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Abstract
Purpose  2-[18F]FDG PET/CT plays an important role in the management of pulmonary nodules. Convolutional neural 
networks (CNNs) automatically learn features from images and have the potential to improve the discrimination between 
malignant and benign pulmonary nodules. The purpose of this study was to develop and validate a CNN model for clas-
sification of pulmonary nodules from 2-[18F]FDG PET images.
Methods  One hundred thirteen participants were retrospectively selected. One nodule per participant. The 2-[18F]FDG PET 
images were preprocessed and annotated with the reference standard. The deep learning experiment entailed random data 
splitting in five sets. A test set was held out for evaluation of the final model. Four-fold cross-validation was performed from 
the remaining sets for training and evaluating a set of candidate models and for selecting the final model. Models of three 
types of 3D CNNs architectures were trained from random weight initialization (Stacked 3D CNN, VGG-like and Inception-
v2-like models) both in original and augmented datasets. Transfer learning, from ImageNet with ResNet-50, was also used.
Results  The final model (Stacked 3D CNN model) obtained an area under the ROC curve of 0.8385 (95% CI: 0.6455–1.0000) 
in the test set. The model had a sensibility of 80.00%, a specificity of 69.23% and an accuracy of 73.91%, in the test set, for 
an optimised decision threshold that assigns a higher cost to false negatives.
Conclusion  A 3D CNN model was effective at distinguishing benign from malignant pulmonary nodules in 2-[18F]FDG 
PET images.

Keywords  Convolutional neural networks · Positron emission tomography · 2-[18F]FDG PET/CT · Pulmonary nodules · 
Artificial intelligence

Introduction

Lung cancer is the leading cause of cancer death worldwide 
[1]. The prognosis is strongly dependent on the tumour stage 
at the diagnosis time [2]. The early diagnosis and treatment 
of lung cancer is essential for reducing the mortality of this 
type of cancer [3].

In the early stages, lung cancer is usually asymptomatic 
and often presents as a pulmonary nodule [2]. However, 
pulmonary nodules may have several causes [4]. They are 
a common incidental finding on imaging scans performed 
for various indications [4]. They are also a common find-
ing on scans performed for screening of lung cancer [5]. In 
both cases, most nodules are benign, but a small proportion 
represent lung cancer, usually at an early stage; hence it is 
important to identify them correctly [5, 6].

The management of pulmonary nodules requires an initial 
evaluation of malignancy risk by a computed tomography 
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(CT) scan of the thorax [7, 8]. The subsequent diagnostic 
work-up may include a 2-deoxy-2-[18F]fluoro-D-glucose 
(2-[18F]FDG) positron emission tomography/computed 
tomography (PET/CT) for metabolic characterisation of 
solid or partially solid pulmonary nodules [7, 8]. The British 
Thoracic Society guidelines [8] recommend a 2-[18F]FDG 
PET/CT for solid nodules with ≥10 mm in diameter and a 
malignancy risk >10%. The Fleischner Society guidelines 
[7] consider 2-[18F]FDG PET/CT as an option for evaluation 
of solid nodules with >8 mm in diameter and partially solid 
nodules with a solid component >8 mm in diameter.

The inclusion of 2-[18F]FDG PET/CT in the diagnostic 
work-up reduces the proportion of futile invasive diagnosis 
procedures [8], which can be a source of complications [4]. 
On the other hand, a PET/CT would anticipate a potential 
diagnosis of lung cancer compared to a CT surveillance 
strategy.

2-[18F]FDG PET/CT interpretation relies on intensity of 
tracer uptake in the lesion (nodule-to-background contrast) 
through qualitative [9] or quantitative analysis [10]. Classi-
cal machine learning models for supporting the differential 
diagnosis of pulmonary nodules have been developed from 
PET imaging features (SUVmax and/or radiomics), in some 
cases, also combined with either CT imaging features (radi-
omic or visually extracted features) or non-imaging features 
[9, 11–20]. Training machine learning models with radiomic 
features requires the extraction of dozens of handcrafted fea-
tures and a laborious process of feature selection [21, 22]. 
In addition, the radiomic features are sensitive to variations 
in the image acquisition and reconstruction, segmentation, 
image processing and feature computation in multi-center 
setting, and extensive standardization and harmonisation are 
required to obtain reproducible models [21–23].

Deep learning is a subfield of machine learning, which 
in turn is part of the artificial intelligence. Deep learning 
models can learn useful representations for the predictive 
task, directly from labelled raw data [24], such as images, 
having the potential to improve the classification of pulmo-
nary nodules.

Deep learning models have been successful in medi-
cal imaging. They have reached comparable performance 
to physicians or even outperformed them in specific tasks, 
in areas as diverse as dermatology [25–27], ophthalmol-
ogy [28–31], pathological anatomy [32–34] or radiology 
[35–38].

The main objective of this research was to develop a 
convolutional neural network (CNN) model for classifica-
tion of pulmonary nodules from an annotated dataset of 
2-[18F]FDG positron emission tomography (PET) images. 
Secondarily, the hypothesis that the model outperforms the 
maximum standardised uptake value (SUVmax) was tested. 
Explanations for the decisions of the model were obtained 
by gradient-weighted class activation mapping (Grad-CAM).

Materials and Methods

This study was conducted in accordance with the Dec-
laration of Helsinki and national regulations. The study 
was approved by the University Hospital Centre of São 
João, Porto, Portugal, which included approval by the 
institutional Ethics Committee and the Responsible for 
Data Reuse. The informed consent of the participants was 
waived due to the retrospective nature of the research.

Image Dataset

A PET image dataset of pulmonary nodules was created. 
To ensure the quality of the data for modelling, the eligible 
population, the reference standard and the sampling proce-
dure were first determined. Then, the data were collected 
and preprocessed.

