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Abstract The bioactive vitamin D (VD) metabolite, 1,25-
dihydroxyvitamin D3 regulates essential pathways of cellular
metabolism and differentiation via its nuclear receptor
(VDR). Molecular mechanisms which are known to play
key roles in aging and cancer are mediated by complex
processes involving epigenetic mechanisms contributing to
efficiency of VD-activating CYP27A1 and CYP27B1 or
inactivating CYP24 enzymes as well as VDR which binds to
specific genomic sequences (VD response elements or
VDREs). Activity of VDR can be modulated epigenetically
by histone acetylation. It co-operates with other nuclear
receptors which are influenced by histone acetyl transferases
(HATs) as well as several types of histone deacetylases
(HDACs). HDAC inhibitors (HDACi) and/or demethylating
drugs may contribute to normalization of VD metabolism.
Studies link VD signaling through the VDR directly to
distinct molecular mechanisms of both HAT activity and the
sirtuin class of HDACs (SIRT1) as well as the forkhead
transcription factors thus contributing to elucidate complex
epigenetic mechanisms for cancer preventive actions of VD.
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Introduction

Apart from its original definition as a regulator of calcium
homeostasis, vitamin D (VD) is now known to have a broad
spectrum of actions as illustrated by a large number of
diseases resulting from an insufficient VD supply or VD
metabolism (Fig. 1). Interest in the role of epigenetics in VD
metabolism is nourished by the fact that it influences many
metabolic factors promoting a series of epigenetic
mechanisms which are dysregulated in the etiology of
numerous diseases. VD may be termed as a hormone because
endogenous production of its essential precursor is UVB-
stimulated photoconversion of 7-dehydrocholesterol in skin,
in addition to a few dietary sources (Lin and White 2004),
followed by processing via liver and kidney (Fig. 2). Several
animal models of cancer have demonstrated the essential role
of VD as a chemopreventive agent, mainly because it
induces cell cycle arrest and influences cellular differentiation
(Dace et al. 1997; Gurlek et al. 2002; Lin et al. 2002; Palmer
et al. 2003). As early as 1986, it was postulated that calcitriol
(the active form of VD) and a variety of VD analogs affect
proliferation and differentiation of normal and leukemic cells
of the myeloid line (Munker et al. 1986) and solid cancers
(Peterlik et al. 2009).

Although previously termed as an inactive prohor-
mone, it has been found that both calcidiol and
calcitriol are active hormones and act together. Calci-
diol uptake is mediated by megalin-mediated endocyto-
sis of the VD binding protein calcidiol complex. This
would determine the biological output of VD action
(Tuohimaa 2009) and has the potential to reflect the
clinical situation better than calcitriol. However, both
calcidiol and calcitriol are active hormones and cofactors
in hematopoiesis, thus explaining observations indicating
a differentiating effect of VD on hematopoietic and
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leukemic cells (Collins 1987; Sim et al. 2010), which
may be enhanced through synergistic action with a demethy-
lating drug (Koschmieder et al. 2007) that reduces epigenetic
DNA methylation. Other than nutrients and vitamins such as
folic acid (vitamin B12), which act directly as donors of
methylgroups involved in DNA promoter methylation or as
inhibitors of this process (e.g., resveratrol) (Meeran et al.
2010), epigenetic activity of VD is mainly mediated through
interaction with its receptor VDR. This may also be
associated with expression of key enzymes CYP27A1 and
CYP27B1 which are involved in conversion of vitamin D3 to
(pre-)hormones calcidiol and calcitriol and the inactivating
enzyme CYP24A1 (Fig. 2) (Deeb et al. 2007; Diesel et al.
2005; Johnson et al. 2010).

