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Abstract
The Taiwan mesoscale ensemble prediction system (EPS) based on theWeather Research and Forecast model (WRF), also called
WEPS, is designed to provide reliable ensemble forecasts for the East Asian region centered on Taiwan. The most skillful
ensemble is obtained if model-uncertainty is represented in addition to initial condition uncertainty. A number of numerical
prediction experiments are conducted to obtain the optimal configuration consisting of multiple physics-schemes, and two
stochastic parameterization schemes: The Stochastic-Kinetic Energy Backscatter (SKEB) Scheme and the Stochastically
Perturbed of Physics-Tendency (SPPT) scheme. The performance of the best configuration of WEPS is objectively verified
against ECMWF reanalysis and a high-resolution simulation. Further analysis finds little impact of the stochastic schemes on
quantitative precipitation forecasts and a single Typhoon case study. We conclude that for best performance over the East Asian
domain, stochastic parameterizations alone are not sufficient to represent model-uncertainty and need to be augmented with a
multi- physics suite.

Keywords Ensemble forecast . SKEB . SPPT .Multi- physics

1 Introduction

The goal of regional ensemble systems is the generation of
reliable probabilistic forecasts, often in real-time, with special
emphasis on mesoscale and synoptic phenomena relevant to a
specific region. The Taiwan mesoscale ensemble prediction
system (EPS) based on the Weather Research and Forecast
model (WRF), also referred to as WEPS, is an example for
such a mesoscale ensemble system. Taiwan is an island in East
Asia; located some 180 km off the southeastern coast of
China. Surrounded by the Pacific Ocean, its central mountains
reach an altitude of almost 4000 m making the mesoscale
forecast of heavy precipitation events an important regional

focus. On the other hand, Taiwan is in the path of tropical
cyclones approaching from the deep waters to the East which
requires the synoptic-scale forecast of typhoon tracks.

While of central importance, accounting for initial-
condition error is often insufficient for a full representation
of forecast uncertainty (Palmer 2001; Berner et al. 2009;
Leutbecher et al. 2017) and the WEPS is no exception to this
(Li and Hong 2014). Hence different approaches for the rep-
resentation of model-error were tested to obtain the optimal
configuration of the Taiwan mesoscale ensemble prediction
system (Li and Hong 2014). In particular, the benefits of using
a different set of physics packages for each ensemble member
were compared to that of using one or more stochastic
parameterizations.

While multi-physics schemes have been very successful to
generate the reliable probabilistic forecasts, especially for me-
soscale prediction systems, they have several theoretical and
practical disadvantages. The maintenance of different param-
eterizations is resource-intensive and will result in members
with systematically different climatology and mean error,
which poses difficulties for probabilistic interpretation and
statistical post-processing. On the other hand, tropical storms
are sensitive to details of the cumulus convection scheme
(Vitart et al. 2001; Biswas et al. 2014), and parametrization
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sensitivity might play a bigger role than initial condition un-
certainty in comparison to the mid-latitudes.

An alternative to the multi-physics approach is the repre-
sentation of model-uncertainty by stochastic perturbation
methods. When used together with a single set of parameteri-
zations, this approach leads to statistically consistent ensemble
distributions. Stochastic parameterizations can also be used in
addition to multiple physics packages to further increase mem-
ber diversity. In particular, two schemes are widely used: the
Stochastic-Kinetic Energy Backscatter (SKEB; Shutts 2005)
Scheme and the Stochastic Perturbation of Physics Tendencies
(SPPT; Buizza et al. 1999, Palmer et al. 2009) scheme.

Leutbecher et al. (2017) investigated the impact of two sto-
chastic schemes in the global model framework and they found
that SPPT scheme was more beneficial to additional spread in
the ensemble than SKEB scheme, irrespective of region, thereby
reducing ensemble mean error. Berner et al. (2017) also showed
that SPPT scheme could be effective in increasing spread and
decreasing error. In terms of the operational viewpoint, we
aware that the model performance highly depends on the model
configuration, including themodel resolution, domain coverage,
and the model physics, etc. The performance is also weather
regime dependent, for example the performance for typhoon
and winter system could be very different. It is worth to system-
atically evaluate the model-error scheme over different region,
for example the sub-tropical ocean and for the typhoon cases.
We believe such a research could provide an independent results
for reference, especially compared with the previous study.

Here, we report on the experiments conducted to obtain the
optimal configuration of the Taiwanese mesoscale ensemble
system, which has been applied to a number of typhoon and
Meiyu rainfall events over the Taiwan area (Zhang et al. 2010;
Fang et al. 2011; Xie and Zhang 2012; Hsiao et al. 2013; Hong
et al. 2015; Su et al. 2016).

In particular, we address the following two questions: 1)
Can a single-physics ensemble augmented with a suite of op-
timally tuned stochastic parameterization schemes provide
forecasts of comparable skill to that of a multi-physics ensem-
ble? 2) Can SKEB and/or SPPT further improve the probabi-
listic skill of the multi-physics ensemble?

