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sediments globally (Duarte et al. 2013; Mcleod et al. 2011). 
Thus, blue carbon ecosystems have a key role in climate 
change mitigation and adaptation (Macreadie et al. 2021). 
In addition to carbon sinks, these ecosystems provide 
several other co-benefits such as improving water quality 
(Adame et al. 2021), acting as a buffer against flooding and 
extreme events (Arkema et al. 2013, 2015; Menéndez et al. 
2020), serving as nursery ground for species target by fish-
eries (Jänes et al. 2020a, b), and preventing coastal erosion 
(Kazemi et al. 2021).

The ability of these ecosystems to act as major carbon 
sinks has been known for decades (Fig. 1), yet the term ‘blue 
carbon’ is quite recent, being first introduced in the literature 
in 2009 (Nellemann et al. 2009). Blue carbon was initially 
framed as the ‘carbon sink role of marine vegetation’, with 
two major reports published before 1980 discussing the role 
of seagrasses as carbon sinks in Denmark (Boysen-Jensen 
1914) and recognising a substantial global carbon cycling 
in the oceans via phytoplankton (Riley 1944). In the early 
1980s, a key study was published on the role of marine 
macrophytes as a carbon sink (Smith 1981; Fig. 1). Since 

Introduction

Blue carbon ecosystems are broadly defined as environ-
ments that capture and store (‘sequester’) organic carbon, 
and include mangrove forests, tidal marshes and seagrass 
meadows as main players (Mcleod et al. 2011; Nellemann 
et al. 2009). There are still uncertainties about the role of 
macroalgae (seaweeds), but their indirect contribution as 
‘carbon donors’ is likely to be globally-significant (Filbee-
Dexter and Wernberg 2020; Hill et al. 2015; Krause-Jensen 
and Duarte 2016; Trevathan-Tackett et al. 2015). Overall, 
net carbon sequestration in blue carbon ecosystems can be 
10–100 times that of terrestrial forests per unit area, while 
accounting for around half of the carbon stored in marine 
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Abstract
‘Blue carbon’ was coined over a decade ago to describe the contribution of mangroves, seagrasses, and tidal marshes to 
carbon drawdown in coasts and oceans, concomitantly attracting attention of policy-makers and resource managers to 
their potential as a natural climate solution. Here, we explore the emergence and evolution of this relatively new research 
field through bibliometrics approaches to investigate patterns and trends in scientific publications through time. Our aim 
was to understand the evolution of blue carbon science, from where we came from and where we are now. We analysed 
1,729 papers from 5,763 authors. Overall, the carbon-sink capacity of these ecosystems has been recognised long before 
the term ‘blue carbon’ was coined; with an annual percentage growth rate of 20% y− 1. Research attention was highest for 
mangroves (~ 38% of publications), followed by saltmarshes (~ 22%), and seagrasses (~ 18%); while ~ 16% of the stud-
ies included two or more blue carbon ecosystems and 5% of the studies focused on other ecosystems. The citation burst 
analysis showed that, in the 1990s, the hot topic (i.e., fast-growing topic) was related to the overall flux and dynamics of 
carbon, with a recent transition to the role of coastal vegetation to climate change mitigation from 2009. The term ‘blue 
carbon’ became a hot topic in 2017, with the strongest citation burst between 2017 and 2020. This bibliometric study 
draws the patterns and trends of blue carbon science and indicate that this field is evolving through time to focus more 
on the blue carbon role as nature climate solutions.
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2009, the term ‘blue carbon’ has expanded by improving 
the estimates of the contribution of mangroves, seagrasses, 
and tidal marshes as carbon sinks, providing a practical 
approach to implementing these ecosystems in strategies for 
climate change mitigation and adaptation. Furthermore, the 
growing interest for blue carbon is also reinforced by their 
inclusion in international climate agreements and policies 
(Fig. 1), such as in Nationally Determined Contributions 
(Herr et al. 2017; Herr and Landis 2016; Macreadie et al. 
2021; World Bank 2021).