Thus, both calcidiol and calcitriol mediate VD signaling to
the VDR. VDR belongs to a large family of nuclear receptors
binding small hydrophobic molecules like steroids, thyroid

hormones and retinoids, and VD. It usually forms dimers,
often with retinoid X receptors (RXR) (Nishikawa et al. 1994)
and binds to specific genomic sequences (VD response
elements or VDREs) which influence gene transcription. To
regulate transcription, the VDR/RXR dimer interacts with
histone acetyltransferases (HATs), which are known as
transcriptional activators. HATs introduce acetyl groups into
the nucleosomes, partially equalizing the basic capacity of
histones, opening the chromatin and by this making it more
accessible to transcription factors (Fujiki et al. 2005).
Binding of the VDR/RXR complex to negative VDREs
recruiting transcriptional co-repressors like NCOR1 and
SMRT leading to histone deacetylation promotes transcrip-
tional inactivation. Regulation of additional select aspects of
metabolic functions involves co-repressors. An important
co-repressor involved in metabolic regulation is receptor-
interacting protein140 (RIP140). RIP140 is a transcriptional
co-repressor of nuclear receptors such as the VDR. Thus,
depletion of RIP140 in RIP140 null mice enhances the activity
of VDR and contributes to the insulin-sensitive and lean
phenotype of these animals (Christian et al. 2006; Lin et al.
2002).

Considering observations indicating that epigenetic effects
of calcitriol are primarily observed as histone modifications,
especially acetylation, the observation of demethylating
effects of VD on the promoter DNA of osteocalcin
(Haslberger et al. 2006) may be interpreted as a consequence
of the above-mentioned chromatin modifications. In addition
to (epi)genomic actions, a non-genomic activity of VDR is
discussed as well, although, both effects seem to converge
(Andraos et al. 2010; Ordonez-Moran and Munoz 2009).
However, to the best of our knowledge, it has not yet been
convincingly documented that VDR is subject of cytogenetic
rearrangements or that mutations of the VDR directly
associate with tumor development. Although a number of
polymorphic variations of the VDR protein were associated
variously with cancer incidence, degree of aggressiveness
and metastasis (Peterlik et al. 2009), it becomes increasingly

Fig. 2 Synthesis and catabolism of calcitriol. In a multistep
process vitamin D3 (cholecalciferol) is hydroxylated by liver
mitochondrial and microsomal 25-hydroxylase (25-OHase)
CYP27A1. The resultant pre-hormone 25-hydroxycholecalciferol,
named in this figure as calcidiol is 1α hydroxylated in the kidney

by CYP27B1 (a mitochondrial 1α-hydroxylase). This yields the
hormonally active secosteroid 1α 25(OH)2D3 (calcitriol). 24-
hydroxylation of 25(OH)D3 and 1α 25(OH)2D3 by the cytochrome
P450 enzyme25-hydroxyvitamin D24-hydroxylase CYP24A1 is the
rate-limiting step for calcitriol catabolism

Fig. 1 Impact of vitamin D insufficiency in disease etiology. Insufficient
uptake or metabolism of vitamin D appears to play a key role in the
development of a multitude of diseases affecting the central nervous
system, the skeleton and various organs where metabolic disturbances
may contribute to the generation of malignancies

56 Clin Epigenet (2011) 2:55–61



clear that epigenetic mechanisms play a key role in regulating
transcriptional responsiveness of VDR.

Vitamin D receptor co-operates with other
epigenetically regulated nuclear receptors mediating
response to lipophilic nutrients and metabolism

Nuclear receptors sensitive for a magnitude of primary or
secondary metabolites interact either directly or indirectly
with VDR in regulating gene expression. Such interactions
are known to recruit histone-modifying enzymes that are
either organized into transcription-inactivating, or in the
majority of cases, -activating protein complexes (Fig. 3).