Eligible Population

The participants belong to the eligible population if they 
cumulatively meet the following inclusion criteria:

•	 One or more indeterminate solid pulmonary nodules 
with more than 8 mm in average diameter. The aver-
age diameter should not exceed the 30 mm, according 
to the nodule definition provided by the British Tho-
racic Society guidelines [8]. The average diameter of 
the nodule corresponds to the average of long-axis and 
perpendicular short-axis diameters, both of which are 
obtained on the same orthogonal slice, such as defined 
in the Fleischner Society Guidelines [7];

•	 The nodule detection was incidental or through screening;
•	 2-[18F]FDG PET/CT was performed for clarification of 

the nodule(s), and the reconstructed images are avail-
able in digital format. The pathological status of the 
nodule(s) is unknown at the time of the PET/CT (inde-
terminate nodule);

•	 The nodule was biopsied or excised and obtained a his-
topathological or cytopathological examination, other-
wise completed an imaging follow-up period.

Those with at least one of the following criteria were 
excluded:

•	 History of lung cancer;
•	 History of other cancers, except:
•	 Non-melanoma skin cancer, low-risk localised prostate 

cancer, in situ cervical cancer, in situ breast cancer, or 
superficial bladder cancer, which has been treated at 
least 6 months ago.
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Reference Standard

The reference standard for the pulmonary nodule status 
was defined on the basis of the histopathological or the 
cytopathological examination, and/or the nodule behav-
iour during the follow-up period with CT. It attributes 
one of two classes (benign or malignant) to the target 
feature which is the status of each pulmonary nodule as 
following:

1.	 A nodule is defined as malignant if biopsied or excised 
during the initial diagnostic workup or during the fol-
low-up period, and the histopathological or cytopatho-
logical examination shows a malignant neoplasm.

2.	 A nodule is defined as benign if:

a.	 Excised and the histopathological examination 
showed benign pathology;

b.	 Biopsied, the biopsy was diagnostic and the histo-
pathological examination showed a benign pathol-
ogy;

c.	 Neither excised nor biopsied, or biopsied but non-
diagnostic and during follow-up:

a.	 The nodule disappeared;
b.	 The nodule decreased or kept the same size for, 

at least, 2-year of follow-up;
c.	 The nodule increased in size and thereafter 

was biopsied or excised and the histology was 
benign;

d.	 Volume doubling time >600 days and <25% 
change in volume for, at least, 1 year of follow-up.

A minimum of 2-year imaging follow-up was established 
for solid nodules when the mean axial diameter of the nod-
ule was used for follow-up. When the follow-up period was 
between 1- and 2-year, the nodular volume was estimated 
from the diameter on three orthogonal axes. These follow-up 
criteria are based on the doubling time of malignant solid 
nodules and are recommended for pulmonary nodule man-
agement [7, 8].

Sampling

Every patient referred to the University Hospital Centre of 
São João and who underwent a 2-[18F]FDG PET/CT scan 
between 2010 and 2019 was consecutively selected if he/she 
belongs to the defined population.

If a patient underwent more than a PET/CT scan, only 
the first one was considered. If a patient has more than one 
nodule that fills the eligibility criteria, only the more suspi-
cious was included.

Among the 7130 PET/CT scan requests within the estab-
lished time interval, the 2-[18F]FDG PET/CT scans that 
aimed at clarifying the diagnosis of pulmonary nodules were 
selected. Then, the eligibility criteria were checked for those 
by consulting the medical records and the information of 
the histopathological/ cytopathological examination, the 
standard-dose CT scan and the 2-[18F]FDG PET/CT scan. 
In the end, 113 participants were eligible to create a PET 
image dataset.

Image Acquisition, Preprocessing, and Annotation

All patients underwent a PET/CT scan with a field of view 
between the skull base and mid-thighs around 60 min after 
the 2-[18F]FDG intravenous injection. The exams were 
acquired in three different scanners (GE Discovery IQ 4R, 
GE Discovery LS/4 and Siemens Biograph 6). The PET 
images were reconstructed using the ordered subset expec-
tation maximisation method. Attenuation correction of PET 
data was performed with low-dose CT-derived attenuation 
maps.

The image preprocessing was performed on 3D Slicer 
4.10.2 r28257 [39]. Both the PET and CT image files were 
imported and coregistered with rigid registration. Once the 
PET/CT scans were performed in different scanners, the PET 
volumes have different voxel size and anisotropic spacing. 
Therefore, the volumes were resampled to obtain the same 
voxel size and isotropic voxels. The voxel side was set to 1.5 
mm which is a smaller size than the smaller voxel side of 
the three scanners. Linear interpolation was used for spatial 
resampling.

The nodule was visually identified in the coregistered 
PET/CT images, and a cubic region of interest was drawn 
and cropped to include the entire nodule. The center of this 
subvolume coincides with the center of the nodule. The 
subvolume of interest has a side length equal to twice the 
maximum possible diameter of the nodule (60 mm × 60 
mm × 60 mm). The obtained subvolume was saved in .nrrd 
format. Each cropped subvolume containing a pulmonary 
nodule was annotated with the corresponding class of the 
target feature (benign or malignant).

Formulation of the Deep Learning Task

The supervised deep learning problem is a single task, single 
label, binary classification problem that inputs cubic regions 
of interest from PET for a three-dimensional (3D) CNN.

