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species per square meter, particularly rotifers, cladocerans 
and copepods (Hairston 1996; Panarelli et al. 2008; Day et 
al. 2010; Brendonck et al. 2017).

The production and hatching of invertebrate dormant 
stages in intermittent wetlands are influenced by several 
environmental variables. Frequency and length of hydrope-
riod are important variables to hatching patterns and pro-
duction of invertebrate dormant stages (Nielsen et al. 2000; 
Vargas et al. 2019; da Silva Bandeira et al. 2020). Tempera-
ture and photoperiod are also key factors for invertebrate 
hatching patterns (Gyllström and Hansson 2004; Wang and 
Chou 2015). Water chemistry factors (e.g., salinity, con-
ductivity and dissolved oxygen) are also important abiotic 
hatching cues (Brendonck 1996; Vanschoenwinkel et al. 
2010).

The bank of dormant stages of aquatic invertebrates is a 
historical ecological archive, formed by the overlap of sev-
eral generations, which allows correlating the dynamics of 
communities to environmental changes (Brendonck and De 
Meester 2003; Rogalski 2015; Rogalski et al. 2017; Gar-
cía-Roger and Ortells 2018). For instance, the hatching of 

Introduction

Some groups of invertebrates from intermittent wetlands 
produce dormant stages in response to environmental fluctu-
ations (Brendonck and De Meester 2003; Parra et al. 2021), 
such as resistant eggs and cysts (Williams 2006). Dormancy 
is a strategy to survive such fluctuations and to persist in 
extreme aquatic habitats (Santangelo 2009; Strachan et al. 
2015; García-Roger et al. 2017). Several taxa of inverte-
brate use dormancy as a survival strategy, and wetland sedi-
ments may contain thousands of dormant stages of different 
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pond and stratified into 1 cm thick slices for analysis of the dormant stages. A total of 1,931 hatchlings distributed among 
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Keywords Dormant stages · Invertebrate hatchlings · Sediment column · Temporary wetlands · Viability

Received: 29 July 2022 / Accepted: 27 February 2023 / Published online: 13 March 2023
© The Author(s), under exclusive licence to Society of Wetland Scientists 2023

Invertebrate Richness and Hatching Decrease with Sediment Depth in 
Neotropical Intermittent Ponds

Pedro Henrique de Oliveira Hoffmann¹1  · Andressa Adolfo²2  · Allana Gonçalves Piu²2  · Daiane Vendramin²2  · 
Lidiane Martins²2  · Vinicius Weber¹1  · Leonardo Maltchik¹1  · Cristina Stenert1

1 3

http://orcid.org/0000-0002-6705-1916
http://orcid.org/0000-0001-5443-0055
http://orcid.org/0000-0002-4911-9788
http://orcid.org/0000-0002-9851-3669
http://orcid.org/0000-0002-0069-1601
http://orcid.org/0000-0003-4554-6413
http://orcid.org/0000-0002-5321-7524
http://orcid.org/0000-0002-9095-2018
http://crossmark.crossref.org/dialog/?doi=10.1007/s13157-023-01675-6&domain=pdf&date_stamp=2023-3-10


Wetlands (2023) 43:24

dormant stages of rotifers, cladocerans and copepods after 
decades of dormancy has been reported in sediments from 
the estuary of the Pettaquamscutt River in Rhode Island, 
USA (Marcus et al. 1994). There are examples of even older 
hatchings, such as copepods around 300 years old (Hairston 
et al. 1995), cladoceran genetic material dated to 600 years 
old (Frisch et al. 2014) and a bdelloid rotifer of 24,000 years 
dormant in the permafrost of the Alazeya River in Siberia, 
Russia (Shmakova et al. 2021). This feature can be used as 
an important ecological and evolutionary tool for studies of 
dormant aquatic invertebrate communities (Brendonck and 
De Meester 2003; Angeler 2007).

