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Abstract
Reliable sub-seasonal forecast of precipitation is essential to manage the risk of multi-year droughts in a timely manner. 
However, comprehensive assessments of sub-seasonal prediction skill of precipitation remain limited, particularly during 
multi-year droughts. This study used various verification metrics to assess the sub-seasonal prediction skill of hindcasts of five 
Sub-seasonal Experiment (SubX) models for precipitation during two recent multi-year South Korea droughts (2007 − 10 and 
2013 − 16). Results show that the sub-seasonal prediction skill of the SubX models were stage-, event-, and model-dependent 
over the recent multi-year droughts. According to the Brier skill scores, SubX models show a more skillful in one to four 
lead weeks during the drought onset and persistence stages, than the recovery stage. While the prediction skill of the SubX 
models in the first two initial weeks show more skillful prediction during the 2007–10 drought, the impact of the forecast 
initial time on the prediction skill is relatively weak during the 2013–16 drought. Overall, the EMC-GEFSv12 model with 
the 11 ensemble members (the largest among the five SubX models) show the most skillful forecasting skill. According to 
the sensitivity test to the ensemble member size, the EMC-GEFSv12 model had no gain for biweekly precipitation forecast 
with the nine ensemble members or more. This study highlights the importance of a robust evaluation of the predictive 
performance of sub-seasonal climate forecasts via multiple verification metrics.

Keywords Drought · Precipitation · South Korea · SubX · Sub-seasonal forecast · Verification metrics

1 Introduction

South Korea experienced long-lasting precipitation deficits 
during 2013–2016, which caused destructive socio-eco-
nomic drought impacts, such as about 24 million US dollars 
of crop production losses (KREI 2016). News articles from 
mass media and internet portals highlighted the exception-
ally low flow condition and adverse impacts of the 2013–16 
drought (Lee et al. 2022; Park et al. 2022a). Recent severe 
South Korea droughts, including the 2013–16 drought, 
were mainly induced by abnormal large-scale atmos-
pheric circulations over East Asia modulated by the North 
Pacific Oscillation (NAO), Arctic Oscillation (AO), and sea 

surface temperature in the North Pacific and North Atlantic 
(Kim et al. 2017; Myoung et al. 2020; Ham et al. 2022; Ma 
et al. 2022; Park et al. 2022b). Although South Korea has 
developed well the national water management system by 
constructing numerous dams and reservoirs, recent severe 
droughts caused significant socio-economic damages. An 
increased risk of South Korea droughts is a concern for 
water resources managements (Rhee and Cho 2016).

Over the last two decades, the government and drought 
research community have made collaborative efforts to 
develop and maintain operational systems for drought moni-
toring and forecasting over South Korea. These operational 
systems have been designed to detect different types of 
droughts, including meteorological (precipitation deficit), 
agricultural (soil moisture deficit), and hydrological (stream-
flow or reservoir water-level deficit) droughts and monitor 
the current drought condition and water use changes. They 
also provide the maps for the outlook of the near-future 
drought condition (https:// hydro. kma. go. kr/ front/ intro. do; 
https:// www. droug ht. go. kr/ main. do). These operation sys-
tems generate important information for water resources 
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management and policies, and action plans of the govern-
ment and local stakeholders to mitigate agricultural and 
economic losses. For proactive plans for drought mitiga-
tion, reliable drought sub-seasonal forecasts (e.g., within one 
lead month) is crucial. For example, sub-seasonal forecasts 
will provide the time window of opportunities to minimize 
the adverse effects during the persistence stage of severe 
droughts, particularly multi-year droughts. However, the 
current drought monitoring and forecasting systems is based 
on monthly precipitation anomalies, which is difficult for 
authorities and local stakeholders to respond to the persistent 
stage of multi-year droughts in a timely manner.

Drought is generated by multi-scale meteorological pro-
cesses, such as land–atmosphere coupling, sea surface tem-
perature teleconnections, and anomalous large-scale circu-
lations. While precipitation and temperature are essential 
climatic factors for drought propagations (Easterling et al. 
2007; Vicente-Serrano et al. 2010; Chen and Sun 2015; Luo 
et al. 2017; Park et al. 2020; Kam et al. 2021), persistent 
precipitation deficits play a key role in modulating the ter-
restrial water budget during the drought onset and persis-
tence stages (Byun and Wilhite 1999; Oki and Kanae 2006; 
Mishra and Singh 2010; Song et al. 2014; Zhang et al. 2017; 
Koster et al. 2019; Parker et al. 2021). Oceans also play an 
important role in large-scale drought persistence at the sea-
sonal or longer temporal scales (Hoerling and Kumar 2003; 
McCabe et al. 2004; Kam et al. 2014a). Anomalous large-
scale circulations and associated pressure systems provide 
a favorable condition for seasonal droughts (Li et al. 2011; 
Diem 2013; Kam et al. 2014b; Zi et al. 2022).