Let X be a random variable that represents an input, i.e. 
a PET image, which corresponds to a tensor, being the axes 
1, 2 and 3, the shape of the volume-of-interest (40 × 40 
× 40) and the axis 4, the number of channels, in this case 
only one. Let Y be a random variable which corresponds 
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to the target. Let S be a training set with n pairs (X, Y) of 
independent and identically distributed samples drawn from 
the population. Then, the learning problem consists of using 
a CNN-based algorithm for choosing from the hypothesis 
space, the hypothesis or model that best approximates an 
unknown mapping function f: X→Y in the population, using 
the training set as a starting point. Model training is per-
formed by discovering the parameter configuration that 
minimises a loss function in the training set, the structural 
risk, a surrogate of the expected risk [40, 41]. However, 
minimising the risk in the training set is prone to overfitting 
and a dissociation between the expected and structural risks 
occurs at any time during the training [42]. An estimate of 
expected risk in the validation set is more accurate, but can-
not be used to update model parameters, so it may be used 
to decide when to stop training [42].

Experimental Setup

Input Data Splitting

The dataset was randomly split into five stratified 
partitions of similar size. The stratification was 
performed by the target class in order to maintain the 
same class distribution of the original data in each data 
partition. Four partitions were used for 4-fold cross-
validation, and the fifth one was reserved for testing. In 
each fold of cross-validation, three out of four partitions 
were used for training, and the remaining one was for 
model evaluation. Therefore, 4-fold cross-validation was 
used for training, evaluating, hyperparameter tuning and 
comparing different models that were built from different 
network architectures and, in the end, for choosing the 
best model. Cross-validation was preferred because it 
guarantees lower variance than the holdout method for 
the size of the obtained dataset [43].

Since tuning a model is a repetitive process, there is 
some leakage of information from the validation partition 
into the model, even it is not directly trained on it, resulting 
in overfitting of the model to the validation set and opti-
mistic performance metrics [44]. For obtaining of unbiased 
estimates of the model performance, a test set partition 
was used only once to evaluate the best model, which was 
selected among all those trained during the cross-validation 
phase.

The input data for the network were subjected to fold-
specific min–max normalisation to the range [0, 1]. The 
validation and test sets were also normalised with values of 
the training set of the respective fold. Data were randomly 
shuffled on every epoch during the training.

Figures 1 and 2 represent the middle axial slice of each 
PET volume that composes the cross-validation dataset 

grouped by the target class. The test set was not represented 
to avoid information leakage during the construction of the 
models.

Fig. 1   Cross-validation dataset. Middle axial slice of each PET vol-
ume. Malignant pulmonary nodules

Fig. 2   Cross-validation dataset. Middle axial slice of each PET vol-
ume. Benign pulmonary nodules
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Data Augmentation

Offline data augmentation [45] was performed indepen-
dently in each of the four partitions of the original dataset 
previously created for cross-validation. Translations, rota-
tions and Gaussian noise injection were separately applied 
to the original images. The test set was not augmented. The 
augmentation factor for each type of operation was class-
specific in order to perform class balancing (Table 1). The 
dataset comprises original and augmented images, having 
around 4900 images. The size of the augmented dataset was 
determined by the computational resources available for 
training the models in a larger dataset. During the cross-
validation, the models were trained in an augmented training 
set on each fold. The evaluation occurred in the correspond-
ing validation set of the original dataset.

Translations were random shifts between −10 and 10 pix-
els on any of the 3 axes of each original image. A maximum 
amplitude of 10 pixels (15 mm) was chosen to ensure that 
the nodules were not moved out of the tensor and the label 
was preserved.

Random rotations between −45 and 45° were sepa-
rately applied around the x-, y- or z-axis of each image 
so that each one yields augmented examples with differ-
ent rotation axes, but each new augmented example has a 
rotation applied only around a given axis. Since the rota-
tions were around an axis which runs through the centre 
of the tensor, a rotation was actually a composite opera-
tion (Protated = T−1 × R × T × P), where P is the voxel, T a 
translation operation and R a rotation operation [46]. After 
the spatial transformation of the coordinates of the voxels, 
an intensity interpolation with a bilinear interpolator was 
applied.

Gaussian noise with a mean of zero and three different 
values of standard deviation (0.1, 0.3 and 0.5) was added to 
the original images. The reason for adding Gaussian noise 
was to be able to model the PET image noise [47], so that 
different augmented images simulate PET images with dif-
ferent levels of noise.

The background voxels were filled with zero in all the 
above operations.

Training Procedures

The experiment was run in R language [48]. R Interfaces 
for Tensorflow (v. 2.2.0) [49] and Keras (v. 2.3.0.0) [50] and 
r-reticulate package [51] along with Tensorflow 2.1.0 [52] 
and Python 3.7.8 [53] were employed. The graphic card used 
was an NVIDIA GeForce MX150.

Models were trained with binary cross-entropy loss [41] 
and Adam optimiser [54] throughout the entire experiment. 
The learning rate was tuned until the optimal value was 
reached. The learning rate of the different models is shown 
in the Table 2.

The stopping criterion of the training corresponds to the 
minimum validation loss with a patience of ten or a maxi-
mum of 100 epochs. The model derived from the training 
epoch with the lowest validation loss was saved. This pro-
cedure was repeated for each fold of the 4-fold cross-vali-
dation, resulting four model versions, which have different 
values of parameters, but identical hyperparameter configu-
ration. Early stopping ensures that the minimisation of the 
structural risk does not occur beyond the point of the best 
generalisation, obtaining a regularising effect [55].

The original dataset was trained with full-batch learning 
or with a mini-batch learning with batch size of 16, accord-
ing to the type of network. Mini-batch learning with batch 
size of eight was preferred with augmented data.

Other specifications of the training procedures were 
changed according to the network architecture or even in 
networks of the same architecture (i.e. treated as hyperpa-
rameters), being explained in more detail in the next section.

Network Architecture

Three types of 3D CNN architectures with volumetric 
inputs were defined. These networks were generalised from 
the homologous 2D CNNs (Alexnet [56], VGGNet [57] 
and Inception-v2 [58]), and the size of the networks was 
adapted to the complexity of the problem and the size of 
the dataset. As such, number and arrangement of layers, 
number of filters, kernel size and other network specifica-
tions were treated as hyperparameters, which were tuned 
until the proposed models were found. These networks were 
trained using either the original or the augmented datasets. 
Additionally, a 2D pre-trained model was fined-tuned in the 
original dataset. Some details of the different network archi-
tectures are in the Table 2.