The growing expansion of blue carbon science in the 
past twenty years is supported by increasing research efforts 
to address uncertainties and open questions on the role of 
conservation and restoration of these ecosystems to climate 
change mitigation and adaptation (Macreadie et al. 2019). 
Despite recent efforts to understand the development of 
blue carbon research globally (Jiang et al. 2022; Lai et al. 
2022), we still lack a comprehensive assessment (including 
macroalgae) of the development and growth of blue car-
bon science as a research field. Here, our aim is to explore 
the global scientific literature on blue carbon over time, 

considering mangroves, tidal marshes, seagrasses and mac-
roalgae. For this, we performed a bibliometric analysis on 
blue carbon research with the aim to identify current trends 
for leading papers, authors, keywords, and geographical 
spread of contributions. Bibliometric analysis is an efficient 
tool to map and identify publication records and trends of 
specific topics, with our results providing valuable insight 
into the evolution of blue carbon science and helping strat-
egize the future of blue carbon research.

Methods

In January 2021, we conducted a literature search, which 
included peer-reviewed studies identified within the gen-
eral database of the ISI Web of Science (Clarivate™; 
webofknowledge.com), including search in the title, 
abstract, author keyword, and keyword plus fields of SCI-
SCI Expanded database. We used a timeframe between 
1900 and 2020 and incorporated a Boolean logic (i.e., AND, 
OR, *, $) to combine terms related to the ecosystem (i.e., 

Fig. 1 Timeline showing: (1) top 10 most cited papers based on ISI 
Wed of Science, (2) key papers on blue carbon science [i.e., impor-
tant papers in the blue carbon science that are not in the top 10 most 
cited papers. The four papers in this category include the first paper 
noting the contribution of coastal vegetation as a carbon sink (Smith 
1981), the first paper estimating global potential emissions from the 
conversion of blue carbon ecosystems (Pendleton et al. 2012), the first 
paper summarising lessons learnt from blue carbon restoration projects 

(Wylie et al. 2016) and the recent roadmap summarising the main open 
questions in blue carbon science (Macreadie et al. 2019)], (3) signifi-
cant events in blue carbon policy and (4) major moments in interna-
tional policy related to blue carbon (Chave et al. 2005; Chmura et al. 
2003; Donato et al. 2011; Duarte et al. 2005, 2013; Fourqurean et al. 
2012; Gattuso et al. 1998; Kirwan and Megonigal 2013; Macreadie et 
al. 2019; Mcleod et al. 2011; Nellemann et al. 2009; Pendleton et al. 
2012; Smith 1981; Wylie et al. 2016; Zedler and Kercher 2005).
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mangrove, seagrass, saltmarsh) and dataset (i.e., carbon 
sequestration, stocks) (Table S1). The main objective of the 
search was to target publications focusing on the ability of 
coastal wetlands to sequester and store carbon. Our searches 
were only in English, which may partially overlook research 
published in other languages (Amano et al. 2021; Christie 
et al. 2021). Another limitation of this approach is that our 
analysis does not include grey literature (e.g., thesis and dis-
sertations) or reports.

The original search resulted in 2,035 bibliographic 
records. This database was screened to double check the 
search criteria, the relevance to the study and to extract 
information on habitat type (i.e., mangroves, tidal marshes, 
seagrasses, macroalgae, other), and methodological 
approach (i.e., qualitative methods and review, quantitative 
and/or modelling). Furthermore, the database was carefully 
scrutinised to eliminate records for duplicate references, 
missing information, and papers that did not focus on blue 
carbon science. This process resulted in 1,729 relevant pub-
lications in total. The final dataset was then used to evaluate: 
(1) publication patterns, (2) trends in authors and keyword 
networks, and (3) evolution of the scientific literature on 
blue carbon.

