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Abstract Leaf surface wetness has numerous physiological
and ecological consequences, and the morphological struc-
tures on the leaf surface can affect its extent and duration,
contributing to interception rates in the scale of the whole
ecosystem. Wetland plants have developed morphological ad-
aptations to high water level allowing them to avoid water
excess. Droplet contact angle and surface free energy are mea-
surable parameters which relate to how the plant influences
water usage and redistribution. We analysed patterns of con-
tact angle and the surface free energy of the adaxial and ab-
axial surface of 10 wetland plant species and related them to
the optimal habitat conditions and functional traits of the
plants. Despite the consistent environment of these plants,
we found them to vary greatly in terms of leaf surface wetta-
bility and surface free energy, with contact angles ranging
from 75 to 169° and surface free energy, from 1.32 to
30.38 mJ/m2. Canopy height and leaf longevity were signifi-
cantly correlated to leaf wettability, whilst SLA (Specific Leaf
Area) and leaf shape were not related to hydrophobicity.
Investigating adaptations of wetland plants to their environ-
ment showed that including wettability and surface free ener-
gy in combination with other plant traits improves our

understanding of water plant-soil-water interactions in wet-
land habitats.

Keywords Leaf wettability .Water repellency . Plant
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Introduction

Water retention is widely recognized as an important ecosys-
tem service provided by wetlands (Mitsch and Gosselink
2000; Grygoruk et al. 2013; McInnes 2013). The vegetation
of wetland ecosystems depends on the quantity and quality of
water available (Kopeć et al. 2013), yet by intercepting water
on their surface, plants alter hydrological conditions within the
ecosystem. Vegetation architecture influences rainfall inter-
ception, and forest trees can retain up to 40% of rain (Rutter
et al. 1972; Mitsch and Gosselink 2000). The interception
rates of herbaceous plants are less investigated than those of
forest trees, although values comparable to woodlands have
been reported in open habitats (Gilman 1994). Reeds can store
4 mm of precipitation, moss-dominated peatlands 3 mm and
sedges (Carex sp.) 2 mm (Ignar et al. 2013), making a signif-
icant contribution to the water storage function of wetland.
Water pooled on the leaf surface can be used by the plant
(foliar uptake), redistributed as stemflow or lost to evapotrans-
piration (Gómez et al. 2001; Eller et al. 2013).

Whether water remains on the surface of the leaf or is
repelled depends on numerous leaf properties, including
wax layer thickness and composition (Holloway 1969;
Tanakamaru et al. 1998), trichomes or the number and
distribution of stomata (Brewer and Nuñez 2007). Leaf
wetting further affects numerous ecological processes,
such as photosynthesis rate (Hanba et al. 2004), pathogen
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infection (Rowlandson et al. 2015) or absorption and re-
moval of pollutants (Neinhuis and Barthlott 1997). Plant
ability to repel water from the leaf surface can be termed
as its hydrophobicity and can be comprehensively de-
scribed by measuring the contact angle (CA) between a
water droplet and the leaf surface (Bradley et al. 2003).
Low angle values indicate high surface wettability, while
high angle values indicate that water droplets form a
spherical shape which more easily glides from the plant,
making the plant non-wettable (Rosado and Holder 2013).
Plant surfaces range from super hydrophilic (CA < 40°) to
extremely hydrophobic (CA > 150°) (Brewer and Smith
1997; Brewer and Nuñez 2007). Another property of the
leaf surface which affects water redistribution is the adhe-
sion of water to the leaf surface which can also contribute
to self-purification processes, an important factor in inun-
dated areas. A parameter found to be positively correlated
with adhesion forces is the surface free energy (SFE)
(Wang et al. 2014). Plant leaves characterized by high
SFE hold water droplets to their surface. A hydrophobic
layer of waxes is reported to decrease the SFE so that as
the droplet rolls off the leaf it collects dirt particles from
the surface (Wang et al. 2015). Both leaf wettability and
SFE contribute to water redistribution in plant-soil eco-
systems and can be perceived as plant responses to envi-
ronmental conditions. Understanding vegetation water use
and its scale dependence has the potential to explain a
significant proportion of the water balance and its vari-
ability in valuable water-dependent ecosystems.

