this study region making it consistently 
more important than shorter- or longer-term lags that may 
be more reflective of one or the other storage components. 
In regions with greater topographic relief, or with clayey 
soil horizons that inhibit rapid infiltration, it is probable that 
shorter antecedent periods may be of more importance than 
were observed in this study because lateral flows following 
rainfall could be primary drivers of inundation (e.g., Winter 
1988; Winter 1999; Bartuszevige et al. 2012).

Model Performance

Compared to other studies that have predicted inundation 
and hydroperiod dynamics, our median balanced accuracy 
across models of 83% was higher than that reported by sev-
eral other studies (80% [Londe et al. 2022], 76% [Greenberg 
et al. 2015], and 73% [Chandler et al. 2016]). However, it is 
difficult to directly compare model accuracy between differ-
ent studies because each study’s models were intended for 
different applications with different temporal resolutions. 
For example, in this study we were making predictions at a 
daily time step; thus, misclassifying a single day effectively 
divides one hydroperiod into two, resulting in “poor” model 
performance. In contrast, many other studies have used 
infrequent observations of wetlands, either flooded extent or 
some metric of wetland water depth, to infer hydroperiods 

discrepancy in predicted and observed hydroperiods. In 
many cases the models tended to produce rather narrow 
ranges of hydroperiods that underestimated the high-end of 
the distribution of many wetlands (Fig. 10). The models did 
not show a particular bias in either of the inundation classes; 
rather, results across individual wetlands showed both under 
and over prediction.

Discussion

Drivers of Inundation and Hydroperiod

Controls on wetland hydroperiod will vary depending on 
topographic position within the landscape and hydrogeo-
logic setting. However, the overarching drivers are related 
to the water budget of a site and the ability of a basin to hold 
water (i.e., its volume, shape, and geological material). As 
Fig. 4 demonstrates, both water budget and basin morphol-
ogy were important for accurate prediction of wetland inun-
dation. While some studies highlight that mean decrease in 
accuracy is a more robust (less biased) variable importance 
metric (Strobl et al. 2007; Genuer et al. 2010), Boulesteix et 
al. (2012) indicates that mean decrease in gini impurity is 

Fig. 7 Ratio of predicted inundated days to observed inundated days 
by inundation category. Note, a value of 1 means perfect agreement; 
below 1 indicates that the models under-predicted and over 1 indicates 
that the models over-predicted. Boxes represent the interquartile range, 
the horizontal line within the box is the median, vertical lines extend 
to ± 1.5-times the interquartile range, and dots are outlying data points
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filling and subsequent drying. As Chandler et al. (2016) 
acknowledged, only a single drying event (day) is neces-
sary to induce mortality of larval salamanders. Furthermore, 
focusing on a single short period (i.e., breeding season) may 
obscure other important aspects of hydroperiod that relate to 
development of predators, prey, and habitats associated with 
the wetted duration prior to the focal period (Pechmann et 

and often have focused on specific periods relevant to target 
taxa or species – most frequently amphibians (e.g., Babbitt 
2005; Chandler et al. 2016; Cartwright et al. 2021; Solvik et 
al. 2021). While infrequent observation is certainly reason-
able given the cost and difficulty of continuous (or near con-
tinuous) water presence observation, it does introduce the 
potential for missing a drying event or even very short-term 

Fig. 8 Ratio of predicted inundated days to observed inundated days 
for individual wetlands grouped by inundation frequency category. 
Boxplots represent the distribution of the ratio from all cross-valida-
tion iterations where a wetland was selected (total times selected is 
indicated by the number below each boxplot). Not all study wetlands 
were selected an equal number of times in the random sampling; how-

ever, an equal number (200) from each inundation class was ensured. 
The dotted line at y = 1 indicates perfect agreement between observed 
and predicted. Boxes represent the interquartile range, the horizontal 
line within the box is the median, vertical lines extend to ± 1.5-times 
the interquartile range, and dots are outlying data points
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of climate change and high uncertainty in future precipita-
tion regimes of the southeastern United States (Carter et al. 
2018; LaFontaine et al. 2019).

To capture the full suite of wetting and drying periods, 
we set out to predict hydroperiod continuously at a daily 
timestep – a process that could be useful for multiple taxa 

al. 1989). Much of the literature rightly focuses on the wet-
ted hydroperiod; however, some amphibian species (e.g., 
the threatened Ambystoma cingulatum) only lay their eggs 
in dry pond basins (Anderson and Williamson 1976). There-
fore, knowing the drying regime may be just as important 
for some wetland species. This is especially true in the face 

Fig. 10 Distribution of observed (obs) and predicted (pred) hydrope-
riods for 11 randomly selected wetlands from each inundation fre-
quency class. Boxes represent the interquartile range, the horizontal 

line within box is the median, vertical lines extend to ± 1.5-times the 
interquartile range, and dots are outlying data points

 

Fig. 9 Distribution of observed 
(obs) and predicted (pred) hydro-
periods split by the inundation 
category. Boxes represent the 
interquartile range, the horizontal 
line within the box is the median, 
vertical lines extend to ± 1.5-
times the interquartile range, and 
outliers (observations beyond 
1.5-times the interquartile range) 
were removed to improve vis-
ibility of boxes
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be provided. However, if the main goal is prediction, ML 
approaches offer a robust alternative and may require less 
intensive field data for suitable predictions.