Studies indicate that the upper layer of the sediment 
(between 4 and 10 cm) has the highest concentrations of 
viable dormant stages (Herzig 1985; Cáceres 1998; Cáce-
res and Hairston 1998; Hairston et al. 2000; Santangelo 
2009). Therefore, the unhatched dormant stages accumu-
late at greater depths over time (Ellner and Hairston 1994; 
Brendonck and De Meester 2003), and the hatching rate 
tends to decrease with depth (Hairston et al. 1999; Kerfoot 
et al.1999). Nonetheless, studies correlating the viability of 
dormant stages and the depth of the sediment were carried 
out mainly in intermittent wetlands in temperate regions of 
Europe and North America (Herzig 1985; Hairston et al. 
1995; Kerfoot et al.1999; Gyllström and Hansson 2004). 
This relationship was poorly studied in Neotropical region 
(Iglesias et al. 2016). The studies that report the presence 
of dormant stages in southern and southeastern Brazil wet-
lands (Maia-Barbosa et al. 2003; Stenert et al. 2010, 2016, 
2017; Santangelo et al. 2014; Ávila et al. 2015; Freiry et al. 
2016, 2020a, b; Vargas et al. 2019; Brazil et al. 2022) only 
analyzed the top layers of the sediment (3–5 cm).

Here, we investigated the hatching responses of inver-
tebrate dormant stages across different depths of sediment 
in intermittent ponds. The objectives were to: (1) evaluate 
the richness, abundance and composition of hatched inver-
tebrates along a vertical gradient of the sediment column, 
and (2) compare the hatching of the main taxonomic groups 
along the sediment column. Our first hypothesis is that the 
richness and abundance of invertebrate hatchlings decrease 
as the depth of the sediment column increases since the larg-
est fraction of viable and more responsive dormant stages 
occurs in the top layers of the sediment (Hairston et al. 2000; 
Brendonck and De Meester 2003; Yousey et al. 2018). Our 
second hypothesis is that the composition of invertebrate 
hatchlings varies over the wetland sediment depth consider-
ing that several invertebrate taxa use dormancy as a survival 
strategy (Brendonck et al. 2017) and that not all dormant 
stages have the same ability to survive for long in the egg 
bank (Hairston 1996).

Materials and methods

Study Area

This study was conducted in the Coastal Plain of Southern 
Brazil, a region extending across approximately 640 km 
with a high concentration of wetlands (Maltchik et al. 2003) 
(Fig. 1). The climate is moist subtropical with a mean annual 
temperature of 17.5 ◦C, and the annual mean rainfall ranges 
from 1,200 to 1,500 mm (Rambo 2000). The flat topography 
of the landscape and the low altitudes (lower than 20 m) 
makes climate conditions very similar throughout the study 
region.

Sampling Design

Four intermittent depressional ponds were sampled in April 
2019 (Fig. 1). The isolated ponds analyzed were intermit-
tent, with similar sizes (1 ha) and water depth (0.5 m on 
average) distant at least 15 km from each other. On each 
pond, one sediment column of 30 cm depth was collected 
using a Russian peat borer (Modelo 2460-F20) (5-cm diam-
eter). To collect the sediment, the tube corer was pushed 
vertically, avoiding disturbance in the deeper part of the 
sediments. The sediment sampling was carried out when the 
ponds had water. Each sediment column was transferred to a 
PVC corer adapted to receive the sediment column, without 
alteration. The samples were kept in darkness by wrapping 
in aluminum foil and refrigerated (4 ◦C) until experiments 
start (Cousyn and De Meester 1998; García-Roger and 
Ortells 2018). Data collection complied with the current 
Brazilian environmental laws (SISBIO 36365-2).