In this study, we measure the CA and SFE of 10 plant
species common in peat bogs to determine the relation-
ship between parameters explaining the water distribution
by plants (CA and the SFE) on adaxial and abaxial leaf
surfaces with environmental parameters and plant func-
tional traits. We predict that plants in the investigated
peat-bog ecosystem possess differentiated strategies to-
wards water interception which can be revealed in a wide
range of wettability and SFE of the leaf surface. We also
suggest that measured CA and SFE can be linked to plant
functional traits and habitat parameters, thus revealing di-
verse strategies within a broad and varied ecological
niche. By assessing CA and SFE, we can better under-
stand plant adaptation but also model interception rates
in the wetland ecosystem undergoing negative changes
when changes in plant communities occur. This can be
important in the light of the drying of these ecosystems
and the wettability of the leaves may impede or accelerate
drainage by directing water into the soil or storing it on
the plant surface. The results of the study allow us to
better understand the role of plant traits in the water in-
terception of whole ecosystems and will also allow us to
better understand the role of wetland ecosystems in water
storage on a global scale.

Materials and Methods

During the 2013 vegetation season leaf material was collected
from a degraded peat-bog located in Central Poland, coordi-
nates 52°11′18″N; 21°14′6″E. The annual mean temperature
for this region was about 9.4 °C and annual precipitation was
584 mm (data for Warsaw during 2013–2015, Institute of
Meteorology and Water Management). The site has been
drained, used as a meadow and irregularly mown, degradation
of the upper peat layer can be observed. 10 plant species were
selected for the wettability assessment, characterized by high
frequency within the site and representing common plant
communities occurring on peat-bogs, but also those regarded
as appearing due to habitat degradation (e.g. reed). The plants,
despite occurring across the whole site are characterized by
various optimum ecological conditions, in terms of moisture
(values from 5 to 9 according to Ellenberg indicator values,
Ellenberg et al. 1992) and nitrogen (Ellenberg values 2–5).
Leaves were randomly collected from younger and older in-
dividuals. Investigated species were: Betula pendula Roth
(Betulaceae), Carex acutiformis Ehrh. (Cyperaceae),
Comarum palustre L. (Rosaceae), Filipendula ulmaria (L.)
Maxim. (Rosaceae), Lathyrus palustris L. (Fabaceae),
Ledum palustre L. (Ericaceae), Lysimachia vulgaris L.
(Primulaceae), Lythrum salicaria L. (Lythraceae),
Phragmites australis (Cav.) Trin. ex Steud. (Poaceae), Salix
cinerea L. (Salicaceae).

The collected leaves were transported to the laboratory and
air dried for a week. We used dry material because initial
wetness has an effect on the measured contact angles and to
achieve the same initial conditions for all species. Also leaves
of most investigated plants (e.g. sedges and reeds) remain on
the surface of the ground during the dormancy season and we
wanted to find out if the presence of these plants could affect
water interception. The leaves were gently placed (not
pressed) between soft cloth in a horizontal attitude, to avoid
damage to surface structures. Prior to the measurement, the
leaf was gently flattened and attached to a microscope slide.
For contact angle (CA) measurement we used 9 leaves for the
adaxial and abaxial side where we placed one water droplet
per leaf. To determine SFE, we used 9 leaves per liquid (water,
formamide, ethylene glycol) separately for the adaxial and
abaxial surface. The wetting CAwere determined in the labo-
ratory at 20 °C. Leaf wettability was obtained by the sessile
drop method using goniometer CAM 100 (KSV Instruments,
Finland). A 10 μL droplet (Schreiber 1996) of distilled water
was placed onto the leaf surface using a syringe. The CAwere
evaluated by calculating the slope of the tangent between the
droplet at the liquid-solid-vapor interface line at both left and
the right side using compatible software. The wettability of the
plants leaf surfaces was classified as highly wettable, wettable,
non-wettable or highly non-wettable (Aryal and Neuner
2010). The surface free energy (SFE) was determined
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according to Owens and Wendt (1969), as consisting of two
components: dispersive and polar. The method is based on the
CA measurements of three different liquids deposited on to a
leaf surface: water, formamide and ethylene glycol, character-
ized by known SFE values, and calculated according to
Goebel et al. (2004).