The paper organized as follows: The experiment design and
model-error representation are introduced in section 2.
Section 3 summarizes the verification metrics used. The results
are reported in section 4, for both standard verification metrics
as well as some case-specific metrics. The final results are com-
pared to that of other mesoscale ensemble systems in section 5.

2 Experiment Design and Model-Error
Representations

The Taiwan mesoscale ensemble prediction system is based
on Weather Research and Forecasting (WRF) Model with the

Advanced Research WRF dynamic solver (Skamarock et al.
2008). It is also referred to as WEPS for WRF ensemble pre-
diction system. The model domain is centered on Taiwan, and
covers the East-Asian region (Fig. 1), this domain cover from
5 S~43 N and 78 E~180 E. The model is integrated over a
domain of 662 × 386 horizontal grid points with 15-km grid
spacing. The ensemble uses 52 vertical levels, with the highest
level at a pressure height of 20 hPa. The model is integrated
with a time step of 60 s for a total of 72 h.

2.1 Initial Condition and Lateral Boundary Condition
Perturbations

Initial conditions were obtained by downscaling the NCEP
Global Forecast system (GFS) and adding perturbations from
an Ensemble Adjustment Kalman Filter (EAKF; Anderson
2001) to obtain a 20-member ensemble. The perturbations
are computed as the difference between each member of the
EAKF and the ensemble mean after a forecast time of 6 h. The
lateral boundary conditions are taken from the 10 members of
the NCEP Global Ensemble Forecast System (GEFS; Wei
et al. 2008) and each LBC is used for two members.

The EAKF system is an ensemble data assimilation system
from the National Center for Atmospheric Research (NCAR)
Data Assimilation Research Testbed (DART; Anderson et al.
2009). The system uses 32 members to provide 6-h forecasts
which provide the first-guess background for the next analysis
as a continuously cycled analysis system. To counteract en-
semble deflation in the assimilation system, the EAKF uses
covariance inflation as well as stochastic perturbations from
SKEB (see below) before the assimilation step. The assimilat-
ed observations are comprised of radiosondes, surface obser-
vations from ship and land stations, GPS radio occultation,
aviation routine weather report, and aircraft reports.

2.2 Multi-Physics Configuration and Stochastic
Parameterization Schemes

In its standard configuration, WEPS uses 20 different combi-
nations of physics packages for parameterizing the micro-
physics, cumulus parameterization, planetary boundary layer,
and surface layer (Table 1). This configuration was chosen by
analyzing the results from 48 experiments combining a total of
six different cumulus parameterization schemes, four plane-
tary boundary layer schemes, and two microphysics schemes.
It was found that the forecasts were most sensitive to the
choice of the cumulus schemes, followed by the PBL scheme.
To maximize ensemble diversity, all six cumulus schemes are
approximately equally represented and combined with differ-
ent PBL and micro-physics schemes.

To represent random model-error, we test two widely used
stochastic parameterization schemes. SKEB is designed to
represent the interactions between the resolved flow and
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unresolved subgrid-scale processes (Shutts 2005) and intro-
duces random perturbations to streamfunction and potential
temperature tendencies (Berner et al. 2011).

The SPPT scheme aims at representing uncertainty in the
physical parameterization schemes by perturbing the total
physical tendencies of temperature, zonal and meridional
winds, and humidity (Buizza et al. 1999; Palmer et al.
2009). The perturbations are proportional to the deterministic

tendency, so that they are large where the physical tendencies
are large, and small where the tendencies are small .

2.3 Ensemble Prediction Experiments

To quantify the performance of the Taiwanese ensemble sys-
tem, probabilistic hindcasts with WRF V3.7.1. were per-
formed for two weeks in summer and winter: August 1,
2015 - September 15, 2015 and December, 12,015 –
January, 152,016, respectively.

We will demonstrate in this study, that the use of multiple
physics packages is beneficial for the performance of the
Taiwan ensemble prediction system. Hence, we comprehen-
sively report on the results of four experiments: the control
experiment MP uses multiple physics-packages for each en-
semble member. Additional experiments combine MP with
SPPT or SKEB. Finally, the experiment SKEB+SPPT+MP
uses all three model-error representations (see Table2).
Additional experiments – albeit for a shorter verification peri-
od - were conducted to determine the sensitivity on the set-
tings and to see if the stochastic schemes could replace the
multi-physics scheme. The results of these experiments to-
gether with the overall tuning strategy are discussed in section
4d. The final settings for the SPPT and SKEB schemes given
in Table 3. In SKEB, the tot_backscat_psi represents the total
backscattered dissipation rate for streamfunction, and it im-
pacts the amplitude of rotational wind perturbations; and the
tot_backscat_T is for potential temperature. In SPPT,
gridpt_stddev_sppt defines standard deviation of random per-
turbation field, and stddev_cutoff_sppt cut off the perturbation
pattern above the standard deviation. The lengthscale_sppt
defines random perturbation length scale, and timescale_sppt
defines temporal decorrelation of random field.