Leaky ReLU (with α = 0.3) was the preferred activation 
function in 3D CNN because of allowing a small, non-zero 
gradient when a unit is not active and thus prevents ‘dying 
ReLU’ [59, 60].

Weights were randomly initialised according to the 
scheme proposed by He et al. [61], which was specifically 
developed to address the rectifiers.

Table 1   Data augmentation factor

a The positive class (malignant nodule) is the minority class
b Augmentation factor was 7, 7 and 6 for the minority class and 6, 5 
and 5 for the majority class, for a standard deviation of 0.1, 0.3 and 
0.5, respectively

Transformation Minority classa Majority class

Translations 20 16
Rotations 21 (7 by axis) 15 (5 by axis)
Noise injectionb 20 16
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A network architecture inspired by Alexnet [56] was 
proposed. Named as Stacked 3D CNN, it is characterised 
by four 3D convolutional layers and three 3D max-pooling 
layers alternately stacked and connected to three fully con-
nected layers (32, 16 and one units, respectively). The first 
convolutional layer has eight filters. Network width increases 
along the convolutional base by doubling the number of fil-
ters every convolutional layer. The kernel size was 3 × 3 × 3, 
and the kernel stride was one in the convolutional layers. No 
padding was applied. Pooling layers consist of max-pooling 
operations with kernel size of 2 × 2 × 2, stride of two and no 
padding. The first fully connected layer receives the output 
of the last convolutional layer after being flattened into a 
vector (Fig. 3).

The VGG-like network is characterised by a total of 
ten layers, being multiple stacked convolutional layers, 
some of them followed by a pooling layer. The output 
of the last convolutional layer is flattened before a fully 
connected output layer (Figure A1 of Supplementary 
Information). The efficient use of 3 × 3 × 3 convolu-
tions is a prominent property of this type of network [57]. 
Thus, convolutions of larger kernel size are factorised 
into 3 × 3 × 3, while the receptive field is preserved. 
Consequently, the depth of the network increases, while 
the number of parameters is reduced. More specifically, 
5 × 5 × 5 and 7 × 7 × 7 convolutional layers are replaced 
by sets of two or three 3 × 3 × 3 convolutional layers. 
Factorisation of convolutions imposes a greater reduc-
tion in the number of parameters in a 3D than in a 2D 

network, and therefore a greater regularising effect (Sec-
tion A.1.1 of Supplementary Information). Both expan-
sion of feature maps and decreasing of the spatial reso-
lution only occur after each pooling layer. Overlapping 
max-pooling [56] with a pool size of 3 × 3 × 3, strides 
of two and padding was applied.

The Inception-v2-like network is a 3D CNN with 
three main characteristics—inception modules, 1 × 1 
× 1 convolutions and factorisation of convolutions—
which introduce sparsity in the network and reduce the 
number of parameters, making the network more efficient 
[58]. Inception modules consist of blocks of several 
convolutional layers with different kernel size and a 
pooling layer that receive the same input, propagate the 
information in parallel and concatenate the output before 
passing it to the next layer [58]. Much of the computational 
efficiency is achieved by using 1 × 1 × 1 convolutions to 
compute reductions of the number of feature maps before 
expensive convolutions of larger kernel size. Factorisation 
of convolutions of larger kernel size into stacks of 3 × 
3 × 3 or asymmetrical convolutions while preserving the 
receptive field provides a further increase in efficiency. 
There are two types of inception modules—one standard 
module for learning representations and another one that 
simultaneously downsizes the feature maps [58]. Two 
versions of each were implemented in the network. The 
proposed network has four standard inception modules and 
two reduction modules. The output of the last convolutional 
layer is converted into a vector by global average pooling, 

Table 2   Models trained by cross-validation

Type Batch size Architecture Learning rate Regularizer

Stacked 3D CNN 68 conv(8,3,3,3) + mpool + conv(16,3,3,3) + mpool + 
conv(32,3,3,3) + mpool + conv(64,3,3,3) + flatten + 
fcn(32,16,1)

0.001 L2(0.00098)

Stacked 3D CNN 8 conv(8,3,3,3) + mpool + conv(16,3,3,3) + mpool + 
conv(32,3,3,3) + mpool + conv(64,3,3,3) + flatten + 
fcn(32,16,1)

0.0001 L2(0.03) and data augmentation

VGG-like 68 conv(8,3,3,3) + overlap mpool + conv(16,3,3,3) + 
conv(16,3,3,3) + overlap mpool + conv(32,3,3,3) + 
conv(32,3,3,3) + conv(32,3,3,3) + overlap mpool + 
flatten + fcn(1)

0.0005 L2(0.002)

VGG-like 8 conv(8,3,3,3) + overlap mpool + conv(16,3,3,3) + 
conv(16,3,3,3) + overlap mpool + conv(32,3,3,3) + 
conv(32,3,3,3) + conv(32,3,3,3) + overlap mpool + 
flatten + fcn(1)

0.0001 L2(0.06) and data augmentation

Inception-v2-like 16 conv(8,3,3,3) + mpool + Inception + Inception + 
Reduction + Inception + Inception + Reduction + gap 
+ fcn(1)

0.0005 L2(0.0006)

Inception-v2-like 8 conv(8,3,3,3) + mpool + Inception + Inception + 
Reduction + Inception + Inception + Reduction + gap 
+ fcn(1)

0.0001 L2(0.04) and data augmentation

ResNet-50 pre-trained 68 ResNet-50 (base) + gap + fcn (8,1) 5 × 10−7 Transfer learning and dropout(0.5)
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which is received by a fully connected output layer (Figures 
A2 to A6 of Supplementary Information).