CA and SFE were linked to habitat properties, expressed as
Ellenberg indicator values for moisture and nitrogen (Ellenberg
et al. 1992). These indicators were selected as best representing
changes that can occur due to habitat degradation and we sus-
pect them to be linked most to hydrophobicity of plants. Plant
functional traits, associated with biomass production such as:
leaf size (in cm2), leaf persistence (leaf longevity, years), SLA –
specific leaf area (fresh leaf area to leaf biomass ratio – mm2/
mg), obtained from databases: BiolFlor (http://www.ufz.de/
biolflor/overview/gattung.jsp) and LEDA (http://www.uni-
oldenburg.de/en/biology/landeco/research/projects/leda/).

Spearman correlation coefficients were calculated be-
tween CA, SFE interaction with plants functional traits
and habitat parameters at p < 0.05 using Statistica 10
software (StatSoft Inc 2011).

Results

The investigated plants varied greatly in terms of the measured
contact angles (Fig. 1), which ranged from 81 to 138° for the
adaxial surface of the leaf and from 94° to 160° for the abaxial
surface. Most species revealed higher hydrophobicity on the
abaxial surface of the leaf, with the exception of Phragmites
australis, which had a much higher hydrophobicity on the
adaxial surface.

The calculated SFE of the plants tested ranged from 1.32 to
30.38 mJ/m2 (Table 1). The leaves of most species were cat-
egorized as non-wettable or highly non-wettable, exceeding

CA 120°. Differences in the calculated SFE with dispersion
and polar components are shown in Table 1. The highest
values of SFE were for B. pendula and C. acutiformis, the
lowest for L. palustris and P. australis. In the case of
L. palustre and C. acutiformis the SFE on both surfaces of
the leaves consists exclusively of the dispersal component.
In other plants, such as F. ulmaria and C. palustre for the
adaxial surface the dominant is the dispersive component,
while for the abaxial surface the polar component. In
L. palustris and L. salicaria, this pattern is reversed.

Relationships between wettability, surface free energy and
habitat conditions were observed in wetland species.
Hydrophobicity of the adaxial surface of the leaves was found
to be significantly correlated to the habitat moisture, expressed
with Ellenberg indicator values (r = 0.85, df = 9, p = 0.002).
Water repellent surfaces were found in plants occurring in
wetter conditions, but also the greater the moisture of the
environment, the less the adaxial surfaces of the leaves
retained water droplets (SFE r = −0.69, df = 9, p = 0.027).
The wettability and SFE of the abaxial side of the plant leaves,
however, were not related to the habitat moisture level
(Table 2). The relationship between SFE and plant traits
was only found for the adaxial surface of the leaves –
significant correlations were found with longevity of
stems (r = −0.72, df = 9, p = 0.018) and canopy height
(r = −0.68, df = 9, p = 0.018).

Among the plant traits investigated, we found longevity of
stems to be significantly correlated to leaf wettability of both
the adaxial and the abaxial surface of the leaf (adaxial
r = −0.72, df = 9, p = 0.018*, abaxial r = −0.65, df = 9,
p = 0.040) Height was only correlated with hydrophobicity
of the adaxial surface (r = −0.68, df = 9, p = 0.030) (Table 2).
Nitrogen content, specific leaf area and leaf size were not
related to hydrophobicity of neither the adaxial nor abaxial
surface of the leaf (Table 2).

Fig. 1 Contact angle (CA) values
for leaves of selected wetland
plants species, median values
shown with horizontal lines and
the hydrophobicity assessment
scale proposed by Aryal and
Neuner (2010)
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Discussion

Leaf surface characteristics contribute to variability in the
amount of water pooled on the surface of plants, and thus alter
rainfall interception in the scale of the whole catchment. This
study shows several distinct strategies taking place in wetland

plants in terms of ability to repel water from their surface.
Measured contact angle and free surface energy, used as mea-
sures of leaf hydrophobicity, varied greatly in wetland plant
species. This study found a link between leaf wettability and
habitat moisture, showing the leaf wettability to be
stronger in plants with a high canopy and in plants with
extended leaf longevity. The study found wettability and
free surface energy to be possible measures of plants
adaptation to their environment.