Table 1 Physics packages for multi-physics ensemble

Cumulus PBL Microphysics Sfclay

1 Grell YSU Goddard Old mm5

2 Tiedke YSU Goddard Old mm5

3 Betts-Miller MYJ Goddard Monin-Obukhov

4 Kain-Frisch MYJ Goddard Monin-Obukhov

5 Tiedke MYJ Goddard Monin-Obukhov

6 Old SAS MYJ Goddard Monin-Obukhov

7 New SAS MYJ Goddard Monin-Obukhov

8 Grell ACM2 Goddard PX

9 Tiedke ACM2 Goddard PX

10 New SAS ACM2 Goddard PX

11 Tiedke YSU WSM5 Old mm5

12 Betts-Miller MYJ WSM5 Monin-Obukhov

13 Kain-Frisch MYJ WSM5 Monin-Obukhov

14 Tiedke MYJ WSM5 Monin-Obukhov

15 Old SAS MYJ WSM5 Monin-Obukhov

16 New SAS MYJ WSM5 Monin-Obukhov

17 Grell ACM2 WSM5 PX

18 Tiedke ACM2 WSM5 PX

19 New SAS ACM2 WSM5 PX

20 Old SAS MYNN2 WSM5 MYNN

Fig. 1 The model domain of
Taiwan mesoscale ensemble
prediction system
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3 Verification Methodology

3.1 Continuous Ranked Probability Score
and Continuous Ranked Probability Skill Score

A probabilistic verification based on the Continuous Ranked
Probability Score (CRPS, Hersbach 2000; Toth et al. 2003) is
performed. The CRPS is based on the Brier score, but verifies
the forecast over a range of thresholds rather than a single
threshold. The Continuous Ranked Probability Skill Score
(CRPSS) is constructed to measure forecast skill, where 0
means no skill over the reference forecast and 1 denotes per-
fect skill.

To determine if the improvements are significant, we ob-
tain the empirical distribution of CRPSS differences by boot-
strap sampling 30 times with replacement over all dates. A
student t-test is used to get the p values which determines the
significance. When the p value is smaller than 0.05, we reject
the null-hypothesis that the two forecasts come from the same
underlying distribution and say that the ensemble forecast is
significantly different from the reference forecast with 95%
confidence. Significant improvements over MP are denoted
by solid circles.

3.2 Rank Histograms

Rank histograms(Hamill 2001;Toth et al. 2003) also known as
Talagrand diagrams, are used to analyze ensemble spread.
They are generated by ordering the forecast values of each
ensemble members and at each gridpoint from smallest to
largest. For an ensemble with J members, this results in J +

1 intervals. The first interval spans values smaller than any
of the J member forecasts and the last interval spans
values larger than any individual forecast. Then the rank
of the interval of the verifying analysis is determined.
This is repeated for all gridpoints and forecasts for a par-
ticular forecast lead time. An BU^-shaped rank histogram
means that the verifying analysis tends to fall outside the
range of member forecasts: The ensemble is under-disper-
sive. The rank histogram is BA^-shaped, if the verifying
analysis rarely falls into the edge intervals, which sig-
nifies an over-dispersed ensemble system. Ideally, the
rank histogram is Bflat^, which means the verifying anal-
ysis falls equally in each forecast interval.

3.3 The Fractions Skill Score

The fractions skill score (FSS, Roberts and Lean 2008) eval-
uates the skill of a single forecasts as function of spatial scale.
For each gridpoint, a neighborhood is defined by a radius of
influence and a precipitation threshold is prescribed. Then the
probability of the forecasts exceeding the threshold value is
computed within each neighborhood. The Fractions Brier
Score (FBS) is given by

FBS ¼ 1

N
∑N

i¼1 NPF ið Þ−NPo ið Þ
� �2

; ð1Þ

Where NPF(i) and NPo(i) are the neighborhood probability
at the i-th grid box in the model forecast and observation.

For ensemble systems, the FBS can be defined in a similar
way (Schwartz et al. 2010). The Bneighborhood ensemble
probability^ is computed as average over the all ensemble
forecasts. A skill score can be defined with regard to a refer-
ence forecast. The worst possible FBS is achieved when there
is no overlap of nonzero probabilities

FBSworst ¼ 1

N
∑N

i¼1NP
2
F ið Þ þ ∑N

i¼1NP
2
o ið Þ

h i
: ð2Þ

The Fractions Skill Score is then defined as:

FSS ¼ 1−
FBS

FBSworst
: ð3Þ

Table 2 Experiments
Model-Error Scheme color

MP Multi-Physics Scheme Black

SPPT+MP Multi-Physics Scheme + Stochastically perturbed physics tendencies (SPPT) Red

SKEB+MP Multi-Physics Scheme + Stochastic kinetic-energy backscatter scheme (SEBS) Green