While persistent precipitation deficits initiated a drought, 
an intense storm event in a single day can terminate the 
drought (Byun and Wilhite 1999; Hayes et al. 1999; Wilhite 
et al. 2000; Heim Jr. 2002; Mishra and Singh 2010; Kam 
et al. 2013; Dettinger 2013). For example, a recent multi-
year drought over California was initiated slowly in late 2011 
and persisted in 2017. It was recovered by atmospheric riv-
ers and associated storms in early January 2017 (within two 
weeks). The multi-year drought experience forced authorities 
and water resources managers to operate dams and reser-
voirs for drought mitigation and recovery (e.g., maintaining 
a high level of water surface in the dam reservoir). It resulted 
in the Oroville dam crisis in February 2017 when another 
atmospheric river and associated intense precipitation hit 
California (Vano et al. 2019). During the Oroville dam cri-
sis, the public's interest in drought was still high because they 
were concerned about the re-emergence of the multi-year 
drought (Kam et al. 2019). Therefore, reliable sub-seasonal 
drought prediction skill is warranted for a timely drought 
response, particularly during the persistence stage of multi-
year droughts.

Recently, the Sub-seasonal Experiment (SubX) project 
has been launched to provide the sub-seasonal hindcasts and 
forecasts of multiple climate forecast models for the globe 
(Pegion et al. 2019). The SubX climate forecast models pro-
vide daily forecasts up to the next 30 to 45 days. Previous 
studies found that the SubX models show better predictive 
performance through considering the environmental circu-
lations at sub-seasonal time scale like the Madden–Julian 
oscillation (MJO) and the variation in upper-tropospheric 
jet (L'Heureux et al. 2021; Li et al. 2021; Lim et al. 2021). 
For the extreme events, such as droughts and floods, the 
sub-seasonal forecasts of the SubX models can provide rea-
sonable sub-seasonal prediction guidance for U.S. climatic 
extremes (DeAngelis et al. 2020; Cao et al. 2021). In addi-
tion, the SubX models are successfully used to provide mete-
orological daily forecast for hydrologic prediction over India 
(Tiwari and Mishra 2022) and the eastern South America 
(Pegion et al. 2019). However, assessments of the prediction 
skill of sub-seasonal forecasts of SubX models for South 
Korea droughts remain limited.

This study aims to assess the predictive performance of 
SubX models for precipitation anomalies in South Korea, 
particularly during the duration of two recent multi-year 
droughts, by answering the following scientific questions: 
1) How does the predictive performance of SubX models 
change between the two recent multi-year droughts?, 2) 
What is the impact of initial time on the predictive perfor-
mance of the SubX models?, and 3) What is the sensitivity 
of the predictive performance to the verification metric for 
ensemble/deterministic and categorical forecasts? The find-
ings of this study will guide a direction for how to facilitate 
SubX sub-seasonal forecasts for South Korea droughts.

2  Data and Methods

2.1  Observational Data and SubX Hincasts

This study used the National Oceanic and Atmospheric 
Administration (NOAA) Climate Prediction Center (CPC) 
daily precipitation gridded data at the 50-km (0.5°) resolu-
tion (https:// psl. noaa. gov/ data/ gridd ed/ data. cpc. globa lprec 
ip. html). The temporal coverage of the CPC daily precipita-
tion data is from 1979 through 2016. The CPC precipitation 
data was constructed based on the gauge reports of over 
30,000 stations around the world. It was quality controlled 
by other independent measurements like the radar and sat-
ellite observations and the numerical models' outputs (Xie 
2010).

In this study. monthly liquid water equivalent thickness 
anomalies of the Gravity Recovery and Climate Experiment 

https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html
https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html


71Sub‑Seasonal Experiment (SubX) Model‑based Assessment of the Prediction Skill of Recent…

1 3Korean Meteorological Society

(GRACE, Tapley et al. 2004) was used to assess propaga-
tions of liquid water equivalent thickness anomalies dur-
ing the recent multi-year droughts over South Korea (http:// 
www2. csr. utexas. edu/ grace/ RL05_ masco ns. html). The spa-
tial resolution of the GRACE data used in this study was 
25 km (0.25 ◦ ). The GRACE data has been widely used for 
tracking spatiotemporal variation in groundwater where the 
ground observations are limited (e.g., Shamsudduha et al. 
2012; Scanlon et al. 2012; Meghwal et al. 2019).