Leaf wettability, when treated as an intra-specific adjust-
ment to the environment, has been proved to change along
environmental gradients, such as altitude (Aryal and Neuner
2010; Goldsmith et al. 2017) andmoisture (Brewer and Nuñez
2007; Holder 2007a), but these studies show gradients along
different habitats. Moreover plants from wetter habitats are
not necessarily characterised by higher hydrophobicity
(Holder 2007b). The surface of the wetland plants is in general
hydrophobic and in most plants the leaves repel water
rather than retain it. This only concerns the upper surface
of the leaf. No such relationship is visible for the lower
surface of the leaf. Wetland habitats are characterized by
much higher plant transpiration rates and there is usually
much more water available (Kelvin et al. 2017), thus
they do not need additional water sources.

The results of this study demonstrate that most wet-
land species are characterized by a high abaxial surface
hydrophobicity compared to most crop species (Shujie

Table 1 Surface free energy
(SFE) and its components
calculated for adaxial and abaxial
side of the leaves of selected plant
species

Species Leaf side Components of SFE (mJ/m2) SFE (mJ/m2)

Dispersion Polar

Betula pendula adaxial 0.54 29.57 30.12

abaxial 4.09 11.79 15.88

Carex acutiformis adaxial 16.61 0.00 16.61

abaxial 30.38 0.00 30.38

Comarum palustre adaxial 13.12 0.00 13.12

abaxial 0.46 1.54 2.00

Filipendula ulmaria adaxial 6.10 1.30 7.40

abaxial 0.01 5.13 5.13

Lathyrus palustris adaxial 0.01 13.13 13.13

abaxial 1.29 0.03 1.32

Ledum palustre adaxial 19.59 0.00 19.59

abaxial 10.18 0.00 10.18

Lysimachia vulgaris adaxial 2.04 1.67 3.71

abaxial 1.71 0.98 2.69

Lythrum salicaria adaxial 6.47 10.23 16.70

abaxial 8.09 0.00 8.09

Phragmites australis adaxial 0.13 1.28 1.41

abaxial 0.01 12.73 12.73

Salix cinerea adaxial 1.99 2.52 4.51

abaxial 2.04 0.00 2.04

Table 2 Spearman correlation coefficient and p values between CA,
SFE and properties of leaves

Properties of leaves CA –
adaxial

CA –
abaxial

SFE –
adaxial

SFE –
abaxial

Ellenberg: Moisture (-) 0.85
0.002*

0.34
0.343

-0.69
0.027*

-0.04
0.918

Ellenberg indicator
– Nitrogen (-)

0.31
0.381

-0.22
0.538

-0.45
0.193

0.40
0.246

Longevity of
stems (years)