Laboratory Procedures

Each sediment column was stratified into 1 cm thick slices 
for analysis of the dormant stages. Since the upper centime-
ters of the sediment contains the active egg bank, the slice 
thickness varied with depth, with smallest intervals (1 cm) 
in the top layers (up to 6 cm) and 4 cm for deeper sedi-
ment layers (Hairston et al. 1995, 2000; Kerfoot et al. 1999; 
Brendonck and De Meester 2003). In total, eleven slices per 
sediment column (pond) were incubated in our experiment 
all in the same period (0-1 cm, 1–2 cm, 2–3 cm, 3–4 cm, 
4–5 cm, 5–6 cm, 10–11 cm, 15–16 cm, 20–21 cm, 25–26 cm 
e 30–31 cm), totalizing 44 samples (11 samples x 4 selected 
ponds). All slices were dehydrated in a dark oven for 96 h 
at 40 °C.

In the incubation experiment, each sediment slice was 
submersed under a depth of 2 cm of distilled water into 
plastic trays without aerators, and water temperature (23 ± 2 
ºC) and photoperiod (12 h light/12 hours dark) were kept 
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constant (Ávila et al. 2015; Stenert et al. 2010). The experi-
ment was maintained in the laboratory for 4 weeks (June 7th 
to July 5th, 2019), and hatchlings were collected three times 
per week, corresponding to 12 sampling days, by filtering 
all the water content from each plastic tray through a 50-µm 
mesh size net. The collected hatchlings were transferred to 
1.5-mL polypropylene microtubes with 80% alcohol or 4% 
formaldehyde (Rotifera) (Freiry et al. 2016). The distilled 
water was changed after each sampling day. The duration 
of the experiment (4 weeks) was based on previous work 
from our research group (Freiry et al. 2020b; Vendramin et 
al. 2020) and others (Brock et al. 2003). Hatchlings were 
quantified under stereomicroscope (Zeiss Stemi 2000) and 
identified to species level whenever possible using special-
ized literature (Koste 1978; Elmoor-Loureiro 1997; Gazulha 
2012) and aid of specialists.

Data Analyses

The richness and abundance of aquatic invertebrates were 
the taxa number (number of species or genus – whenever 
possible – added to the number of taxa identified at lower 

taxonomic resolutions – phylum, class, or family level) 
and number of hatchlings, respectively. The relationship of 
invertebrate richness and abundance with different sediment 
depths was tested with generalized linear models (GLMs). 
As both response variables were discrete, GLMs were fitted 
with Poisson (richness) and negative binomial (abundance) 
distributions (because of major overdispersion of residu-
als) and log link function. The predictor variable (sediment 
depth) was included in the models as a numerical variable. 
The models were tested for richness and abundance of the 
total community.

Each sediment column was divided into three different 
strata: superficial (from 1 to 5 cm, represented by five slices 
– 1, 2, 3, 4 and 5 cm), intermediate (from 6 to 20 cm, rep-
resented by three slices – 6, 11 and 16 cm) and deep (from 
21 to 31 cm, represented by three slices – 21, 26 and 31 cm) 
to analyze the spatial variation in the composition of hatch-
lings. The spatial variation in the composition of aquatic 
invertebrates among the different depth strata was assessed 
using nonmetric multidimensional scaling ordination dia-
gram (NMDS) and a nonparametric multivariate analysis 
of variance (PERMANOVA) with 9,999 permutations. 

Fig. 1 Location of the study region and of the four ponds (C1 – C4) studied in the southern Brazilian Coastal Plain
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p = 0.446). The similarity percentage (SIMPER) analysis 
revealed that nine taxa significantly contributed to the dis-
similarity in the composition of the different strata, and the 
taxa with the highest contribution were Adineta sp., Ptygura 
pilula, Ostracoda, Gastrotricha and Aeolosomatidae (Online 
Resource 1).