The patterns of VDR-associated co-activators appear to be
unique for regulation of different genes: RUNX2, EP300, and
SCR1 are associated with VDR in the osteocalcin promoter,
whereas MYBB1A (also described as P160/SRC) together
with other mediators such asMED1 (also described as DRIP)
co-activate VDR in the SPP1 (osteopontin) promoter
(Montecino et al. 2007). Interestingly, cancer-related ectopic
expression of the bone-related transcription factor RUNX2 in
non-osseous metastatic tumor cells is linked to metastatic cell
proliferation and motility (Leong et al. 2010), which may
also induce production of osteocalcin in metastases of solid
tumors (Gao et al. 2010; Ou et al. 2003) as well as leukemias
(Wihlidal et al. 2006; Wihlidal et al. 2008). This is in contrast
to effects of RUNX2 on osteoblasts, where it attenuates

proliferation and stimulates maturation, but underlines the
crucial role of VDR/RUNX2 association in regulating
essential features of cellular physiology.

Figure 4 illustrates observations of cooperativity be-
tween VDR and other nuclear receptors. These may be
localized more or less proximal or distal of VDR, with
distances of up to several hundreds of base pairs, which can
be overcome by loop domains of the transcriptional
complex as recently shown by extensive structural studies
on the assembly of the hematopoietic transcription factor
complex (El Omari et al. 2010). Endogenous compounds
such as bile acids, retinoids, steroid hormones, and thyroid
hormones, which interact with liver X receptors, farnesoid
X receptor, pregnane X receptor, retinoic receptors (RAR
and RXR) and thyroid hormone receptors (TR) cooperate
with VDR. Some of these ligands like bile salts activate
multiple receptors (Makishima et al. 2002). Furthermore,
lipids (Correale et al. 2010) are endogenous ligands for the
peroxisome proliferator-activated receptors (PPARs) linking
them directly to metabolism. An association of PPARs with
the VDR signaling pathway was recently suggested
(Sertznig et al. 2009).

Last but not least, sex steroid hormone receptors such
as the estrogen (ESR1 and ESR2), progesterone and
androgen receptors, whose expression may be epigenetically
downregulated in malignancies also bind ligands with high
affinity (Nicolaiew et al. 2009; Sasaki et al. 2002; Walton et
al. 2008; Yao et al. 2009). The functional synergy between
estradiol and calcitriol is based on co-operative epigenetic
activities of their nuclear receptors (Carlberg and Seuter
2010). Clinical results indicate that estrogen promotes
calcitriol metabolism, suggesting a greater protective effect
of calcitriol-based therapeutic strategies against multiple
sclerosis in women (Correale et al. 2010) as well as successful
integration of calcitriol in combined treatment strategies
against osteoporosis for post-menopausal females (Miller
and Derman 2010). Beyond the endogenous ligands,
nutritional as well as synthetic components exist that regulate
the above-mentioned receptors, frequently involving
described epigenetic mechanisms (Berner et al. 2010).

Epigenetic inactivation of VDR impairs activity of VD

Research on epigenetic resistance intends to explore
epigenetic mechanisms, inhibiting VDR signaling. For
example, it has been proposed that apparent calcitriol
insensitivity is not determined solely by a linear relationship
between the levels of calcitriol and the VDR, but rather
epigenetic events such as methylation of VDR promoter
(Marik et al. 2010), VDR-governed epigenetic control of
other tumor suppressor genes (Thorne et al. 2010) or VDR
microRNA (Essa et al. 2010) regulate the responsiveness of

Fig. 3 Schematic illustration of epigenetic activity mediated by
vitamin D3 (VD). VD exerts its activity in association with its
receptor (VDR) and other nuclear receptors such as the RXR and
HAT, which transfers acetyl groups to histones and consequently
loosens DNA structure resulting in activation of gene expression
(probably including DNA demethylation). The chromatin of a
previously inactive gene becomes relaxed upon binding of transcription
factors to DNA recognition sequences. This process may be counteracted
by recruitment of CBFA partner proteins such as TLE that interact with
factors having HDAC activity
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target gene promoters. Epigenetically active drugs have the
potential to reverse calcitriol insensitivity as evidenced by
gene expression studies. Enhancement of VD efficiency for
monocytic differentiation by DAC (5-aza-2-desoxycytidine,
decitabine) indicates a synergistic role of demethylation in
VD metabolism (Koschmieder et al. 2007). Microarray
studies demonstrated that VDR reactivation induced by
the histone deacetylase (HDAC) inhibitor trichostatin A
(TSA) plus calcitriol uniquely upregulated a group of
“repressed” gene targets associated with the control of
proliferation and induction of apoptosis (Khanim et al. 2004;
Rashid et al. 2001).