To investigate general predictive performance on South 
Korea, the CPC daily precipitation and GRACE liquid water 
equivalent thickness were averaged over the southern part of 
the Korean Peninsula (34–40 ◦ N and 126–130 ◦ E). Here, 
observational precipitation anomalies were computed based 
on the 1999–2016 climatology, which is a common period 
for the SubX model climatological period (Table 1).

This study used multi-ensemble hindcasts of SubX mod-
els for precipitation during 1999–2016 (Table 1). Out of the 
six SubX models, five SubX models were selected based 
on the availability of multiple ensemble hindcasts (≥ three 
ensemble members) and the climatology at the Interna-
tional Research Institute archive (IRI archive, http:// iridl. 
ldeo. colum bia. edu/ SOURC ES/. Model s/. SubX/). The spatial 
resolution of hindcasts of the SubX models is 100 km (1.0 
◦ ). SubX models provide weekly or sub-weekly sub-seasonal 
hindcasts and forecasts with different forecast initial times 
(32 to 45 lead days). The detailed configuration for SubX 
models can be found in Pegion et al. (2019).

In this study, the three sets of the two-week hindcasts 
(i.e., week 1–2, week 2–3, and week 3–4) were considered, 
following the consistent method of the SubX system (http:// 
cola. gmu. edu/ subx/ forec asts/ forec asts. html). To compare 
the precipitation anomaly hindcasts of SubX models to the 
observation, the forecasted precipitation time series of the 
SubX models were constructed based on the forecast initial 

time of week 1–2, week 2–3, and week 3–4 (see a schematic 
diagram for two lead week hindcast calculation in Fig. S1). 
The multi-model ensemble means (MMEs) in each date were 
calculated by averaging the values of five models. Precipita-
tion anomalies of the selected SubX models were computed 
using the climatology of each model that are provided at the 
IRI archive and averaged over South Korea.

2.2  Verification Metrics

Various verification metrics for the ensemble/determin-
istic and categorical forecasts were calculated to evalu-
ate robustly the predictive performances of SubX models 
(Table 2; Harvey et al. 1992; Huang and Zhao 2021). For 
the ensemble/deterministic forecast, the correlation coef-
ficient (CC), root mean square error (RMSE), and relative 
bias (RB), and interquantile range (IQR) were calculated 
based on relations between the observations and the fore-
casts of SubX models. The spread of multiple ensemble 
hindcasts for each SubX model was quantified by the IQR. 
The continuous ranked probability skill score (CRPSS; 
Pappenberger et  al. 2015) and the Nash–Sutcliffe effi-
ciency (NSE; Nash and Sutcliffe 1970) were computed to 
evaluate relative prediction skills of SubX models com-
pared to the reference forecast. For CRPSS and NSE, the 
reference forecast is the climatology of daily precipitation 
and the climatological observed precipitation, respectively. 
The CRPSS and NSE values is 100 and 1.0, respectively, 
when the forecast is a perfect prediction skill. The posi-
tive (negative) CRPSS and NSE indicate that the forecasts 
outperform (underperform) than the reference forecast.

For categorical forecasts related to the positive and neg-
ative precipitation anomalies, various verification metrics 
were calculated. The verification metrics include hit rate 
(HIT) and false alarm rate (FAR) of the signal detection 

Table 1  Information for the models of the Sub-seasonal Experiment (SubX)

Model Institute Ensemble size Forecast 
initial 
time
(days)

Hindcast frequency Climatological period

ECCC-GEPS6 Environment and Climate Change Canada 4 32 2/week 1998–2017
EMC-GEFSv12 Environmental Modeling Center / NCEP 11 35 1/week 2000–2018
ESRL-FIMr1p1 Earth System Research Laboratories / NOAA 4 32 1/week 1999–2016
GMAO-GEOS_V2p1 Global Modeling and Assimilation Office / 

NASA
4 45 1/5-days 1999–2015

RSMAS-CCSM4 University of Miami Rosenstiel School for 
Marine and Atmospheric Science

3 45 2/week 1999–2016

http://www2.csr.utexas.edu/grace/RL05_mascons.html
http://www2.csr.utexas.edu/grace/RL05_mascons.html
http://iridl.ldeo.columbia.edu/SOURCES/.Models/.SubX/
http://iridl.ldeo.columbia.edu/SOURCES/.Models/.SubX/
http://cola.gmu.edu/subx/forecasts/forecasts.html
http://cola.gmu.edu/subx/forecasts/forecasts.html
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theory (Harvey et al. 1992), the Brier skill score (BSS; 
Becker and van den Dool 2016), and probability of detec-
tion (PD)/false detection (PFD) for each phase of precipi-
tation anomaly (Table 2). The BSS score is 100 when the 
forecasting skill is perfect. A positive BSS indicates that 
the forecast is better than the observed climatology (the 
reference forecast). The PD and PFD were used to con-
struct the receiver operating characteristic curve for the 
forecasts of SubX models.