Discussion

Our hypothesis that the total richness and abundance (after 
exclusion of bdelloid rotifers) of invertebrate hatchlings 
decrease with sediment depth was supported in this study. 
Similarly, a range of studies on other wetland systems report 
greater abundance of hatchlings in the top layer of the sedi-
ment for several taxa, including Ostracoda, Cladocera and 
Copepoda, but mostly for rotifers (Carvalho and Wolf 1989; 
De Stasio 1990; Hairston et al. 1995; Ning and Nielsen 
2011). Our results are in line with the idea that the surface 
layers of the sediment have the highest concentrations of 
viable dormant stages, responding better to hatching stimuli 
(Cáceres 1998; Cáceres and Hairston 1998; Hairston et al. 
2000; Santangelo 2009). Another plausible explanation for 
hatching pattern observed may be related to the temporal 
degradation of the dormant eggs at deeper sediment depths 
that leads to higher mortality due to senescence, disease, 
and parasitism (Hairston et al. 1995, 2000; Kerfoot et al. 
1999; Brendonck and De Meester 2003). Although it was 
not possible to date the sediment in our study, the positive 
relationship between the depth at which the invertebrate 
dormant stages are found in the sediment and their age is 
well known in undisturbed aquatic systems (Brendonck and 
De Meester 2003; Kerfoot and Weider 2004).

Studies that report the presence of dormant stages in 
southern Brazil wetlands only analyzed the top layers of the 
sediment (Palazzo et al. 2008; Ávila et al. 2015; Freiry et al. 
2016; Stenert et al. 2016, 2017). This study evaluated the 
hatching of dormant stages of aquatic invertebrates across 
different depths of sediment (from top to deeper layers) 
in intermittent ponds, showing that most hatchings were 
from the Phylum Rotifera, Phylum Gatrotricha and Phylum 
Annelida. Some studies that evaluated only the top layers 
of the sediment in intermittent ponds of the same region 
(Freiry et al. 2020a, b; Vendramin et al. 2020, 2022) showed 
that the crustaceans from the Order Anomopoda (cladoceran 
species) were the most representative in the hatched inverte-
brate community. In our study, the hatchlings of the cladoc-
eran species were also mainly related to the top layers of the 
sediment (5–6 cm).

The bdelloid rotifers represented by Adineta sp. and 
Philodina sp. comprised 64% of the total abundance found 
in this study. The high dominance of these two genera may 

The NMDS and PERMANOVA analyses were based on 
an incidence matrix (Jaccard index). A similarity percent-
age analysis (SIMPER; Clarke 1993; 999 permutations) 
was used to identify the taxa that mostly contributed to 
differences among depth strata. We used the PERMDISP 
approach (betadisper function) (Anderson 2006) to test for 
differences in the multivariate dispersion among the sedi-
ment depth strata. All statistical analyses were conducted 
with the functions from packages vegan, car, MASS, lme4 
and ggplot2 in the R software v. 4.0.3 (R Development Core 
Team 2020). The Panplot2 portable software (Sieger and 
Grobe 2013) and CorelDRAW were used to visualize the 
total hatching percentage of the main invertebrate taxa in 
relation to sediment depth.

Results

A total of 1,931 hatchlings distributed among 31 taxa were 
collected from the sediment columns over the experiment. 
Phylum Rotifera comprised most of the hatchlings (82%), 
followed by the Phylum Gastrotricha (8%) and Phylum 
Annelida (Family Aeolosomatidae − 6%). The Subphylum 
Crustacea (2.5%) was represented by the Class Ostracoda 
(1.8%), Subclass Copepoda (only 1 nauplius – 0.05%) and 
Order Anomopoda (Cladocera, 13 individuals – 0.7%). Phy-
lum Nematoda (1.2%), Phylum Tardigrada (0.4%) and Phy-
lum Platyhelminthes (class Turbellaria – microturbellarians 
– 0.3%) corresponded to the rest of the hatched individuals. 
The most abundant taxa were the bdelloid rotifers Philo-
dina sp. (52%) and Adineta sp. (12%), and the monogonont 
rotifers Lecane leontina Turner, 1892 (9%) and Ptygura 
pilula (7%) (Table 1). Although the highest percentage of 
hatchings of these taxa occurred in the surface layers of 
sediment, some individuals hatched at depths greater than 
20 cm (Table 1; Fig. 2).