Transfer learning [62] from Imagenet dataset [63] was 
also performed. Pre-trained Resnet-50 [64] was used as a 
feature extractor. Two fully connected layers were added to 
its top and initialised according to He et al. [61]. Because the 
dataset of the current problem is quite different from that of 
the source domain, only the earlier layers of ResNet-50 were 
used (until conv3_block1_out). Additionally, a few of the top 
layers (from conv3_block1_1_conv) were fine-tuned with a 
very low learning rate. Due to the 2D architecture, the input 
for this network consists of 3 central slices (19, 20 and 21) 
of the PET volume, which are orthogonal to the third axis, 
being each one stored in a different channel.

Besides the regularisation procedures already described, 
L2 regularisation [42] was applied to all layers with param-
eters of the 3D CNN models, whereas dropout [65] was 
applied to the fully connected layers of the 2D CNN model.

Performance Metrics and Model Selection

The performance metric selected to evaluate the models was 
the area under the receiver operating characteristic (ROC) 
curve. It was computed with the trapezoidal rule from non-
parametric ROC curves [66]. During the cross-validation, 

model evaluation was conducted in the validation partition 
of the respective fold. Different models were compared by 
their mean area under the ROC curve of the 4-folds.

Models with different network architectures were trained. 
In order to deal with a source of non-determinism on Tensor-
flow GPU1, the best model of each network architecture was 
retrained and evaluated again by 10 iterations, under identi-
cal conditions, on the 4-fold cross-validation. The average 
performance metrics over the 10 iterations for the different 
models were compared, and the best model was selected. 
Since that model has 10 versions for each fold, one of them 
was randomly picked.

Subsequently, an ensemble classifier was built from the 
four versions of the best model derived from the 4-fold 
cross-validation, by averaging their output probabilities, 
weighted by the size of each training partition. This ensem-
ble classifier was evaluated in the test set to determine its 
generalisation performance over unseen examples. The 95% 
confidence interval of the area under the ROC curve was 
also determined for the test set according to the method 
described by DeLong [67].

Accuracy, sensitivity and specificity were complemen-
tary metrics determined in the test set. Instead of using 

Fig. 3   Architecture of the Stacked 3D CNN network (final model)

1  https://​devel​oper.​nvidia.​com/​gtc/​2019/​video/​s9911

https://developer.nvidia.com/gtc/2019/video/s9911
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the standard decision threshold of 0.5, an optimal decision 
threshold was determined for each version of the best model 
in the respective validation partition. The four decision 
thresholds were averaged, and the resulting threshold was 
applied to convert the output probabilities of the ensemble 
model into classes, in the test set. If the predicted probabil-
ity was equal to or higher than the threshold, the nodule 
was classified as malignant; otherwise, it was classified as 
benign. The optimal threshold was determined according to 
two different approaches. In the first one, the value of the 
optimal threshold was the posterior probability which max-
imises the Youden index [68]. In another scenario, the cost 
of a false negative was considered higher than the cost of a 
false positive. Therefore, a minimum sensitivity was set to 
95%, and the cut-off point which maximises the specificity 
was searched.

Paired Comparison Between the Final CNN Model 
and the SUVmax

As a secondary analysis, a hypothesis test was performed, 
in the test set, to infer about a possible difference in the area 
under the ROC curve between the final CNN model and 
the SUVmax in the population (H1: AUC ROCCNN ≠AUC 
ROCSUVmax), starting from the null hypothesis of equality. 
The type I error (α) was predefined as 0.05.

The non-parametric test developed by DeLong et al. [67], 
which makes a paired comparison of the area under the ROC 
curves, is applied if the area of one ROC curve is uniformly 
higher than the other across all operating points, that is, the 
curves do not cross each other; otherwise, a hypothesis test 
based on the ROC shape proposed by Venkatraman and 
Begg [69] is applied.

Model Explainability

Grad-CAM analysis [70] was applied to generate visual 
explanations for the decisions of the model. This method 
highlights the most class-discriminant regions of a volume-
of-interest under the 3D CNN classification model stand-
point. Insights about how the model succeeded or failed 
were obtained. The Grad-CAM 3D heatmap was obtained 
for each PET volume of the test set from each of the four 3D 
CNN model versions which compose the ensemble model. 
Fusion images were created by superimposing the axial 
slices of the Grad-CAM 3D heatmap and the axial slices 
of the original input PET volume for selected cases. The 
volumes were reprocessed to obtain ten axial slices rather 
than forty to facilitate the representation of the images. Red 
and dark red tones represent higher Grad-CAM score for 
a class, as such they were the most relevant regions of the 
input volume for model decision.

Results

Descriptive Statistics

The dataset has 113 participants. Seventy-six (67.3%) of par-
ticipants were male. The median age was 65 years old (inter-
quartile range (IQR): 14 years). One nodule was included 
by participant. The median diameter of the nodule in low-
dose CT scan was 13 mm (IQR: 5 mm). Fifty-one (45.1%) 
malignant pulmonary nodules were found; the remaining 
were benign. Table 3 shows the distribution of the nodules 
according to the type, detailing the histological type of the 
malignant nodules.

The reference standard was obtained by histological 
examination, cytological examination or follow-up CT scan 
in 71 (62.8%), 1 (0.9%) and 41 (36.3%) of the nodules, 
respectively. When the reference standard was obtained 
by follow-up CT scan, the median follow-up was 2.6 years 
(minimum: 1.3 years; maximum: 8.3 years), and 85.4% of 
the participants had a follow-up time ≥ 2 years.