Data Analyses

We used the bibliometrix R package (Aria and Cuccurullo 
2017) to develop a quantitative analysis and statistics of 
blue carbon publications. For that, we evaluated the over-
all annual production between 1900 and 2020, top manu-
scripts per number of citations, most productive countries 
and most relevant journals. Then, we used VOSviewer soft-
ware (version 1.6.16; www.vosviewer.com) to perform the 
co-occurrence and co-authorship analysis to understand the 
trends among authors and keywords in blue carbon science. 
VOSviewer uses clustering algorithms that helps to identify 
connections in the bibliometric dataset, and also allows for 
the creation, visualisation and exploration of maps based 
on bibliometric network data (van Eck and Waltman 2017). 
To identify collaboration patterns on blue carbon science, 
we created a co-authorship network based on the number 
of publications that researchers have jointly authored. For 
that, we restricted the analysis to publications with a maxi-
mum of 25 authors per document and a minimum threshold 
of 5 documents per author to show the top 50 most well-
connected authors in blue carbon science. Table S2 provides 
a detailed information for each term used in the bibliometric 
analysis included in this study.

To investigate the most active area of blue carbon sci-
ence, we used the CiteSpace software version 5.8.2 (Chen 
2006, 2017) to perform a citation burst history analysis 
for keywords and references. This analysis provides an 

indication of publications and/or keywords that attracted a 
high degree of attention from its scientific community based 
on the Kleinberg’s algorithm (Chen 2006, 2017). In this 
study, we used this analysis to identify the publications that 
are associated with a surge of citations (lasting from a single 
to multiple years) and which are the fast-growing topics in 
the field based on our database. This analysis was performed 
to identify the hot topic across the evolution of the scientific 
literature on blue carbon.

Results & Discussion

The bibliometric database compiled 1,729 records: 1475 
articles, 38 book chapters, 2 data papers, 88 proceed-
ing papers, 105 reviews and 21 publications of other type 
(i.e., corrections, notes, editorial notes and letters) accord-
ing to the classification of the WoS database (Fig. 2). We 
found 5,763 authors, with 65 authors of single authored 
documents and 5,698 authors of multi-authored documents. 
From this total, approximately 38% of the studies focused 
on mangroves, 22% on saltmarshes, and 18% on seagrasses 
(Fig. 2). Recent bibliometric research on blue carbon eco-
systems have found a similar pattern, with mangroves being 
the most studied ecosystem (Jiang et al. 2022). While these 
ecosystems have been considered the main players in blue 
carbon science (Duarte et al. 2013; Mcleod et al. 2011), there 
has been increasing evidence of the contribution of mac-
roalgal ecosystems to carbon sequestration (Krause-Jensen 
and Duarte 2016; Ortega et al. 2019). Macroalgae are an 
important component of the ocean’s carbon cycle, with an 
estimated global area in the range of 6.06 to 7.22 million 
km2 (Duarte et al. 2022). Despite recent estimates showing 
that these ecosystems could potentially sequester a range 
of 61 to 268 Tg C per year globally (Krause-Jensen and 
Duarte 2016), there are still large uncertainties on including 
this ecosystem into future blue carbon assessments. Here, 
we found that ~ 16% of the studies included two or more 
blue carbon ecosystems, while 5% of the studies focused 
on other ecosystems such as oyster reefs and macroalgae, 
representing the growing interest in the macroalgae role in 
blue carbon science in the most recent years.

The first scientific publication highlighting the impor-
tance of vegetated coastal ecosystems was published in 1981 
(Smith 1981), yet blue carbon is still a recent terminology 
for the capacity of vegetated coastal ecosystems to capture 
and store carbon in their biomass and soil (Fig. 2). It is also 
important to note that it is difficult to define a ‘blue carbon 
publication’ prior to 2009 when the term was first published 
(Nellemann et al. 2009), with searching power decreasing 
prior to this date. Overall, we found that the scientific lit-
erature in blue carbon science substantially increased since 
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the literature in 2009, and were mostly related to the capac-
ity of coastal wetlands to sequester and store carbon. After 
2009, the remaining top 10 mostly cited papers focused not 
only on the storage capacity, but also in the ecosystem con-
tribution towards climate change mitigation and adaptation.