Machine learning models can be trained on extensive 
datasets (where they exists) and applied in other situations 
or locations where the phenomenon of interest operates on 
similar processes, such as where topography is thought to 
exert a strong control on wetland hydroperiod. Thus, prac-
titioners could apply this modeling framework by deriving 
the input variables highlighted in Table 1 to explore the 
accuracy in other study areas. Additionally, as more field 
data become available it could be combined with the data 
used here to retrain models so patterns from other regions 
can also be learned and incorporated, making predictions 
more generalizable. If other predictor variables are identi-
fied that are critical to a given region (e.g., soil or bedrock 
type), the models could be updated to include the additional 
information. This modeling approach and associated predic-
tors performed well in our study area; however, that does 
not mean it will work everywhere. Therefore, when apply-
ing such a framework it is critical to have some way of vali-
dating that the predictions are reasonable, whether through 
limited monitoring, remote sensing, or by correlations with 
antecedent weather conditions.

A final point worth reiterating is that the present approach 
is simply predicting whether water was present or not based 
on the threshold water-level. We recognize this is a rather 
crude representation of wetland hydrology and it neglects 
the spatial dynamics that are often critical for providing 
diverse habitat types, such as open water and marsh within 
the same basin (Cowardin et al. 1979; Pechmann et al. 
1989). However, linking continuous water level measure-
ments to inundated area requires considerable field work 
to develop these stage-area relationships. Furthermore, we 
believe there are many wetland water level datasets waiting 
to be uncovered that could be integrated into this modeling 
framework to extend predictions to other areas and refine 
the present work. Therefore, we chose to focus on a pres-
ence/absence type prediction rather than some more com-
plex metric such as areas or volumes. This somewhat naïve 
view of “wetness” could be too simplistic in wetlands with 
high degrees of microtopographic relief that lead to isolated 
pools disconnected from a central basin. Even in those cases 
it may be that a suitable threshold water level could be tar-
geted to reflect the most important habitat characteristics 
still rendering a similar approach useful.

Critical Need for Monitoring data

This modeling effort would not have been possible without 
the extensive dataset which represents a considerable effort 
of many people and investment of resources. Therefore, we 

with various phenological and hydrologic requirements. 
Our results indicated that the models performed quite well, 
although there were wetlands that were less well predicted 
(Figs. 8 and 10). The finding of statistically significant dif-
ferences between the predicted and observed hydroperiods 
(Fig. 9) in wetlands of all inundation classes doesn’t nec-
essarily translate to biological significance. Whether such 
deviations are biologically meaningful will depend on indi-
vidual species and their hydrologic requirements.

The large discrepancies we found between observed and 
predicted hydroperiods in the permanent wetlands was not 
overly surprising. As an example, if a permanent wetland 
had only a single day that was misclassified by the model 
in the middle of the record, then the hydroperiod estimate 
would be half of the observed inundated period. If this were 
to occur twice, the discrepancy would increase accordingly. 
Thus, viewing the results at this high level provides insights 
into where the models performed best, but did not tell the 
full story. This is in stark contrast to the analysis of inun-
dation frequency, where the permanent inundation class 
was 99% accurate, highlighting the importance in choos-
ing the most appropriate metric(s) and examining details 
for interpretation of model performance and any manage-
ment implications. In cases where inundation frequency 
was accurate and hydroperiod was not, it could be assumed 
that a small number of misclassified days led to the discrep-
ancy, and model output still contains valuable information. 
However, in these cases more human intervention is needed 
to interpret the results and define what is meaningful or at 
an acceptable level of accuracy. Another factor we did not 
explicitly consider in this study was the timing of filling and 
drying events. This is of critical importance because for a 
hydroperiod to be biologically meaningful, it must align 
with the phenology of a specific species. Based on the sub-
set of wetlands presented in Fig. 4, it appears the models 
matched the timing of filling and drying accurately. Follow 
up analyses to quantify model performance related to the 
timing of filling and drying would best be conducted utiliz-
ing species-specific examples with biological survey data. 
Doing so would then allow for predicted inundation char-
acteristics to be extended to evaluate and identify habitats 
of concern for the long-term conservation of populations.

Comparisons to Other Modeling Techniques

Unlike physically based process models, ML models are 
geared towards prediction rather than process understand-
ing, although some insight into controlling variables can be 
gleaned when model parsimony is rigorously constrained 
(Fig. 4). If intensive site level data and the expertise to 
implement a physically based process model are available, 
then predictions and process-level insight could potentially 
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