Evaluation of CNN Models by 4‑Fold Cross‑Validation

Table 4 shows the area under the ROC curve for the CNN 
models evaluated by 4-fold cross-validation. The clas-
sification performance measured by this metric ranged 
between 0.8864 for a Stacked 3D CNN model and 0.7738 
for a ResNet-50 pre-trained model. Regardless of the type 
of model, it was consistently found that models trained on 
the original dataset performed better than those trained on 
the augmented dataset.

The retraining and evaluation over 10 iterations of 4-fold 
cross-validation has resulted in a mean area under the ROC 
curve of 0.8822, 0.8760 and 0.8690 for the best models of 
each architecture (Stacked 3D CNN, VGG-like and Incep-
tion-v2-like models, respectively), all trained in the original 
dataset (Tables A1 to A3 of Supplementary Information). 
ResNet-50 was not retrained because its performance was 

Table 3   Characterisation of the pulmonary nodules according to the 
histological type

Class n (%)

Adenocarcinoma 31 (27.4)
Squamous cell carcinoma 4 (3.5)
Small cell lung cancer 2 (1.8)
Large cell carcinoma 2 (1.8)
Carcinoid tumour 7 (6.2)
Metastasis 0 (0.0)
Other/uncertain cancer 5 (4.4)
Benign nodule 62 (54.9)
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much lower than other architectures. The Stacked 3D CNN 
model showed consistently the best performance on the iter-
ated cross-validation.

Evaluation of the Final CNN Model in the Test Set

The final model (Stacked 3D CNN model) obtained an area 
under the ROC curve of 0.8385 (95% CI: 0.6455–1.0000) 
on the test set (Fig. 4).

For a decision threshold (0.5039) which maximises the 
Youden index in the cross-validation, the model obtained a 
sensibility of 40.0%, a specificity of 100.0% and an accuracy 
of 73.9% for classifying pulmonary nodules, on the test set. 
Whereas, for a decision threshold (0.3149) that ensures a 
minimum sensitivity of 95% on the cross-validation while 
maximises the specificity, the model had a sensibility of 
80.0%, a specificity of 69.2% and an accuracy of 73.9% on 
the test set.

Comparison Between the Final CNN Model 
and the SUVmax

Figure 4 shows a comparison of the ROC curves between 
SUVmax and final CNN model. Since the ROC curves cross 
each other at various points, a paired comparison with the 
Venkatraman and Begg test [69] was applied to evaluate 
the equivalency of the curves rather than the area under the 
curve. The test statistic (E) was 22, and the two-side P-value 
was 0.7995, based on 2000 permutations.

Grad‑CAM Analysis

Visual analysis of the Grad-CAM 3D heatmaps generated 
for the 3D CNN models versions (F1 to F4) that compose 
the ensemble model was performed for all examples of the 
test set. Representative cases were selected to illustrate how 
the ensemble model succeeds or fails. Figures 5 and 6 rep-
resent the Grad-CAM analysis of cases correctly classified 
by the model (true positive and true negative, respectively). 

Figure 7 represents the analysis of a false positive case, 
whereas Fig. 8 shows the analysis of a false negative case.

In any case, the four versions of the 3D CNN that com-
pose the ensemble model pay attention to quite similar 
regions of the PET volume. Regarding the true positive 
cases, the most class-specific region includes the focal 
2-[18F]FDG uptake in the nodule at the center of the volume 
and a rim of background that surrounds the nodule. In true 
negative cases, the 2-[18F]FDG uptake tends to be absent in 
the nodule, as such the model either attaches importance to 
regions close to the volume boundary (organs with physi-
ological uptake in some cases), or to a region with non-
nodular shape that includes the center of the volume. In most 
of false positive cases, the Grad-CAM heatmap has the high-
est score in an ellipsoid region at the center of volume and 
resembles that of the true positive cases. It coincides with 

Table 4   Evaluation of the 
CNN models by 4-fold cross-
validation

a SD standard deviation

Area under the ROC curve

Model F1 F2 F3 F4 Mean SDa

Stacked 3D CNN 0.7917 0.9000 0.8750 0.9790 0.8864 0.0772
Stacked 3D CNN + Augmentation 0.7333 0.8500 0.8417 0.9371 0.8405 0.0835
VGG-like 0.7333 0.9250 0.9417 0.9161 0.8790 0.0977
VGG-like + Augmentation 0.7000 0.7833 0.8667 0.9301 0.8200 0.1001
Inception-v2-like 0.7250 0.9083 0.8917 0.9650 0.8725 0.1032
Inception-v2-like + Augmentation 0.7333 0.8333 0.8417 0.8741 0.8206 0.0608
ResNet-50 pre-trained 0.7167 0.8083 0.8500 0.7203 0.7738 0.0662

Fig. 4   Comparison of the ROC curve between of the final CNN 
model and the SUVmax on the test set
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Fig. 5   Grad-CAM 3D heatmaps generated for an input PET volume 
from the test set, containing a pulmonary nodule which was cor-
rectly classified as malignant by the ensemble model (true positive). a 
Thickened axial slices from the original PET volume are shown. b–e 

Thickened axial slices obtained by superimposing the original PET 
image and the Grad-CAM 3D heatmap. Each 3D CNN model ver-
sion of the ensemble model has its own Grad-CAM 3D heatmap (one 
heatmap per row is represented)

Fig. 6   Grad-CAM 3D heatmaps generated for an input PET volume 
from the test set, containing a pulmonary nodule which was cor-
rectly classified as benign by the ensemble model (true negative). a 
Thickened axial slices from the original PET volume are shown. b–e 

Thickened axial slices obtained by superimposing the original PET 
image and the Grad-CAM 3D heatmap. Each 3D CNN model ver-
sion of the ensemble model has its own Grad-CAM 3D heatmap (one 
heatmap per row is represented)
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a 2-[18F]FDG uptake of variable intensity in the nodule. 
Similarly, the Grad-CAM heatmap of false negative cases 
resembles that of the true negative cases, whereas the nodule 
has a slight or absent 2-[18F]FDG uptake.