-0.72
0.018*

-0.65
0.040*

0.72
0.019*

0.28
0.425

Canopy height (m) -0.68
0.030*

-0.62
0.055

0.65
0.041*

0.26
0.466

Leaf size (cm2) 0.41
0.233

-0.24
0.505

-0.53
0.116

-0.10
0.778

SLA (mm2/mg) -0.49
0.155

-0.46
0.183

0.29
0.416

-0.03
0.930

p values are presented in italics

SFE surface free energy (mJ/m2 ), CA contact angle (°), SLA specific leaf
area

*marked correlations are significant at p < 0.05
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et al. 2016), emphasizing the importance of determining
the strategies of specific plant groups to water dis-
charge. The study focused on moisture variance within
a broadly homogenous environment, and found that
plants vary widely in their water discharge possibly
due to either niche adaptions or to different strategies.
Most of the plants investigated were characterized by
high CA and SFE and among species investigated three
functional groups could be distinguished – species typ-
ical for: rushes, wet meadows, and bogs/fens. The first
group: P. australis, L. vulgaris and S. cinerea, occur in
close proximity to water and is subjected to inundation,
share low SFE (1.41 to 4.51 mJ/m2) and highly non-
wettable leaf surface (CA from 137.71 to 159.51°).
These species shed the surplus water from their surface,
additionally improving self-cleaning. In more elevated
areas, such as wet meadows, inundation occurs seldom
and is mostly limited to lower plant parts. For species
occurring there, such as: L. salicaria, F. ulmaria, and
L. palustris, SFE ranges from 7.4 to 16.70 mJ/m2, and
hydrophobicity is low varying from 92.70° to 117.17°.
These plants retain water on their leaf surface more than
species which are often inundated. Species more typical
for bogs and fens: L. palustre, and C. palustre, are
seldom subjected to water logging, and have a very
high SFE (13.12 to 19.95 mJ/m2) and their leaves are
moderately hydrophobic (CA from 125.92 to 128.59°).
Plants growing in frequently flooded sites avoid the risk
of leaf and stem deformation due to wetting while in
drier habitats plants retain water on their leaves surface.
Species such as S. cinerea, L. palustris, and L. salicaria
form structures on the abaxial surface of the leaves
allowing an increase of hydrophobicity by 30–40%,
mostly due to high pubescence. The adaxial surface is
more subjected to environmental factors and water loss,
whilst the abaxial surface bears most of the stomata.
Most species revealed higher hydrophobicity of the ad-
axial surface, which is typical for wetland plants
(Neinhuis and Barthlott 1997). The abaxial and adaxial
surface of the leaves differ in terms of quantity and
composition of waxes between plant species (Gniwotta
et al. 2005). Water retained on the plant surface influ-
ences the ecosystem at the scale of the plants physiol-
ogy (reviewed Wang et al. 2015), but also affect the
function of the ecosystem (Holder 2007b).

Across the range tested here, the ability of plants to
repel water from the surface was correlated with stem
life-span, longer living plants and plants with a tall can-
opy retain water to a greater extent. This phenomenon
might be important in wetlands where taller woody
plants overgrow the bogs and by their high transpiration
rate contribute to lowering of the groundwater table
(Woziwoda and Kopeć 2014). Additionally, capturing

water on their surface, and decreasing throughfall they
can have an effect on the overall water cycle. There can
also be differences depending on the species overgrow-
ing the bogs - S. cinerea characterized by high hydro-
phobicity will have a lesser effect on interception than
B. pendula which has highly wettable leaves and cap-
tures more water.

No correlations were found with SLA, although, lower
values of SLA tend to correspond with a long leaf lifespan
and species with a high investment in leaf structural defenses.
Some shade-tolerant woodland understory species and species
in resource-rich environments have remarkably high SLA
(Cornelissen et al. 2003), but this was not confirmed in this
study. The relationships between CA and SFE and plant traits
were found for both adaxial and abaxial surfaces of the leaves
but SFE on the abaxial surface was not related to any of the
traits measured. Ignar et al. (2013) demonstrated that intercep-
tion in wetlands had been underestimated and can account for
a substantial share of the rainfall. Knowing plant’s individual
strategies allows us to forecast how much water will be
retained on the plant surface. Knowing the composition of
plants and their features will thus allow us to improve the
accuracy of hydrological models. The drying of wetlands
which are overgrown with plants characterized by wettable
leaves will result in a reduction of the water directed into the
soil, instead water will be retained on the surface of the plants
from where it may evaporate. Thus, in drier parts of the wet-
lands, the amount of water stored on the surface is higher after
land drainage. Drained wetlands are often characterized by
higher soil water retention in comparison to undrained areas
with the same physical characteristics (Mioduszewski and
Wassen 2000), and the role of vegetation storage is increased
in such degraded habitats. Descriptions of the precipitation
process seldom include vegetation interception, which stores
water on the surface of the plants and enhances evaporation.
Also, the CA and SFE values reported are slightly lower in dry
plants because the leaf surface is unable to stretch while fresh
leaves are pliable and deform, creating a larger contact area for
a water droplet (Wagner et al. 2003; Bhushan and Jung 2011).
However during winter months the vegetation in these
ecosystems may still retain the properties to store water
on plant surfaces, which should be taken into account
when describing hydrological process in wetlands. This
research indicates the importance of interception during
vegetation dormancy periods, when wetland plants store
water on their surface and strongly influence the
rainfall-runoff process. Here, investigating adaptations
of wetland plants to their environment showed that wet-
tability and SFE in combination with other plant traits
improves our understanding of the water discharge pro-
cesses. Both wettability and SFE have the potential to
be used as bioindicators for the degradation of wetland
habitats and require further investigation.
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