2.3  Effective Drought Index

Using the CPC daily precipitation data, the effective drought 
index (EDI, Byun and Wilhite 1999) is calculated to estimate 
the drought condition in South Korea. The EDI accounts for 
the accumulation effect of daily precipitation deficit and can 
monitor the daily temporal evolution of droughts (Kim et al. 
2009; Park et al. 2015; Jain et al. 2015). The EDI is classified 
into three severity categories: moderate (-1.5 < EDI ≤ -1.0), 
severe (-2.5 < EDI ≤ -1.5), extreme (EDI ≤ -2.5) drought 
(Kim et al. 2011). The detailed calculation procedure can 

be found in Byun and Wilhite (1999) and Park et al. (2022a). 
In this studythe onset and recovery of a drought were defined 
at the different threshold value of EDI (–0.5 and 0.5 of EDI, 
respectively), which allows us to capture a full recovery of 
the ongoing drought (Kam et al. 2019).

3  Result

3.1  Hindcasts of SubX Models for Two Multi‑Year 
South Korea Droughts

Figure 1 shows the 31-day running means of the CPC pre-
cipitation and GRACE liquid water equivalent thickness 
anomalies over the 2007–10 and 2013–16 droughts. The 
31-day running means were computed to account for the 
cumulative impact of precipitation anomalies (the long-term 
persistence). Over 2007–2010, the consecutive negative pre-
cipitation anomalies from late 2007 developed the drought 
onset (Fig. 1a) and the severity rapidly reached –1.01 of EDI 
in March 2008 (Fig. 1c). Despite the retreat in summer 2008, 

Table 2  Verification metrics 
used in this study (Harvey Jr. 
et al., 1992; Huang and Zhao 
2021)

N number of pairs of forecast and observation, S forecast of SubX model, O observation, Pe : percentiles of 
the k-th ensemble forecast, CDF cumulative distribution function of forecast, H Heaviside function, r refer-
ence forecast, A hit, B false alarm, C miss, <—please refer the matrix in Harvey Jr. et al. (1992), p probabil-
ity of defined event, b binary outcome, c threshold of p , I Indicator function

Metric Equation

Correlation coefficient (CC)
CC =

∑N

i=1
(Si−S)(Oi−O)√∑N

i=1
(Si−S)

2
√∑N

i=1
(Oi−O)

2

Root mean square error (RMSE)
RMSE =

�
∑N

i=1
(Si−Oi)

2

N

Interquantile range (IQR) IQR =
1

N

∑N

i=1
(Pei,k1 − Pei,k2)

k1 > k2

Relative bias (RB)
RB(%) =

∑N

i=1
Si−

∑N

i=1
Oi∑N

i=1
Oi

× 100

Nash–Sutcliffe efficiency (NSE)
NSE = 1 −

∑N

i=1
(Si−Oi)

2

∑N

i=1
(Oi−O)

2

Continuous ranked probability score (CRPS) skill 
score (CRPSS)

CRPS =
1

N

∑N

i=1
∫ [CDFi − H

�
z − Oi

�
]
2
dz

H
(
z − Oi

)
=

{
1, z > Oi

0, z ≤ Oi

CRPSS(%) = 1 −
CRPSS

CRPSr
× 100

Hit rate (HIT) HIT =
A

A+C

False alarm rate (FAR) FAR =
B

A+B

Brier skill (BS) score (BSS) BS =
1

N

∑N

i=1

�
pSi − bOi

�2
,BSS(%) = 1 −

BSS

BSr
× 100

bOi
=

{
1,Oi = event

0,Oi = notevent

Probability of detection (PD)
PD =

∑N

i=1
I(pSi

>c
���bOi=1

�

∑N

i=1
I
�
bOi

=1

�

Probability of false detection (PFD)
PFD =

∑N

i=1
I(pSi

>c�bOi=0)∑N

i=1
I(bOi

=0)
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the drought re-emerged and reached –1.68 of EDI (severe 
drought) in April 2009. Due to the large positive precipita-
tion anomalies in summer 2009, the full recovery of second 
drought is found. However, severe persistent precipitation 
deficits in the following autumn and early winter re-emerged 
and persisted the drought in early 2010.