The keyword co-occurrence (N = 252 individual key-
words) identified contextual links among publications 
(Fig. 3), with the 10 most abundant keyword displayed in 
Table 2. As expected, the term ‘blue carbon’ was the most 
frequent term, followed by ‘carbon sequestration’ and 
‘mangrove’ as the 2nd and 3rd most used terms; while ‘eco-
system services’ and ‘sea level rise’ were the 9th and 10th 
most used keywords, respectively (Table 2). The results 
of our keyword co-occurrence network showed that ‘blue 
carbon’ is closely related to ‘sediments’ and ‘carbon’, with 
the proximity of the nodes indicating how the keywords are 
related to each other (Fig. 3). Visually, all clusters show a 
high degree of overlapping as some keywords are placed 
in between other cluster areas. Furthermore, the size of the 
nodes indicates how frequent these keywords usually occur 
in the blue carbon science literature (Fig. 3). In this case, the 
top 5 keywords based on their total link strength were ‘blue 

2005 (cumulative number and annual number of publica-
tions), which is also followed by worldwide interest on the 
topic (Fig. 2). Our bibliometric analysis showed an annual 
percentage growth rate of 20.02% y− 1.

The top 10 journals publishing blue carbon science, each 
publishing between 1.9–5% of the total number of publica-
tions in the database, included around 26% of the articles 
(Figure S1). These 10 journals correspond to 2.28% of the 
total amount of journals included in the database (n = 439). 
The journal ‘Estuarine, Coastal and Shelf Science’ is the 
leading journal on blue carbon publications (5%), with 
a smaller and sparse number of publications since early 
1990’s, but with a greater peak since 2017. ‘Science of the 
Total Environment’, ‘Wetlands’, ‘Marine Ecology Progress 
Series’, ‘Frontiers in Marine Science’ and ‘Global Change 
Biology’ followed in the rank and showed fluctuations over 
time in the annual publication patterns (Figure S1). Despite 
these finding, none of the most cited papers (Table 1) were 
published by the top ten journals publishing blue carbon 
science (Figure S1). Overall, five out of the top 10 mostly 
cited papers in blue carbon science were published before 
the term ‘blue carbon’ was introduced for the first time in 

Fig. 2 Distribution of (a) cumulative number of publications; (b) 
annual number of publications on blue carbon science between 1981 
and 2020; (c) worldwide interest on the topic ‘blue carbon’ over time 
in the Google Trends, from 2004 to the present; and (d) number of 

published papers from our dataset per ecosystem type. In the Google 
Trends, a value of 100 is the peak popularity for the term, and 0 means 
that was not enough data for the term.
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carbon science, such as ‘estuary’, ‘carbonate’, ‘and car-
bon flux’, while the right part of the figure show research 
topics (‘restoration’, ‘carbon credits’, ‘machine learning’, 
‘global warming’, ‘Paris Agreement’) more associated with 
the recent trends in the field. Overall, our results highlight 
the future trends of understanding how carbon sequestra-
tion can change through restoration or influenced by future 
climate conditions. However, despite the growing inter-
est in blue carbon ecosystems and the temporal change in 
the main topics targeted in the field, there are still many 
unanswered questions – with a recent study developing a 
roadmap to help guide the future of blue carbon science, in 
which 10 fundamental questions highlight the gaps in the 

carbon’, ‘carbon sequestration’, ‘mangrove’, ‘salt marsh’ 
and ‘climate change’ (Table 2).

As shown in Fig. 3, the central keywords ‘blue carbon’ 
and ‘carbon sequestration’ are strongly related, consid-
ering both the closeness of their locations in the network 
map and the thickness of their connection (which represents 
higher number of co-occurrences). However, the overlay 
map (Figure S2) shows a temporal mismatch in their co-
occurrence. While ‘blue carbon’ is placed in the temporal 
spectrum of more recent publications, the average occur-
rences of the keywork ‘carbon sequestration’ is more related 
to the middle of the temporal spectrum (Figure S2). Overall, 
the left part of the overlay map in Figure S2 show research 
topics that were more related to past investigations in blue 

Ranking WoS Scopus Google 
Scholar

Reference

1 1,586 1,713 3,213 Chave, J., C. Andalo, S. Brown, M. (A) Cairns, J. Q. 
Chambers, D. Eamus, H. Folster, F. Fromard, N. Higu-
chi, T. Kira, J. P. Lescure, (B) W. Nelson, H. Ogawa, H. 
Puig, B. Riera, and T. Yamakura. 2005. Tree allometry 
and improved estimation of carbon stocks and balance 
in tropical forests. Oecologia 145:87–99.