The total richness of taxa was negatively influenced by 
the sediment depth, since the hatchings showed greater 
richness in the top layers compared to the deeper ones (Z 
= -5.533; p < 0.001; Fig. 3). The total hatching abundance 
was not influenced by depth (Z = -1.197; p = 0.231) (Fig. 4). 
Considering that the dominance of the Bdelloidea rotifers 
could influence variation in abundance, we excluded these 
taxa and reanalyzed the data. After bdelloid taxa exclusion, 
the abundance was also negatively influenced by the sedi-
ment depth (Z = -5.460; p < 0.001) (Fig. 5).

The composition of aquatic invertebrates varied among 
the different strata over the sediment depth (PERMANOVA, 
F2,41 = 3.022; p < 0.001) and this variation was displayed by 
two axes of the NMDS diagram (stress = 0.125) (Fig. 6). The 
PERMANOVA results were not affected by multivariate 
dispersion within the sediment depth strata (F2,41 = 0.846; 
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be related to two factors: quick response from its dormant 
stages to environmental cues and asexual reproduction 
within 24 h. Rotifers of the Subclass Bdelloidea are known 
for their parthenogenesis and their dormant stage (anhy-
drobiosis), which allow them to withstand severe periods 
of desiccation (Ricci 2001). The physiological mechanisms 
that allow bdelloid rotifers to survive dehydrated during 
dormancy involve the protection of molecules such as sug-
ars, proteins, and antioxidants (Rebecchi 2013), and the 
ability to recover their DNA when rehydrated (Hespeels et 
al. 2014). When water returns to the system, dormancy is 
broken, and within 24 h the individuals can reproduce by 
parthenogenesis (Ricci 2001). In this sense, although the 
sampling intervals of 2–3 days were used to minimize the 
chance of parthenogenetic reproduction (Brock et al. 2005; 
Nielsen et al. 2013), we cannot assume that all individuals 
of Bdelloidea found in this study are hatchlings from dor-
mant stages.

Fig. 5 Abundance of aquatic invertebrates after bdelloid taxa exclusion 
(see main text for details) along the sediment depths of the studied 
ponds

 

Fig. 4 Total abundance of aquatic invertebrates along the sediment 
depths of the studied ponds

 

Fig. 3 Total richness of aquatic invertebrates along the sediment depths 
of the studied ponds

 

Fig. 2 Percentage of hatchings of aquatic invertebrates along the sediment depths over the experiment
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commonly disturb sediments (Brendonck and De Meester 
2003). Intermittent ponds are often visited by different 
species that, when interacting with the environment, can 
disturb the sediment and expose the dormant stages to the 
surface, such as watering cattle, birds and other large mam-
mals (Brendonck and De Meester 2003). The reduction of 
dormant stages along the sediment depth of wetlands also 
is important in terms of conservation and restoration. The 
existence of dormant stages in the deepest parts of the sedi-
ment can be fundamental for the resilience of aquatic inver-
tebrates when the dormant forms of the surface sediment are 
compromised with environmental impact.

A greater richness and abundance of invertebrate hatch-
lings were observed in the top layers of sediment (up to 
10 cm). Our results demonstrate that the hatching rate of 
invertebrates decreases with depth in sediments from tem-
porary wetlands. These results help to understand the dor-
mancy breaking strategies of aquatic invertebrates that 
produce dormant stages in temporary wetlands, and they are 
important to understand the recovery capacity of dormant 
community from different sediment strata after drought 
events. As intermittent wetlands are extremely susceptible 
to climate variations, the results help to show the resilience 
of drought resistant communities in the face of unstable 
hydrological dynamics of these ecosystems.
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