An association between HDAC regulation and energy
metabolism was further confirmed by a recent study which
demonstrated the downregulating effect of an HDAC-
inhibiting drug (vorinostat) on energymetabolism of leukemic
cells (Karlic et al. 2010). The leukemic differentiation block
is attributed to deregulated transcription, which may be
caused by leukemic fusion proteins aberrantly recruiting
HDAC activity. One essential differentiation pathway
blocked by the leukemic fusion proteins is calcitriol
signaling. Puccetti and co-workers (Puccetti et al. 2002)
investigated the mechanisms by which the leukemic fusion
proteins interfere with calcitriol-induced differentiation.
The VDR is, like the retinoid receptors RAR, RXR, and
the TR, a ligand-inducible transcription factor. In the
absence of ligand, the transcriptional activity of TR and
RAR is silenced by recruitment of HDAC activity through
binding to co-repressors. In the presence of ligand, TR and
RAR activate transcription by releasing HDAC activity and
by recruiting HAT activity (Martens et al. 2010; Zelent et al.

2005). VDR binds co-repressors in a ligand-dependent
manner and inhibition of HDAC activity increases calcitriol
sensitivity of HL-60 cells. It has been shown that the
expression of the translocation products PML/RARalpha and
PLZF/RARalpha impair the localization of VDR in the
nucleus by binding to VDR.

Considering breast cancer, a similar spectrum of reduced
calcitriol responsiveness between non-malignant breast
epithelial cells and cancer cell lines has been shown in
parallel studies (Abedin et al. 2006). Again, this was not
determined solely by a linear relationship between the
levels of calcitriol and VDR mRNA expression. Rather
elevated mRNA levels from co-repressors notably
NCOR1, in breast cancer cell lines were observed and
determined sensitivity towards calcitriol (Banwell et al.
2004). By exploring elevated co-repressor levels in both
cancer cell lines and primary cultures (Abedin et al. 2006),
it was reasoned that this could be targeted by co-treatment
of calcitriol plus the HDAC inhibitor TSA. Supportively,
it was demonstrated that calcitriol response of androgen-
independent PC-3 cells was restored to levels indistin-
guishable from control normal prostate epithelial cells, by
co-treatment with low doses of TSA (Banwell et al. 2004).
Treatment with calcitriol plus TSA appears to coordinately
regulate the CDKN1A (=P21) mRNA expression; notably
upregulating the target in a unique manner in breast cancer
cells (MDA-MB-231) (Banwell et al. 2004). Such data
compliment a number of parallel studies, indicating
cooperativity between calcitriol and butyrate compounds,
such as sodium butyrate (NaB) (Costa and Feldman 1987;
Daniel et al. 2004; Gaschott et al. 2001a; Gaschott et al.

Fig. 4 Cooperativity between VDR and other nuclear receptors
(NFRs) and linking to the basal transcriptional machinery. Accessory
transcription factors (ATFs) may be localized more or less proximal or

distal of VDR, with distances of up to several hundreds of base pairs,
which can be overcome by loop domains of the transcriptional
complex
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2001b; Gaschott and Stein 2003; Newmark and Young 1995;
Tanaka et al. 1989). These studies further underscore the
importance of the dietary derived milieu to regulate epithelial
proliferation and differentiation beyond classic sites of action
in the gut (Hippe et al. 2010).