2 1,194 1,255 1,905 Mcleod, E., G. L. Chmura, S. Bouillon, R. Salm, M. 
Björk, C. M. Duarte, C. E. Lovelock, W. H. Schlesinger, 
and B. R. Silliman. 2011. A blueprint for blue carbon: 
toward an improved understanding of the role of veg-
etated coastal habitats in sequestering CO2. Frontiers in 
Ecology and the Environment 9:552–560.

3 1,021 1,130 1,929 Donato, D. C., J. B. Kauffman, D. Murdiyarso, S. Kur-
nianto, M. Stidham, and M. Kanninen. 2011. Mangroves 
among the most carbon-rich forests in the tropics. 
Nature Geoscience 4:293–297.

4 984 1,059 1,791 Zedler, J. B., and S. Kercher. 2005. Wetland resources: 
Status, trends, ecosystem services, and restorabil-
ity. Annual Review of Environment and Resources 
30:39–74.

5 782 873 1,417 Chmura, G. L., S. C. Anisfeld, D. R. Cahoon, and J. C. 
Lynch. 2003. Global carbon sequestration in tidal, saline 
wetland soils. Global Biogeochemical Cycles 17: 1111

6 743 758 1,212 Fourqurean, J. W., C. M. Duarte, H. Kennedy, N. 
Marbà, M. Holmer, M. A. Mateo, E. T. Apostolaki, G. 
A. Kendrick, D. Krause-Jensen, K. J. McGlathery, and 
O. Serrano. 2012. Seagrass ecosystems as a globally 
significant carbon stock. Nature Geoscience 5:505–509.

7 697 722 1,000 Kirwan, M. L., and J. P. Megonigal. 2013. Tidal wetland 
stability in the face of human impacts and sea-level rise. 
Nature 504:53–60.

8 651 682 1,025 Gattuso, J. P., M. Frankignoulle, and R. Wollast. 1998. 
Carbon and carbonate metabolism in coastal aquatic 
ecosystems. Annual Review of Ecology and Systematics 
29:405–434

9 645 659 1,168 Duarte, C. M., J. J. Middelburg, and N. Caraco. 2005. 
Major role of marine vegetation on the oceanic carbon 
cycle. Biogeosciences 2:1–8

10 621 653 923 Duarte, C. M., I. J. Losada, I. E. Hendriks, I. Mazarrasa, 
and N. Marbà. 2013. The role of coastal plant com-
munities for climate change mitigation and adaptation. 
Nature Climate Change 3:961–968.

Table 1 The 10 most cited papers 
in blue carbon science based on 
the database extracted from the 
ISI Web of Science. Here, we 
have also included the number of 
citations for each paper found in 
Google Scholar and Scopus by 
July 2021.
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of natural coastal carbon sinks’ (Laffoley and Grimsditch, 
2009) with the surge in citation starting between 2011 and 
2015 (Fig. 4). Overall, the temporal distribution across the 
years shows a pattern of increasing interest towards blue 
carbon publications by ~ 2010 (Fig. 4). The publications 
listed in Fig. 4 had a key role to set the scene for the devel-
opment of blue carbon science and were essential to move 
it forward. Interestingly, only three publications (Chmura et 
al., 2003; Duarte et al., 2005; Gattuso et al., 1998) identi-
fied in the citation burst analysis are also within the top 10 
most cited papers in blue carbon science (Table 1). Further-
more, if considering the duration of the burst, Gattuso et 
al. (1998) is the publication with the longest citation burst 
(2004–2015) despite not having the strongest burst (Fig. 4).