SKEB+SPPT+MP Multi-Physics Scheme +SKEBS+SPPT Blue

LSPPT+MP Multi-Physics Scheme + SPPTwith larger perturbation amplitude Orange

LSPPT Single Physics + SPPT with larger perturbation amplitude Purple

Table 3 Summary of namelist parameter settings for stochastic
schemes

SPPT Namelist Parameter Value

gridpt_stddev_sppt 0.2

stddev_cutoff_sppt 2.5

lengthscale_sppt 150,000 m

timescale_sppt 21,600 s

tot_backscat_psi 0.15e-5 m2/s3

tot_backscat_t 0.3e-6 m2/s3

4 C.-H. Li et al.
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4 Results

4.1 Probabilistic Verification of Dynamical Variables
over East Asia

All forecasts are verified against ECMWF analyses. For our
verification period, this analysis was produced with the IFS
version CY41R1 which uses the 16 km horizontal resolution
of T1279. To maximize significance, the verification is con-
ducted over all winter and summer dates. Seasonal differences
are discussed in section 4c.

Vertical profiles of the root-mean square error (RMSE) of
the ensemble mean and the spread of the ensemble members
around the ensemble mean were computed for geopotential
height, temperature and zonal wind at a lead time of 72 h
(Fig. 2). For geopotential height, the RMSE and spread have
a minimum for heights around the 700 hPa pressure level, and
are larger at the surface and in the free atmosphere. For tem-
perature, the RMSE is largest near the surface, then decreases
up to 700 hPa and remains roughly constant for heights above
this pressure level. For zonal winds, the RMSE and spread
increase as function of height.

The Taiwan WRF Ensemble Prediction System: Scientific Description, Model-Error Representation and... 5
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Fig. 2 Top figures are the spread (dashed) and RMSE (solid), and bottom
figures are the spread-error ratio. a, d for geopotential height, b, e for
temperature and c, f for zonal wind for four ensemble experiments over
the East Asia domain. The different experiments are denoted by line

colors: MP (black), SPPT+MP (red), SKEB+MP (green), and SKEB+
SPPT+MP (blue). The different experiments are denoted by line colors:
MP (black), SPPT+MP (red), SKEB+MP (green), and SKEB+SPPT+MP
(blue)



For a perfectly reliable ensemble system, spread and error
should have the same amplitude and growth rate, so the
spread-error ratio would be 1. Like many ensemble systems,
the spread for this forecast lead time is too small in all verified
variables. Overall, SKEB introduces most spread and combin-
ing SKEB and SPPT introduces more spread than a single
model-error scheme alone. Consistent with previous work
(Berner et al. 2011, 2015, 2017), SKEB increases the spread

throughout the free atmosphere and for all variables, while
SPPT is most effective in increasing the spread of temperature
near the surface. Moreover, the impact of SKEB is more sig-
nificant in typhoon track region, and it consistent with Berner
et al. 2017. The perturbations from SKEB or SPPT would be
different because of the weather systems, and lots of typhoons
existed in this domain. Hence, the SKEB is more sensitive
than SPPT in this study. The stochastic schemes neither

6 C.-H. Li et al.
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Fig. 3 RMSE of the ensemble mean (solid) and spread (dashed) of (a) Z
at 500 hPa, (b) T and (c) U at 850 hPa for four ensemble experiments as a
function of lead time. The different experiments are denoted by line

colors: MP (black), SPPT+MP (red), SKEB+MP (green), and SKEB+
SPPT+MP (blue)

a b c

d e f

Fig. 4 CRPSS, top figures use deterministic forecast as reference, and
bottom figures use MP as reference. a, d Z at 500 hPa, b, e Tand c, fU at
850 hPa for four ensemble experiments as a function of lead time. The

different experiments are denoted by line colors: MP (black), SPPT+MP
(red), SKEB+MP (green), and SKEB+SPPT+MP (blue). The solid
rounds are denoted it is significant improvements over MP



deteriorate nor improve the RMS error of the ensemble mean.
The spread-error ratio (Fig. 2(d)-(f)) is the best for the exper-
iment SKEB+SPPT+MP, which combines the multi-physics
approach with SKEB and SPPT.

To see if our findings hold for other lead times, we repeat
the verification and report the results as function of forecast
lead time for geopotential height at 500 hPa (Z500), tempera-
ture at 850 hPa (T850), and zonal wind at 850 hPa (U850).
Spread and RMSE increase with forecast lead time, signifying
increased uncertainty at larger lead times. For Z500 (Fig. 3a)
the spread is larger than the error for lead time up to 36 h.
However, the error grows faster than the spread so that the
ensemble system is under-dispersive for forecast lead times
of more than 36 h. For T850, the ensemble is under-
dispersive at all forecast lead times. Interestingly, the RMSE
in U850 is smaller than the spread, indicating over-dispersion
in this variable.