Over 2013–2016, several precipitation surplus retreated 
the several drought conditions and terminated the drought 
in 2016 (Fig. 1b and d). During this period, the minimum 
value of EDI was –1.83 in April 2014 after the drought 
onset, and –1.71 in October 2015 during the drought re-
emergence (Fig. 1d), indicating that the 2013–16 drought 
was a more severe drought than 2007–10 drought. Also, 
the days with –0.5 of EDI or below is 810 days during the 
2013–16 drought, which was longer than those days during 
the 2007–10 drought (427 days).

At the daily scale of drought propagations, the positive 
precipitation anomalies retreated the on-going drought (e.g., 
after June 2008 and 2009 and near June 2015 and 2016) 
and the following persistent negative precipitation anoma-
lies caused abrupt transitions to the drought re-emergence 
stage. This result suggest that daily drought propagations 
have strong variation of the drought condition, confirming 
that different threshold values for drought onset (-0.5 of 
EDI) and recovery (+ 0.5) is necessary for drought frequency 
analysis to avoid the overestimate of drought events from a 
single threshold value (-0.5).

Results from the CPC and GRACE data show coinci-
dent negative precipitation anomalies and liquid water 
thickness anomalies (Fig. S2), indicating an evolution of 
meteorological drought to hydrological drought, possibly 

causing severe hydrological damages in socioeconomic 
area in South Korea. For example, the 2013–2016 drought 
is a mega-drought in South Korea historically and received 
huge attention from the public due to its destructive damage 
(NDSP 2017; Park et al. 2022a).

Figure 2 shows the 31-day running means of daily pre-
cipitation anomalies for the observation (CPC), the multi-
model ensemble mean (MME), and the ensemble mean 
of each SubX model over 2007–10. Results show that the 
prediction skill decreases gradually from the week 1–2 to 
the week 3–4 forecast initial times. In the week 1–2 of 
the forecast initial time (Fig. 2b), the MME and the most 
of SubX models were able to predict well the timing of 
significant positive and negative precipitation anomalies. 
In particular, the abrupt phase transition of precipitation 
anomalies was reasonably predicted near the June 2008 and 
2009. In the week 2–3 of the forecast initial time (Fig. 2c), 
the MME and the most of SubX models were not able to 
predict negative precipitation anomalies in near September 
2008 and April and May 2009. However, the timing and 
magnitude of predicted precipitation anomalies compared 
to observation were relatively not reliable in the week 3–4 
forecast initial time (Fig. 2d).

The predictive performances of the SubX models for the 
2013–16 and 2007–10 droughts were consistent (Fig. 3). 
The best predictive performance was found in the week 1–2 
forecast initial time and it was gradually lower as the initial 
time was earlier. In particular, for the week 1–2 forecast 
initial time (Fig. 3b), the SubX models' forecasts were able 
to predict abrupt phase transitions of precipitation anomalies 
(e.g., June 2016).

Fig. 1  The 31-days running mean of precipitation anomaly (a) (b) (unit: mm  day−1) and the daily EDI (c) (d) for each drought case. Blue, 
orange, and red horizontal dashed lines represent 0.5, -0.5, and -1.0 of EDI, respectively
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3.2  SubX Multi‑Model based Predictive 
Performances

The CC, IQR, RMSE, RB, NSE, and CRPSS were calculated 
for the period of two multi-year droughts to quantitatively 
estimate prediction skills of SubX models in terms of ensem-
ble and deterministic forecasts (Fig. 4). For both droughts, 
the CC shows statistically significant relations of larger than 
0.6 even the week 3–4 forecast initial time, indicating that 
forecasts of SubX models relatively well captured the over-
all variation in observed precipitation during the on-going 
drought. The positive RB and RMSE values indicate that the 
precipitation amount of SubX models generally overestimate 
than that of observation. The positive NSE and CRPSS also 
indicate that the SubX models were more skillful than the 
reference forecast over both drought periods.

According to the multiple verification metrics (CC, 
IQR, RB, NSE, and CRPSS), the SubX models showed 
more skillful forecasts for the 2007–10 drought (0.9 of 
CC, 1.9 of IQR, 6.2% of RB, 0.8 of NSE, and 45.4% of 
CRPSS) than that for the 2013–16 drought (0.8 of CC, 2.1 
of IQR, 8.4% of RB, 0.6 of NSE, and 42.6% of CRPSS). 