If we consider the keywords, we can observe that, in 
the 1990s, the hot topic was related to the overall flux and 
dynamics of carbon with a transition to the role of coastal 
vegetations to mitigate climate change from 2009, which 
also confirms the pattern found in our overlay map (Figure 
S2). The term ‘blue carbon, despite being coined for the first 
time in 2009 (Fig. 1), became a hot topic only in 2017, hav-
ing the strongest citation burst found in our analysis (Fig. 4). 
This pattern could be explained by the lag between the time 
when researchers start to conduct blue carbon research and 
when their publications start to emerge. Furthermore, it 
could also be related to the higher evidence of the role that 
blue carbon plays in climate change mitigation and adap-
tation and their inclusion in policy (e.g., Paris Agreement, 
IPCC Wetland Supplement in 2013). After the 2015 United 
Nations Climate Change Conference (COP 21), the key role 
played by the oceans, and especially blue carbon ecosys-
tems, in the carbon storage and sequestration have been offi-
cially recognised for the first time. This led to further efforts 
globally to conserve and restore mangroves, tidal marshes 
and seagrasses. Considering the citation bursts in the past 
10 years (since 2015), our results showed that the focus of 
blue carbon research has been on productivity in different 
ecosystems, flux dynamics, policy and restoration. With the 
increasing interest on blue carbon as a nature climate solu-
tion at local and national scales, we expect that these top-
ics will continue to be within the hot topics in blue carbon 
science.

Overall, we found a total of 5,191 authors contributing to 
blue carbon publications during 1981–2020 within 69 coun-
tries. If we consider the affiliation of first authors, about 26% 
of the publication had authors affiliated in the United States, 
followed by 13.4% in China and 13.3% in Australia institu-
tions (Fig. 5). Furthermore, United Kingdom (4.97%), India 
(4.27%), Spain (3.3%), Indonesia (2.89%), Japan (2.89%), 
Brazil (2.83%) and Germany (2.83%) compose the top 10 
countries with higher number of authors in blue carbon 
science (Fig. 5). Interestingly, Australia, United States, 

field, ranging from carbon fluxes to restoration (Macreadie 
et al. 2019).

The citation burst analysis (Fig. 4) was used to identify the 
publications in our database that are associated with a surge 
of citations, and therefore, could be identified as hot topics 
in blue carbon science.. Here, we found that the publica-
tion with the strongest burst strength was ‘The management 

Table 2 Top 10 keywords ranked according to the total link strength.
Ranking Keyword Total link 

strength
Occur-
rences

1 Blue carbon 914 325
2 Carbon sequestration 487 178
3 Mangrove 471 166
4 Salt marsh 416 144
5 Climate change 386 124
6 Seagrass 330 119
7 Mangroves 276 115
8 Biomass 232 71
9 Ecosystem services 197 72
10 Sea level rise 193 66

Fig. 3 Network map of 252 keywords showing the results of the (a) 
co-occurrence network analysis and (b) a zoom of the network in an 
area close to the most searched term ‘blue carbon’. The size of the 
nodes represents their “total link strength” indicating that these key-
words occur frequently in the literature regarding blue carbon. Lines 
are connecting the nodes with thickness based on “link strength” (i.e., 
the magnitude of their co-relation).
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Fig. 4 Citation burst analysis of (a) references (Alongi 2011, 2012; 
Atwood et al. 2017; Bouillon et al. 2008; Bridgham et al. 2006; 
Chmura et al. 2003; Duarte et al. 2005; Duarte and Cebrian 1996; 
Eong 1993; Gattuso et al. 1998; Giri et al. 2008; Hamilton and Casey 
2016; Hamilton and Friess 2018; Howe et al. 2009; Kauffman and 
Bhomia 2017; Laffoley and Grimsditch 2009; Lovelock et al. 2014; 

Macreadie et al. 2017; Rovai et al. 2018; Sanderman et al. 2018; Ser-
rano et al. 2012; Siikamäki et al. 2012; Twilley et al. 1992, 2018) and 
(b) keywords based on the literature review on blue carbon research 
from 1981 to 2020. For each reference and keyword, the burst strength 
and timespan are shown. Black lines indicate the time period with the 
strongest citation burst.

 

1 3

Page 7 of 12 109



Wetlands (2022) 42:109

and Kenya. This Cluster is connected with Cluster 2 through 
a node representing H. Kennedy (Fig. 6).