Overall, the conclusions drawn from the vertical profiles of
spread and error at a lead time of 72 h carry over to other lead

times: The stochastic schemes do not increase the RMS error
of the ensemble mean and the experiments with stochastic
parameterization - and in particular SKEB - introduce notably
more spread, leading to a better spread/error consistency.

Ideally, any verification should include an estimate of ob-
servation error. However, the estimation of observation error
is generally difficult, especially since it consists of represen-
tativeness error as well as instrument error. Because of these
difficulties, we follow other studies focusing on short-range
forecasts and neglect observation error at this point. We ac-
knowledge that the inclusion of observation error would lead
to an increase in the total spread, so that the ensemble system
would be less under-dispersive and the impact of the model-
error schemes less beneficial.

As measure of probabilistic skill, we compute the CRPSS
with regard to two references as described in the next two
paragraphs.

To assess the forecast skill of the ensemble system versus
the deterministic forecast, the high-resolution forecast

The Taiwan WRF Ensemble Prediction System: Scientific Description, Model-Error Representation and... 7
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Fig. 5 Rank histogram at 60–72 h. a to d are the spread of MP, SPPT+MP, SKEB+MP, SKEB+SPPT+MP respectively. The red dash line is the perfect
frequency value at each intervals



produced by the Central Weather Bureau (CWB) is used.
CWB is the government meteorological research and forecast-
ing institution of Taiwan. The skill scores are positive for all
variables and forecast lead times (Fig. 4a-c), demonstrating
that the ensemble forecast is more skillful than the determin-
istic forecast. For geopotential height and T850 the skill de-
creases as function of forecast lead time, which reflects that
skill decreases for increased lead times. For T850 we observe
a jump in skill at a lead time of 12 h, which could be related to
ensemble spin-up and should be further investigated.
Interestingly, the skill for U850 increases as function of lead
time. Further work will investigate the reasons for this unusual
signature.

To focus on the skill added by the stochastic parameteriza-
tion schemes, this time the reference is the CRPSr of the MP
ensemble. For Z500 and T850 the CRPSS is positive, indicat-
ing that adding stochastic perturbations improved the forecast
skill. Moreover, some of these improvements are significant
but not at all lead times and for all variables (see Fig.4d-f for
significance of specific lead times). For U850, adding SPPT
improves the system marginally for short forecast lead times,
but SKEB deteriorates the skill. Given that SKEB is very

efficient at introducing spread, this result is consistent with
the over-dispersion of U850: by adding additional spread to
an already over-dispersive variable, the skill is deteriorated.
However, the CRPSS changes for U850 are not statistically
significant, so that we conclude that this skill deterioration is
small.

In summary, the ensemble is more skillful than the high-
resolution forecast and combining different model-error
scheme tends to produce the largest spread, which results in
better probabilistic skill for variables that are under-dispersive.
Tuning model-error schemes to an ensemble system that is
under-dispersive for some variables but over-dispersive for
others, is difficult.

4.2 Precipitation Verification over Taiwan

Rank histograms and the fractions skill score are used to verify
the quantitative precipitation forecast over the Taiwanese re-
gion only. Precipitation verification is against estimates from
the BQuantitative Precipitation Estimation and Segregation
Using Multiple Sensor^ (QPESUMS) system, which is devel-
oped by the Central Weather Bureau in Taiwan and the

Fig. 6 FSS with radii of influence
of 15 km. Different thresholds
were used: 0.5 mm per 12 h (a),
20 mm per 12 h (b), and 100 mm
per 12 h (c). The different
experiments are denoted by line
colors: MP (black), SPPT+MP
(red), SKEB+MP (green), and
SKEB+SPPT+MP (blue)
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National Severe Storm Laboratory. It combines radar and rain
gauge data to estimate quantitative precipitation rates.

Rank histograms of quantitative precipitation for a forecast
lead time of 60–72 h are displayed in Fig. 5. The distributions
are characterized by an inverted L-shape, signifying that the
verifying QPESUMS data usually fall into the highest ranked
forecast intervals. Such a rank distribution indicates that the
predicted precipitation amounts are systematically less than
observations. Since precipitation cannot be negative, this
translates into insufficient ensemble spread in this variable.
Adding stochastic perturbations hardly changes the rank
histograms.

Figure 6 shows the FSS for thresholds of 0.5 mm, 20 mm
and 100 mm. Because the FSS for ensemble is the average of
FBS of all ensemble members, the skill of an ensemble system
as function of spatial scale would be known by FSS. It is
worth noting that the FSS is not a really probabilistic score.
Interestingly, the FSS is highest for a large threshold of over
100 mm per 12 h and linearly decreases from 0.7 at a lead time
of 12 h to 0.5 at 72 h. The skill for the smallest threshold of
0.5 mm per 12 h is almost as good and decreases from 0.5 at
12 h to 0.45 at 72 h. This indicates that both heavy and light

precipitation events are well forecasted. The skill for middle
thresholds of 20 mm per 12 h has with 0.1–0.2 lowest skill.