Discussion

We present a 3D CNN model for the classification of solid 
pulmonary nodules from an annotated dataset of PET images 
specifically created for that purpose. This classification task 
aimed to differentiate between benign and malignant nod-
ules. To the best of our knowledge, this is the first study 
that addresses building a deep learning model for classifica-
tion of indeterminate solid pulmonary nodules, using PET 
images as inputs.

The only attempts of using machine learning models for 
differential diagnosis of indeterminate pulmonary nodules 
have addressed classical methods and handcrafted features, 
namely radiomic features extracted from PET images [9, 
11–20]. Despite some claims about the superiority of radi-
omic models over the visual interpretation or the SUVmax, 
the studies published to date have methodological issues that 
prevent a definitive conclusion about the added value of radi-
omics. Risk of data leakage and consequent overfitting was 

found in the studies of Palumbo B et al. [13], Albano B et al. 
[14], Ren C et al. [17] and Chen S et al. [11] because of per-
forming exploratory analysis/feature selection in the entire 
dataset or the absence of a disjoint test set. Additionally, 
Palumbo B et al. [13], Albano B et al. [14] and Salihoğlu 
YS et al. [16] in their studies made a comparison of the per-
formance metric between the radiomics model and the basal 
model/conventional method without performing a statisti-
cal hypothesis test, which prevents to make any inference 
beyond the respective dataset. The studies of Ren C et al. 
[17], Chen S et al. [11] and Zhang J et al. [12] made multi-
ple comparisons of different models without controlling the 
family-wise error rate. Zhang J et al. [12] and Ren C et al. 
[17] found a superiority of the area under the ROC curve of 
the radiomic model regarding the SUVmax at the expense of 
the unnecessary and inappropriate binarization of the latter 
with a pre-specified threshold, which likely underestimate 
the area under the ROC curve of the SUVmax.

Regarding deep learning, Yong Han et al. [71] trained 
several classical machine learning models and a 2D CNN 
pre-trained (VGG-16) for distinguishing the histological 
subtype of pulmonary lesions in patients already diagnosed 
with a lung cancer, from a dataset of 1419 PET/CT fusion 
images. The deep learning model obtained an area under 
the ROC curve of 0.903. Despite the use of a deep learning 

Fig. 7   Grad-CAM 3D heatmaps generated for an input PET volume 
from the test set, containing a pulmonary nodule which was classified 
as malignant while it was benign according to the reference standard 
(false positive). a Thickened axial slices from the original PET vol-

ume are shown. b–e Thickened axial slices obtained by superimpos-
ing the original PET image and the Grad-CAM 3D heatmap. Each 3D 
CNN model version of the ensemble model has its own Grad-CAM 
3D heatmap (one heatmap per row is represented)
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algorithm, the classification problem is not the same as in 
the current research because it only included malignant 
lesions and the CT image data were also used.

The final model of the current research yielded an area 
under the ROC curve of 0.8385 (95% CI: 0.6455–1.000) on 
the test set. It has four 3D convolutional layers, three 3D 
max-pooling layers and three fully connected layers. It has 
a simpler and shallower architecture than the more recent 
types of networks published [72]. Since the inputs of the 
3D CNN are volumes, it learns 3D spatial representations of 
the whole nodule, unlike a 2D CNN that receives only some 
slices intersecting the nodule, leading to a loss of spatial 
information (at least the simplest approaches) [73–75]. For 
this reason, a 3D CNN was preferred. However, a 3D CNN 
has the cost of a higher number of parameters and higher 
risk of overfitting [73]. As such, the capacity of the model 
was carefully adjusted to the problem and size of the dataset. 
Several regularisation methods were also applied, such as 
early stopping and L2 regularisation.

The probabilistic predictions were converted to tar-
get classes by determining an optimum threshold. Two 
approaches were used. The Youden’s index and a pre-
assigned value for the sensitivity both yielded an accuracy of 
73.91% in the test set. However, the sensitivity obtained with 
the second method in the test set was much more favourable 

(80% vs. 40%). This is explained by the characteristics of 
each method and by the variance associated to the reduced 
size of the test set (23 images). The specificity of the second 
method of threshold moving was 73.91%. A threshold that 
maximises the specificity, setting a minimum value sensi-
tivity of 95% (derived from the cross-validation), can be a 
more appropriate approach for the current problem because 
a greater cost is placed on false negatives than on false posi-
tives, being assumed that the cost of missing a malignant 
lesion is higher than the cost of additional investigations and 
psychological distress caused by a false positive.

As a secondary endpoint, the performance of the 3D CNN 
model was compared with the SUVmax of the nodules. The 
model had an area under the ROC curve higher than the 
SUVmax in the test set (0.8385 vs. 0.8038). However, the 
equivalency between the two ROC curves was not rejected 
by a hypothesis test that compared their shape. Because the 
test set was not sized to ensure an adequate statistical power 
to the applied test, this negative result requires confirmation 
in well-powered studies.

Other types of 3D CNNs were also proposed, achieving a 
slightly lower area under the ROC curve than the Stacked 3D 
CNN in the cross-validation. These networks were inspired 
by VGG-16 [57] and Inception-v2 [58]. They are deeper and 
have some features that make them more efficient, such as 

Fig. 8   Grad-CAM 3D heatmaps generated for an input PET volume 
from the test set, containing a pulmonary nodule which was classified 
as benign while it was malignant according to the reference standard 
(false negative). a Thickened axial slices from the original PET vol-

ume are shown. b–e Thickened axial slices obtained by superimpos-
ing the original PET image and the Grad-CAM 3D heatmap. Each 3D 
CNN model version of the ensemble model has its own Grad-CAM 
3D heatmap (one heatmap per row is represented)
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factorisation of convolutions, introduction of the sparsity in 
the network or 1 × 1 × 1 convolutions.