The prediction skill was decreased rapidly as the forecast 
initial time increases. The prediction skill of the SubX 
models for the 2007–10 drought was decreased rapidly in 
the week 2–3 and 3–4 forecast initial times (e.g., dCC∕dt 
= –0.13 per week, dRMSE∕dt = 0.6 per week, dRB∕dt = 
3.4% per week, dNSE∕dt = –0.2 per week, and dCRPSS∕dt 
= –16.1% per week). Interestingly, the prediction skill 
of SubX models was decreased relatively slowly for the 
2013–16 drought in the week 2–3 and 3–4 forecast initial 
times (e.g., dCC∕dt = –0.09 per week, dRMSE∕dt = 0.3 
per week, dRB∕dt = 1.2% per week, dNSE∕dt = –0.13 per 
week, and dCRPSS∕dt = –9.6% per week). These results 
imply that the generating mechanisms for the 2007–10 and 
2013–16 droughts might be different, which requires a fur-
ther investigation, but is beyond the scope of this study.

Figure 5 shows HIT, FAR, and BSS for each (negative 
and positive) anomaly phase during the drought periods. 
The BSS scores show that the predictive performance 
of SubX models for the negative precipitation anomaly 
(> 60% BSS) was more skillful than that for the positive 
precipitation anomaly (33.5–55.0% of BSS), indicat-
ing that the SubX models might take an advantage of 

Fig. 2  The 31-days running 
mean of precipitation anomalies 
for the observation (CPC) (a), 
multi-model ensemble mean 
(MME), and ensemble mean 
of each SubX model (b)-(d) 
for each forecast initial time in 
2007–10 drought case. For the 
SubX data, the 14-day-average 
anomaly was used correspond-
ing to the week 1–2 (b), week 
2–3 (c), and week 3–4 (d) fore-
cast initial times, and its center 
position for abscissa is the 
seventh date of 14-day forecast 
(refer the visualized methodol-
ogy in Fig. S1). The shaded area 
was plotted only if the sign of 
SubX model data is same with 
observation data and more than 
half of ensemble members of 
that show same sign
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Fig. 3  Same as Fig. 2, but for 
2013–16 drought case

Fig. 4  Variations in verification 
metrics of the ensemble/deter-
ministic forecast for the multi-
model ensemble mean (MME) 
of SubX models in each drought 
case and forecast initial time
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the long-term memory/persistence during the precipita-
tion negative anomaly phase (e.g., the drought onset and 
persistence stages) or the dry initial condition during the 
drought. The HIT, FAR, and BSS estimates also show 
that a relatively more rapid decrease of the predictability 
of the SubX models as the forecast initial time increases 

for the 2007–10 drought (e.g., dBSS_P∕dt = –10.2% per 
week and dBSS_N∕dt = –6% per week) than that for the 
2013–16 drought (e.g., dBSS_P∕dt = –8.8% per week and 
dBSS_N∕dt = –5.6% per week).

The receiver operating characteristic (ROC) curves were 
constructed based on the PD and PFD from the two-by-two 

Fig. 5  Same as Fig. 4, but for the categorical forecast. P and N indicate the positive and negative precipitation anomalies, respectively

Fig. 6  Receiver operating char-
acteristic (ROC) curve for each 
categorical forecast type (i.e., 
positive and negative precipita-
tion anomalies) and drought 
case
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contingency table. The ROC curves allows us to evaluate 
the predictive performance for the categorical forecast in 
terms of probability between ensemble members (Fig. 6). 
The point in the upper left corner (bottom right corner) 
indicates the better (worse) forecast than reference forecast 
which is 1:1 line of PD and PFD. Overall, the upper left 
corner ROC curves show a more skillful predictability of 
the SubX models than reference forecast. However, the ROC 
curves of the week 3–4 forecast for the 2007–10 drought and 
the week 2–4 forecast for the 2013–16 drought were close to 
the 1:1 line of PD and PFD, indicating no difference from 
the prediction skill of the reference forecast. In other words, 
the prediction skill of SubX models was much longer sus-
tained for the 2007–10 drought than that of for the 2013–16 
drought, which is an inconsistent result from the verifica-
tion metrics for ensemble/deterministic forecasts. This result 
implies that the robust evaluation of predictive performance 
of climate forecast models are necessarily based on multiple 
verification metics.

3.3  SubX Individual Model based Predictive 
Performances

Figure 7 show the mean score for each model which is aver-
aged over the various metrics belonging in same forecast 

types: the mean score of ensemble/deterministic (categori-
cal) forecast is calculated by averaging relative scores of 
CC, IQR, RMSE, RB, NSE and CRPSS (HIT, FAR, BSS, 
PD, and PFD). This mean score was a relative score between 
models based on multiple verification metrics to summa-
rize the overall performance among the five SubX models 
through the following steps: 1) calculating all the verifica-
tion metrics for each individual SubX model's ensemble 
mean (Tables S1 and S2) and 2) normalizing the score of 
each verification metric by a range of the maximum and 
minimum metric values among SubX models (Tables S3 
and S4).