The interaction of un-liganded VDR with co-repressors
recruiting multiprotein complexes containing HDACs
appears to be responsible for anti-proliferative effects of
HDAC inhibitors and calcitriol together with induction of
genes of the cyclin-dependent kinase inhibitor (CDKI)
family (i.e., CDKN2B=P15 or CDKN2A=P16). Results of
chromatin immunoprecipitation and RNA inhibition assays
showed that the co-repressor NCOR1 and some HDAC
family members complexed un-liganded VDR and
repressed the basal level of CDKI genes, but their roles
in regulating CDKI gene expression by TSA and
calcitriol were contrary. HDAC3 and HDAC7 attenuated
calcitriol-dependent induction of the CDKN1A gene, for
which NCOR1 is essential. In contrast, TSA-mediated
induction of the CDKN2C (=P18) gene was dependent on
HDAC3 and HDAC4, but was opposed by NCOR1 and un-
liganded VDR. This indicates that the attenuation of the
response to TSA by NCOR1 or to calcitriol by HDACs
can be overcome by their combined application achieving
maximal induction of anti-proliferative target genes (Malinen
et al. 2008).

Histone deacetylase inhibitors TSA and NaB and the
methylation inhibitor DAC have the potential to promote
VD-induced apoptosis through PTEN upregulation (Pan et al.
2010). Results suggest potential benefits of VD in gastric
cancer therapies in association with the use of TSA/NaB and
DAC. Targeted co-treatments of calcitriol plus HDAC
inhibitors (TSA, NaB) resulted in re-expression of anti-
proliferative target genes (e.g. GADD45alpha, CDKN1A)
and synergistic inhibition of proliferation. These data suggest
that VDR actions in solid tumors are retained, but may be
skewed by epigenetic mechanisms to suppress selectively
anti-proliferative target gene promoter responses. This
molecular lesion provides a novel chemotherapy target for
acceptable doses of calcitriol plus HDAC inhibitors (Abedin
et al. 2006). Many HDAC inhibitors are short-chain fatty
acids (Chen et al. 2003), thus playing a key role in regulating
the activity of VDR.

The association of VDR and transcriptional regulation
was confirmed and analyzed in detail in a recent study (An
et al. 2010). Forkhead box O (FOXO) regulation can be
modulated by VDR. Calcitriol-mediated activation of VDR
stimulates attachment of FOXO3A and FOXO4 to promoters
of their target genes. In addition to FOXO proteins, VDR
also binds to additional epigenetic regulators such as sirtuin
(SIRT1). Thus, sirtuin HDACs may act as cancer suppressors
while under other circumstances they may promote cellular
malignancy (Voelter-Mahlknecht and Mahlknecht 2010).

Age- and diet-related metabolic disturbances are associated
with loss of SIRT activity and corresponding defects in
glucose metabolism and mitochondrial function. Under
conditions of restricted caloric intake which may be favored
by VD (Lynch 2010, Shahar et al. 2010), SIRT1 activity is
enhanced in various tissues along with improvements in
metabolic function and longevity (Lonard et al. 2007). SIRT4
directly targets mitochondria. SIRT6 is involved in the
nuclear regulation of genes playing a role in metabolic
physiology; it also contributes to genomic stability, and its
loss leads to an aging-like phenotype. Given the significant
structural differences in the sirtuin class of HDACs and their
distinctly different enzymatic mechanism from non-sirtuin
HDACs, this class of proteins represents promising targets
for the design of new drugs (Lonard et al. 2007). These
studies link calcitriol signaling through the VDR directly
to the sirtuin class of HDACs and provide a molecular
basis for the cancer chemopreventive actions of calcitriol
(Voelter-Mahlknecht and Mahlknecht 2010).

Conclusion

The efficiency of VD in prevention and treatment of cancer
is highly dependent on epigenetic modifications of its
receptor and the resulting signaling cascade. Combination
of either VDR or other nuclear receptor ligands with potent
HDAC inhibitors and possibly also demethylating drugs
has the potential to deliver more focused and sustained
treatment regimes for a range of solid tumors and
leukemias. Additionally, VD/VDR regulates epigenetic
DNA methylation and modulates gene expression. However,
considering the heterogeneity of factors interacting with VD
metabolism, observations of “in vitro” and “in vivo” studies
should be carefully interpreted.
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