Adding stochastic perturbation to the multi-physics ensem-
ble does not significantly change the skill in the quantitative
precipitation forecasts over the verifying domain. This indi-
cates that the stochastic schemes either do not change the
precipitation forecast, or that such changes occur outside the
verifying region which is relatively small compared to the
domain. We stress, that the current study does not have a
high-resolution nest over the Taiwanese island and that a hor-
izontal resolution of 15 km might be too coarse to detect any
impact.

4.3 Seasonal Differences

In the section 4a) we combined winter and summer cases to
get an overview of the performance of the Taiwanese ensem-
ble system andmaximize sample size. In this section we report
on seasonal differences. During the winter seasons, cold fronts
are a typical synoptic feature in Taiwan, while typhoons are
prevalent in summer.

Fig. 7 RMSE of the ensemble
mean (solid) and spread (dashed)
of (a) Z at 500 hPa of summer
cases and (b) Z at 500 hPa of
winter cases (c) U at 850 hPa of
summer cases and (d) U at
850 hPa of winter cases for four
ensemble experiments as a func-
tion of lead time. The different
experiments are denoted by line
colors: MP (black), SPPT+MP
(red), SKEB+MP (green), and
SKEB+SPPT+MP (blue)

The Taiwan WRF Ensemble Prediction System: Scientific Description, Model-Error Representation and... 9
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Spread and error curves for Z500 and U850 are shown in
Fig. 7 for the winter and summer cases separately. Overall, the
RMSE of Z500 is with 15 m in summer and at forecast lead
time of 72 h about 4 m larger than in winter. The RMSE of
U850 is very similar across seasons, but the spread is over
dispersive at all lead times in summer, but under-dispersive
for longer lead times in winter. Similarly, the spread for Z500
is arguably over-dispersive in summer, but clearly under-
dispersive in winter. Although the spread is not enough in
winter, however, the stochastic parameterizations can increase
the spread, especially SKEB. The SKEB is effective in both
seasons in terms of spread.

To better understand the physical mechanisms responsible
for these results, maps of spread and error at the lead time of a
72 h are shown in Fig. 8. The error is given as RMS difference
between the ensemble mean forecast and the ECMWF analy-
sis. For Z500, the spread and error maps agree well in winter
(Fig.8a-h), but in summer, the error is smaller than the
spread, especially over the ocean. In addition to, the
spread of MP and SPPT+MP is almost the same in both
seasons, and the spread of the experiments with SKEB
increase significantly over the ocean, especially in the
ocean. Meanwhile, the error of all experiments are similar.
For T850 and U850 (not shown), the spread with SKEB

10 C.-H. Li et al.
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Fig. 8 Themap of error and spread of winter cases of Height at 500 hPa at forecast lead time of 72 h. a to d are the spread ofMP, SPPT+MP, SKEB+MP,
SKEB+SPPT+MP respectively. e to h are the error of MP, SPPT+MP, SKEB+MP, SKEB+SPPT+MP respectively



increase most over the ocean, and the error are almost the
same. This result is consistence with Z500.

We note that one typhoons MELOR and four typhoons
SOUDELOR, MOLAVE, GONI, and ATSANI passed
through the West Pacific during the winter and summer veri-
fication periods, respectively. These storms likely contributed
to the large ensemble spread and error of the ensemble mean.

4.4 Single-Physics Ensemble with Stochastic
Perturbations and Sensitivity to Perturbation
Amplitudes

To determine if a suite of stochastic parametrizations schemes
can replace the multi-physics scheme over the Taiwanese do-
main, experiments with a single set of physical parameteriza-
tion schemes were conducted. Since a single-physics ensem-
ble is expected to have less spread, larger stochastic perturba-
tions might be needed. In this section we first report on the
sensitivity to the amplitude of the stochastic perturbations.
Then we will show results for a single-physics ensemble with
an optimally tuned stochastic amplitude. This was done for
SPPT only. For practical reasons, the tuning and single-
physics experiments described in this section were conducted
for all ensemble members, but over a shorter verification pe-
riod, namely for twice-daily initializations at 00 Z and 12 Z
over the period August 3–7, 2016.

First, the standard deviation of the SPPT perturbation pat-
tern at any gridpoint (gridpt_stddev_sppt) was increased from
gridpt_stddev_sppt = 0.2 (SPPT) to 0.5 (LSPPT), so the stan-
dard deviation of random perturbation field would increase at
each grid. This could have been done in a single-physics
framework, but here we show results frommaking this change
in the MP ensemble. Figure 9a,b shows spread and error
curves of the MP ensemble together with those of MP +
SPPT and MP + LSPPT. We see that for the range of ampli-
tudes tested, SPPT impacts the spread, but not the RMSE for
all verified variables. If the amplitude is increased further, the
RMSE starts to increase (not shown), which is why larger
SPPT amplitudes were not considered. While the spread/
error ratio is best in the experiment LSPPT+MP, this combi-
nation can be computationally unstable, which is not accept-
able for operational use. Hence a more conservative amplitude
of gridpt_stddev_sppt = 0.2 has been chosen as optimal value
for the more comprehensive verification in section 4a-c.