Overall, C. M. Duarte, P. I. Macreadie, O. Serrano, P. 
S. Lavery and C. E. Lovelock have the strongest total link 
strength, which indicate the strength of their co-authorship 
to others (Fig. 6). However, the overlay map shows a tem-
poral mismatch, with C. M. Duarte and C. E. Lovelock con-
tributing to blue carbon science since the earliest temporal 
spectrum, while other authors are more related to the middle 
of the temporal spectrum (Figure S3). In general, the bottom 
part of the overlay map in Figure S3 show authors that have 
an average publication year of ≤ 2015. Our findings in the 
collaboration analysis also aligns with the most productive 
countries in blue carbon science (Fig. 5), with these authors 
playing an important role in building capacity of younger 
researchers and other countries lacking blue carbon experts.

Overall, we included a sufficiently wide range of blue 
carbon publications in this study to identify patterns and 
trends over time. Nevertheless, our study demonstrates that 
blue carbon science is a rapidly growing field and is still in 
a strong growth phase (as indicated by its exponential publi-
cation trajectory). Our bibliometric study showed that while 
past trends in the blue carbon science were more related to 
understanding the carbon cycling in these ecosystems, the 
research is transitioning to understanding the opportunity 
for new technologies to help estimate carbon stocks (i.e., 
remote sensing, machine learning models; (Costa et al. 
2021; Ewers Lewis et al. 2020; Pham et al. 2020; Sander-
man et al. 2018; Simard et al. 2019; Young et al. 2021), the 
role of these ecosystems as nature climate solutions through 
their restoration and conservation (Costa et al. 2022; Hag-
ger et al. 2022; Macreadie et al. 2021; Moritsch et al. 2021; 

Indonesia and Brazil are also amongst the countries with 
higher distribution of blue carbon ecosystems and poten-
tial carbon stocks (Macreadie et al. 2021). However, it is 
important to highlight that one major limitation of our study 
is that only publications in English were considered in our 
search, and that grey literature and reports were excluded 
from the analysis. Therefore, the contribution of countries 
such as Brazil, Mexico, Chile are likely to have been under-
estimated (Amano et al. 2021; Christie et al. 2021).

Our co-authorship network analysis revealed 9 clus-
ters, which were formed by a combination of country of 
affiliation and research topic. Cluster 8 and 9 are the most 
well-connected clusters consisting of authors related to geo-
chemistry studies based in Australia and Brazil, respectively 
(Fig. 6). Clusters 3 and 5 are composed by Chinese authors 
working on different topics in blue carbon science, with 
the major difference based on who they collaborate in the 
network map. Cluster 5 is connected with Cluster 4, while 
Cluster 3 is connected with Cluster 6. Clusters 1, 2 and 4 
are the largest and strong connected clusters and consist of 
authors who are widely known to have a long-term collabo-
ration network, with the majority of them based in Australia. 
In this case, habitat type is likely acting as a divider between 
these clusters, with authors included in Cluster 1 being 
more active in mangrove research, while those in Cluster 
2 are known experts on seagrass ecosystems. Cluster 4 is 
composed by authors that usually focus on saltmarshes and 
mangroves (Fig. 6). Cluster 6 combines Australian authors 
that are more related to coastal and geomorphology in 
blue carbon ecosystems. Finally, Cluster 7 is composed by 
authors working on blue carbon ecosystems based in UK 

Fig. 5 Geographical distribution of first authors based on their affiliation. In total, 69 countries were recorded in our database.
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ects. However, we still need to overcome several barriers 
to overcome uncertainties in social, governance, financial 
and technological dimensions (Macreadie et al. 2022). 
For that, we recognise that the translation of blue carbon 
science into policy and practice will increasingly require 
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the blue carbon science has already proven to be a collab-
orative field with 99% of papers involving multiple authors 
and long-term, multi-country collaborative networks 
(Fig. 6). The challenge will be to expand these networks 
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et al. 2022; Macreadie et al. 2022) and their potential value 
(Carnell et al. 2022).
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