In general, the ESRL-FIMr1p1 and EMC-GEFSv12 
models showed a more skillful predictive performance than 
other models in all forecast initial time (Fig. 7a–c). Based 
on the average of the mean score for the ensemble/deter-
ministic forecasts and the categorical forecast (Table 3), the 
EMC-GEFSv12 and ESRL-FIMr1p1 models were the best 
and second-best model, respectively. The ECCC-GEPS6 
and RSMAS-CCSM4 models were the worst model for the 
ensemble/deterministic forecasts and the categorical fore-
cast, respectively. This result confimed that the predictive 
performance of model can be differently evaluate depending 
on the applied verification metric.

Fig. 7  Variations in the mean scores of each SubX model. The mean 
score for ensemble/deterministic (categorical) forecast is the aver-
aged value for the relative scores of CC, IQR, RMSE, RB, NSE, 
and CRPSS (of HIT, FAR, BSS, PD, and PFD) in Tables S3 and S4 
for each SubX model. Closed color symbol and open color symbol 
represent the mean scores in the 2007–10 and 2013–16 droughts, 

respectively. Cyan and blue bars indicate the spread of mean score 
of SubX models in each forecast initial time for the 2007–10 and 
2013–16 droughts, respectively. The spread of mean score is the dif-
ference between the maximum and minimum mean scores in the cor-
responded forecast initial time and drought case



78 C.-K. Park, J. Kam 

1 3 Korean Meteorological Society

Similarly, the spread of relative forecast performances 
was inconsistent between the verification metrics of ensem-
ble/deterministic forecast and the categorical forecast 
(Fig. 7d–f). Interestingly, the spread of relative forecast per-
formance between the SubX models was relatively narrower 
for the 2007–10 drought than that of 2013–16 drought.

Overall, the EMC-GEFSv12 model with 11 ensemble 
members showed a more skillful performance than other 
models with three or four ensemble members, hypothesiz-
ing a possible benefit of a large ensemble size on the sub-
seasonal prediction skill. To validate this hypothesis, The 
CRPSS, NSE, and BSS scores were calculated based on 
10,000 times bootstrap sampling of 11 ensemble members of 
the EMC-GEFSv12 along different ensemble sizes (Figs. 8 
and 9). Results show that the mean value of CRPSS, NSE, 
and BSS increased significantly in all the forecast initial 
times and drought events as the ensemble size increased, 
particularly when the ensemble member size is low (e.g., 
three to five ensemble members). The range of boxplot was 
gradually narrow to larger ensemble member, indicating the 
reduction of uncertainties. Results also showed the upper 

limit of the ensemble member size to enhance the predic-
tion skill, which was around eight/nine ensemble members. 
This results might be model-dependent, which is needed to 
further investigate.

4  Discussion

The monsoonal circulation in East Asia plays as a domi-
nant role to decide the timing and amount of precipitation 
in South Korea (Lee et al. 2017; Liu et al. 2022). However, 
even in the major monsoon season, the precipitation in South 
Korea is not continuously occurring during the whole sea-
son, and it can be depending on the movement of monsoonal 
front at the sub-seasonal time scale (Chen et al. 2004; Kim 
and Kim 2020; Park et al. 2021). In addition, precipitation 
over South Korea can be greatly driven by the environmen-
tal circulations at the sub-seasonal time scale such as, the 
extratropical cyclone (Moon et al. 1994; Park et al. 2021), 
typhoon (Kim and Jain 2011), and Okhotsk Sea blocking 
(Song and Ahn 2021). Since variation in precipitation is 

Table 3  Averaged values of all 
mean scores in Fig. 7 for each 
forecast type and model, and 
their sum and rank

Models Ensemble/ 
Deterministic 
forecast

Categorical  
forecast (positive)

Categorical  
forecast (negative)

Sum Rank

ECCC-GEPS6 0.14 0.64 0.51 1.29 4
EMC-GEFSv12 0.88 0.79 0.7 2.37 1
ESRL-FIMr1p1 0.69 0.52 0.54 1.75 2
GMAO-GEOS_V2p1 0.5 0.62 0.49 1.61 3
RSMAS-CCSM4 0.5 0.19 0.19 0.88 5

Fig. 8  Boxplots for CRPSS (a) 
(b) (c) and NSE (d) (e) (f) of 
EMC-GEFSv12 depending on 
the ensemble member for each 
drought case and forecast initial 
time. The bold line in boxplot 
indicates mean value
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closely connected to the evolution of drought, these sub-
seasonal environmental circulations should be replicated 
well in climate forecast models, such as SubX models, to 
produce the robust sub-seasonal forecasting skill for South 
Korea droughts. Currently, the limited forecasted variables 
(e.g., upper-level tropospheric pressure field) are available in 
the SubX forecast archive, but it may be necessary to further 
investigate the simulated relationship between precipitation 
and surrounding circulation patterns in the SubX models 
against the observed relationship, which remains unknown.