For the single-physics experiments, we chose the larger
amplitude of gridpt_stddev_sppt = 0.4 and assume that for this
value, SPPT will not negatively impact the RMSE as just
demonstrated for the MP system. The physical parameteriza-
tions were those used for the deterministic forecast and consist
of the Kain-Fritsch cumulus scheme, the YSU PBL scheme,
and Goddard microphysics scheme. Note that this particular
combination is not contained in the MP configuration.
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a b c d

e f g h

Fig. 9 a to d are the verification results for tuning test. RMSE of the
ensemble mean (solid) and spread (dashed) of (a) Height at 500 hPa
and (b) Temperature at 850 hPa, and CRPSS of (c) Height at 500 hPa

and (c) Temperature at 850 hPa. e to h are as in (a) to (d), but for single
physics test. The different experiments are denoted by line colors: MP
(black), SPPT+MP (red), LSPPT+MP (orange), and LSPPT (purple)



We find that the RMSE of the single-physics ensemble
with LSPPT is considerably larger than the corresponding
RMSE of the multi-physics scheme (Fig.9 e, f), especially
for Z500. Its spread is similar to that of the MP-ensemble
and markedly smaller than that of MP + SPPT. The increase
in RMS error without a similar increase in spread leads to a
deterioration in skill as measured by the CRPSS (Fig.9 g, h).

In summary, we conclude that for a range of amplitudes,
SPPTwill impact the spread but not the RMS error and can be
thus used to introduce spread near the surface. Furthermore,
the RMSE error of the single-physics scheme with stochastic
parameterization is larger than that of the multi-physics
scheme, while their spread is comparable. The magnitude of

the RMS error for the range of stochastic amplitudes tested
here appears to be dominated by of the choice of physics-
schemes rather than the stochastic perturbations.
Consequently, the multi-physics ensemble has better skill than
a single-physics ensemble, even if latter uses large SPPT
amplitudes.

4.5 Typhoon Case Study: GONI

Due its location in theWestern North Pacific Ocean, Taiwan is
frequently in the path of typhoons coming from the east and
south east. Typhoons are a significant threat to human lives
and result each year in substantial economic losses. Therefore,
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Fig. 10 Typhoon forecast track of 19 August 2015 case. a to d are the forecast track ofMP, SPPT+MP, SKEB+MP, SKEB+SPPT+MP respectively. The
black line is best track, red line is forecast track of ensemble mean, and gray lines are the forecast track of ensemble members



forecasting the path of typhoons, as well as their intensity, is of
upmost importance to the Taiwanese Central Weather Bureau.

Only very limited work concerning the impact of stochastic
parameterization on typhoon forecasts has been conducted.
Judt and Chen (2016) introduced perturbations to convective,
meso- and synoptic-scale features in hurricane Earl and found
that perturbations on the synoptic scale lead to largest error
growth.

Here, we report on the impact of the stochastic schemes
investigated here on a single typhoon which occurred during
our summer verification period. Typhoon GONI formed East
of Philippines late on August 14, 2015, and moved west dur-
ing its early stage (Fig. 10). Over the next days, its intensity
increased and by August 20 it became a severe Typhoon with
maximum sustained wind of 51 m/s. On August 21, Goni’s
movement was nearly stationary and it lingered about 100 km
North of the Northern coast of the Philippines. It then turned
northward, and impacted eastern Taiwan on August 23. The
CWB in Taiwan announced a typhoon warning from August
20–23 August.

The track forecasts of each member of the MP-ensemble
are shown in Fig. 10 together with the ensemble mean forecast
the and best track. According to the track forecast, it seems
highly predictable, and in particularly, it’s northward turn.
Indeed, the track error of the ensemble mean is with less than
200 km at a forecast lead time of 72 h small and much smaller
than the ensemble spread (Fig. 11), indicating that for this
typhoon forecast, and the ensemble is over-dispersive. On
the other side we stress, that this is a single case and that a
comprehensive analysis over a range of typhoons in different
environments is needed to draw general conclusions.

Adding a stochastic parameterization scheme has little im-
pact on the track error, but there is evidence that adding SKEB
might reduce the RMS error for lead times between 12 h and
42 h. SKEB does increase the spread, which is detrimental
since the ensemble is already over-dispersive. Looking into
the individual members, we note that in the experiments with
SKEB the track of five or six ensemble members reach a
longitude west of 121E before turning north, while in exper-
iments MP and MP + SPPT all but one member turn north at a
longitude east of 121E. Future work will show to which de-
gree these results are relevant for probabilistic typhoon
forecasts.