Deep learning models usually need to be trained in a big 
dataset to prevent overfitting [76]. However, building an 
annotated dataset in medical imaging is a time-consuming 
and a labour-intensive task. Furthermore, the particularity 
of the task and the imaging modality involved imply that the 
number of images available may be limited, as in the current 
research. Even though, a model was successfully trained and 
regularised.

Models trained with transfer learning had a lower classi-
fication performance in the cross-validation than those mod-
els trained with random weight initialisation. This could be 
explained by the difference between the source domain where 
the CNN was pre-trained (ImageNet) and the target domain, 
by the 2D architecture requiring 2D inputs, or by the type 
of pre-trained network (ResNet). Models trained with data 
augmentation also had a classification performance in the 
cross-validation consistently lower than those trained in the 
original training dataset. It was out scope of the phase of 
model selection to make statistical inference from the differ-
ences between the models, so it is unknown the meaning of 
those differences as well as their cause. It is hypothesised that 
the size of original dataset was insufficient for the augmenta-
tions to produce any effect, or the type or the parameters of 
the transformations were not the most appropriate to lead to 
an improvement of performance in this specific type of image 
data and problem, or the factor of augmentation was insuf-
ficient. High-quality and representative datasets are essential 
for developing machine learning models and for ensuring 
they have acceptable generalisation performance on unseen 
cases. Although this is a retrospective study, the eligible 
population was explicitly and accurately defined. The qual-
ity of a dataset also depends on the quality of the reference 
standard. Predictive modelling for diagnosis purposes follows 
the same principles as the diagnosis tests regarding obtain-
ing an unbiased reference standard [77]. A proof about the 
presence or absence of the target disease should be obtained 
without knowledge of the index test and vice versa [77, 78]. 
Similarly, the reference standard should not contain informa-
tion from the data where a predictive model will be built; 
otherwise, the model will have an optimistic performance 
[77]. In the current study, that incorporation bias was pre-
vented by using the result of the histopathological or cyto-
pathological examination of a specimen obtained by biopsy 
or surgical excision or, alternatively, a follow-up period with 
CT. Therefore, there was a differential verification of the 
disease status. The histopathological characterisation of the 
lesion was the main method to obtain the reference standard, 
representing 62.8% of the cases. The CT imaging follow-
up was the method to obtain the definitive diagnosis in the 
remaining cases (except one), with 85% of the patients having 
a follow-up time of at least 2 years. Surgical resection is the 

gold standard for definitive diagnosis of pulmonary nodules 
[79] that is an unbiased reference standard. The biopsy also 
provides direct evidence of malignancy, but there is a risk of 
non-specific benign changes as false negatives [80]. To elimi-
nate that risk of bias in the biopsy, only definitive evidence of 
a benign pathology was considered (on first or repeated biop-
sies); otherwise, the follow-up criterion was applied. Imaging 
follow-up provides an indirect, but still strong, evidence of 
the status of the nodule, leading to a low risk of bias in the 
ground-truth. The defined follow-up criteria ensured that a 
malignant tumour is missed in <1% of cases, according to 
the previous literature [8].

In malignant nodules, Grad-CAM analysis showed that 
the model tends to pay attention to the nodule region dur-
ing the decision, whereas in benign nodules, either no 
object in the lung receives particular attention or a central 
region with non-nodular shape receives attention. Moreo-
ver, the size and the shape of the most class-discriminant 
region seem to assume importance for the model decision, 
which raises the hypothesis that the decision can rely on 
nodule-background contrast and on the metabolic shape of 
the nodule. Model failures are explained by the similarity 
between the Grad-CAM heatmap of a given image and 
those of the misidentified class.

This study has some limitations. The model was built in 
a relatively small dataset. Despite the efforts of regularisa-
tion, its performance in a larger dataset is unknown. Also, 
the test set was small, so the generalisation performance is 
highly dependent on the data split. It is unknown how the 
model generalises in a PET scanner basis, including with 
images obtained from other PET scanner types not used 
in the current dataset.

Because this is a retrospective study, the decision of 
performing a PET/CT exam or a biopsy or excision of the 
pulmonary nodule, as well as the duration of follow-up 
period, was at the discretion of the attending physician. 
The decision criteria may have changed over time, as part 
of the evolution of knowledge in this area, and according 
to the attending physician, resulting in selection and par-
tial verification biases [81]. When multiple nodules were 
present, the dataset only included the most suspicious nod-
ule from each patient, instead of all the nodules, but in 
practice it is important to know the status of all of them.

The image data stores standardised uptake value (SUV) 
by voxel. SUV has been popularised, but another less used 
measure was claimed to be more accurate: the standardised 
uptake value normalised by the lean body mass (SUL) 
[82], once the lean and the fat tissues have different meta-
bolic profiles. Image data were not recalculated to show 
SUL because the DICOM files from one of the PET scan-
ners did not have the height data recorded.

As future work, we suggest evaluating the proposed 
model in a larger dataset, preferably collected prospectively 
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from multiple centres and PET/CT scanners, and possibly to 
retrain it in those data. Another proposal is to train a CNN 
model that considers not only the PET data, but also the low-
dose CT data from the same exam and non-imaging features.

The task in the current research required manual nodule 
location before the automatic classification. However, nod-
ule location and classification can be combined in a single 
machine learning task (nodule detection).

Conclusion

In this study, we developed a 3D CNN model for automatic 
classification of indeterminate solid pulmonary nodules 
from an annotated dataset of 2-[18F]FDG PET images which 
was specifically created for that purpose. The model was 
effective for differentiating malignant and benign nodules 
and has potential for improving the differential diagnosis of 
pulmonary nodules.
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