The predictive performance of the SubX models was veri-
fication metric-dependent and event-dependent. While the 
SubX models relatively well forecasted the 2007–10 drought 
than the 2013–16 drought, their prediction skill was much 
rapidly decayed for the former drought case as the forecast 
initial time increases. The predictive performance of each 
individual SubX model can be differently evaluated, depend-
ing on the type of forecasts (ensemble/deterministic vs. cat-
egorical). The findings of this study suggest the need to use 
multiple verification metrics for robust evaluations of the 
predictive performance of climate forecast models, which is 
necessary to avoid the biased assessment and to objectively 
evaluate the model performances for the extreme event.

This study confirmed that a model with larger ensemble 
members could enhance the prediction skills in terms both 
of mean value and uncertainties. These results imply that 
the limited sub-seasonal prediction skill from an imperfect 
model physics can be more improved by simply adding 
models and ensemble members. The results clearly showed 
the upper limit of the affected ensemble size (herein, eight 
ensemble members), which requires advancement of the 
physics in climate forecast models for the improvement the 

prediction skill beyond a certain predictive performance 
level. Therefore, the optimized ensemble size of climate 
forecast models is carefully designed for the efficient trade-
off between prediction skill and computational cost.

This study assessed the forecasting skill of the SubX 
climate forecast models during the two major drought 
events over the southern part of the Korean Peninsula. 
This study used the climatology of SubX models that was 
provided by each modeling's group. The period for the cli-
matology was relative short (about 20 years) and slightly 
different among SubX models, which could be biased to 
precipitation anomalies. Risbey et al. (2021) suggested 
that the prediction skill of models can be overestimated 
in the case of hindcast than the real-time forecast due to 
the biased approach in anomaly assessment. This implies 
that the "fair" evaluation of prediction skill may be needed 
with a careful design of the operation system that are con-
sistent for hindcasts and real-time forecasts.

This study focused on multiple verification metric-
based assessment for forecasting skill of SubX models. 
The SubX models provided limited climate variables, 
including sea surface temperature, near-surface tempera-
ture, and 500-hPa geopotential height, due to the data stor-
age, which is difficult to explore the detailed mechanisms 
in the limited prediction skill of the SubX models against 
observed mechanisms. A climate model-based study (Ham 
et al. 2022) found that the large-scale sea surface tempera-
ture forcing over the subtropical central Pacific contributed 
to the 2013–16 South Korea drought. Other generating 
mechanisms can be further investigated via land-sea-
atmospheric interactions, using the reanalysis products, 
such as ECMWF reanalysis version 5 (ERA5).

Fig. 9  Same as Fig. 8, but for 
BSS of each categorical forecast
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5  Conclusions

This study conducted a comprehensive evaluation for the 
predictive performance of the five SubX models for two 
recent multi-year droughts over South Korea. By using 
various verification metrics for ensemble/deterministic and 
categorical forecasts, the prediction skills of SubX sub-sea-
sonal hindcasts were quantitatively estimated. The positive 
CRPSS, NSE, and BSS scores in all forecast initial times of 
the SubX models indicate that the SubX models were obvi-
ously more skillful than the reference forecast. According to 
the mean scores for ensemble/deterministic and categorical 
forecasts, EMC-GEFSv12 was superior to other models for 
sub-seasonal forecasts of South Korea droughts.

The SubX sub-seasonal forecasting system is operating 
for the globe in the near real-time. Currently, the Korean 
Meteorological Administration (KMA) has operated at the 
short- through long-range forecast systems using a single 
climate forecast model. This study provides an insight about 
how facilitate the SubX sub-seasonal forecasting system and 
the current KMA forecasting system. Forecasted daily pre-
cipitation from the SubX models can be used to outlook 
propagations of the ongoing drought via daily drought indi-
ces, such EDI. The multiple SubX model-based operational 
system for drought forecasting will help evaluate uncertain-
ties in the outlook of multi-year droughts robustly. This 
study highlights the importance of a robust assessment of 
the predictive performance of sub-seasonal climate forecasts 
via multiple verification metrics.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s13143- 022- 00307-z.
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