5 Conclusion and Discussion

This study introduces the Taiwanese mesoscale ensemble
which is centered on Taiwan and covers a large domain over
East Asia. Intended for operational use, the goal is to find the
optimal model configuration which will produce the best
probabilistic forecasts over Taiwan. According to the previous
study of WEPS, it was found that the spread with initial and
boundary condition perturbations by themselves increase less
with forecast lead time, making it necessary to utilize some
form of model-error representation.

The Taiwan WRF Ensemble Prediction System: Scientific Description, Model-Error Representation and... 13

Korean Meteorological Society

SPPT+MP SKEB+MP SKEB+SPPT+MP

Z500
CRPS

S
RMSE SPREAD CRPSS RMSE SPREAD

CRPS

S
RMSE SPREAD

T850
CRPS

S
RMSE SPREAD CRPSS RMSE SPREAD

CRPS

S
RMSE SPREAD

U850
CRPS

S
RMSE SPREAD CRPSS RMSE SPREAD

CRPS

S
RMSE SPREAD

QPF FSS HD FSS HD FSS HD

Track
ERRO

R
SPREAD

ERRO

R
SPREAD

ERRO

R
SPREAD

Fig. 11 Track error of the ensemble mean (solid) and spread (dashed) for
four ensemble experiments as a function of lead time. The different ex-
periments are denoted by line colors: MP (black), SPPT+MP (red),
SKEB+MP (green), and SKEB+SPPT+MP (blue)

Fig. 12 Score Card. Compare
with MP. Green means the
performance of experiments
better than MP, while red means it
is worse, and blue means
compatible



A central question was if a single-physics scheme aug-
mented with a suite of stochastic parametrizations schemes
can outperform the multi-physics schemes. This question
was investigated by a number of studies using WRF over
the domain of the contiguous United States. Jankov et al.
(2017), find that a single-physics ensemble with SKEB,
SPPT and stochastic parameter perturbations is able to outper-
form their multi-model ensemble, even for near surface vari-
ables. On the other side, Berner et al. (2011, 2015) conclude
that especially for temperature at 2 m, their multi-physics en-
semble consistently outperforms their single-physics ensem-
ble which uses a number of different stochastic parameteriza-
tions as well as their combination. However, in the free atmo-
sphere SKEB consistently outperforms the multi-physics en-
semble. The studies differ in their design of the multi-physics
suite as well as theWRF version and horizontal resolution and
it is interesting to see which of these results carry over to the
Taiwanese domain.

Over the Taiwanese domain and at a resolution of 15 km,
our findings are consistent with those of Berner et al. (2011,
2015): the stochastically perturbed single-physics ensemble is
unable to outperform the multi-physics ensemble. In particu-
lar, the RMS error of the ensemble mean is much larger in the
single-physics ensemble and no amount of additional spread
could lead to an improvement in skill over the multi-physics
ensemble. This might be in part due to the unique geographic
location of Taiwan, which necessitates to capture maritime
convection as well as tropical/extra-tropical storms and their
transition.

This leads us to the second central question of this study:
Given that a multi-physics ensemble performs best, can addi-
tional stochastic perturbations further improve the probabilistic
forecast skill? For this purpose, the unperturbed multi-physics
ensemble was compared to three experiments, where either
SKEB, SPPT or their combination was used to stochastically
perturb the ensemble simulations. The qualitative impact on
spread, RMS error, CPRSS for a number of dynamical vari-
ables as well as precipitation metrics are independent of lead
time and shown as score card in Fig. 12. In summary, we find:

& None of the stochastic schemes deteriorates the RMS er-
ror, but adding stochastic perturbations will improve the
spread/error ratio and consequently probabilistic skill.
Combining SKEB and SPPT with multiple physics pack-
ages leads to the best performance skill for Z500 and
T850.

& Currently, the Taiwanese ensemble system is over-
dispersive in U850, especially in summer. Adding a sto-
chastic parameterization, especially SKEB, makes the
over-dispersion worse and results in a non-significant de-
crease in CRPSS for lead times up to 24 h. The underlying
physical reasons and the sensitivity of the SKEB parame-
ters shown in Table 3 will be the focus of future research.

& Combining different model-error schemes results in the
overall most skillful forecast, which is consistent with
the findings of Berner et al. (2011: 2015).

& Generally, SKEB introduces ensemble spread throughout
the free troposphere and in the PBL, while SPPT is most
effective near the surface, but has little impact in the free
troposphere.

This study introduces the Taiwanese ensemble prediction
system and discusses its optimal configuration. It exemplifies
that depending on the regional characteristics and details of
the ensemble setup, multi-physics approaches might still be
necessary for best ensemble performance, although a less-
diverse multi-physics configuration would be beneficial, for
zonal wind forecasts especially in summer. The experiments
conducted over this sub-tropical region confirmed the findings
of previous studies that augmenting a multi-physics ensemble
with a suite of stochastic parameterizations schemes results in
the most skillful ensemble prediction system. However, by
using the stochastic schemes, the overall computing overhead
is in general 25% in addition; it must not be overlooked in
operation system.
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