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Abstract
Surface-subsurface filtration transport with seawater intrusion phenomena are formu-
lated and variationally analyzed, as coupled multimedia mixed pairs of free boundary
interface problems. Physically, multidomain subsurface mixed velocity-pressure frac-
tional Darcian flow models coupled with surface evolution Stokesian mixed flows
are considered. Specifically, two-phase air-fresh water above the sea level and fresh
water-seawater characterizations are considered. Internal boundary synchronizing
transmission conditions of multidomain nonoverlapping decompositions are modeled
in terms of variational Lagrangian dual subpotential maximal monotone inclusions.
Similarly, filtration transport coupling interface transmission constraints are imple-
mented by mass flux-velocity-pressure Lagrange dual multipliers as solutions of
subpotential subdifferential equations.

Keywords Multi-valued variational analysis · Multidomain mixed constrained
initial/boundary-value problem · Free boundary interface coastal aquifer model ·
Interior-interface transmission constraint · Lagrangian subpotential inclusion ·
Surface-subsurface Darcy/Stokes evolution filtration transport
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1 Introduction

Surface-subsurface filtration transport phenomena of coastal aquifers with seawater
intrusion, connected to surface reservoirs are formulated and analyzed as coupledmul-
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timedia of macro-hybrid mixed pairs, modeled by variational evolution free boundary
interface problems.

The innovative modeling aspect of the paper is to treat variational incompress-
ible Darcian subsurface flows coupled to Stokesian surface flows, in the context of
open coastal aquifers. Specifically it deals with local internal boundary synchroniz-
ing transmissions of spatial nonoverlapping multidomain decompositions, as well
as proper coupling interface flow-transport mechanical local transmissions, via dual
Lagrangian fields solutions to corresponding subpotential maximal monotone subdif-
ferential equations (Alduncin 2022).

Accordingly, internal boundary synchronizing transmission constraints due to
multidomain spatial nonoverlapping macrohybrid decompositions, are modeled by
variational Lagrangian dual subpotential maximal monotone inclusions (Alduncin
2007b). On the other hand, mass flux-velocitiy-pressure Lagrange multipliers of filtra-
tion transport coupling interface transmission constraints, are also treated as solutions
of dual subpotential subdifferental equations.

As mixed flow models, incompressible surface mixed velocity-stress Stokesian
contaminant flows are considered coupled with subsurface mixed velocity-pressure
fractional Darcian flows. In particular, two-phase air-fresh water above the sea level
in conjunction with fresh water-seawater two phase characterizations are utilized, in
the context of immobile air-seawater phases.

Regarding, the corresponding surface-subsurface filtration transport coupling inter-
face transmissions, variational mass flux primal-dual traction and dual-primal velocity
constraints are once again systematicallymodeled byLagrangemultipliers as solutions
of dual subpotential subdifferental equations.

The flow models of this study correspond to the incompressible fractional two-
phase subsurface Darcian model of Chen and Ewing (1999), Chen (2001), coupled to
an evolution Stokesian surface incompressible flow (Gurtin et al. 2010). Assuming the
fresh water velocity as the wetting phase velocity, the subsurface flow model results
to be an stationary total velocity-global pressure incompressible flow, coupled with
an evolutionary wetting velocity-complementary pressure compressible-like flow.

In relation with evolution coastal filtration models, we refer at a first instance
to Alduncin (2013), Esquivel-Avila and Alduncin (1990). In Alduncin (2013) we
have considered this evolution filtration problem as an slightly compressible Darcian
velocity-pressure mixed single phase flow, which corresponds to the classical vari-
ational pressure model treated in Esquivel-Avila and Alduncin (1990). Such coastal
models are in fact variational extensions to general three-dimensional aquifers with
seawater intrusion, of original filtration problems based on the pioneer stationary
Baiochi’s transform models (Baiocchi et al. 1973), treated further as evolutionary
free boundary problems in DiBenedetto and Friedman (1986), Torelli (1975), Torelli
(1977), Friedman and Torelli (1977), Gilardi (1979).

Here, our interest is to apply the special two-phase approach to evolution coastal
filtration problems that we have recently considered (Alduncin 2015), taking into
account its hydraulic interaction with evolution Stokesian surface reservoirs, as free
boundary interface multidomain macro-hybrid mixed variational problems.

Importantly, such a mixed two-phase flow modeling is appropriate for the applica-
tion of composition duality methods (Alduncin 2005, 2007b, 2014), in the solvability
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analysis of the systems via duality principles and fixed-point characterizations. For
parallel computing purposes, suitable spatial decompositions based on nonoverlap-
ping multidomains, below the sea level as well as on the surface reservoirs, are
variationally introduced with internal boundary trace fields dualized as weak interior
transmission macro-hybrid constraints (Alduncin 2007a, 2008, 2011). Further, we
should emphasize that these decomposed reformulations lead to macro-hybrid mixed
localized models, which are very appropriate for internal functional variational finite
dimensional approximations, implementable in terms of non-matching finite element
discretizations with resolution parallel iterative algorithms (Alduncin 2003, 2009).

Some works on seawater intrusion in coastal aquifers to be mentioned are
Mohammed et al. (2019), Prusty and Farooq (2020), Dibaj et al. (2021), Chala et al.
(2022): Specifically paper (Mohammed et al. 2019) presents a review of available
hydraulic and physical management strategies, for the reduction of seawater intrusion
in coastal aquifers; a review of processes to control seawater intrusion is provided
by study (Prusty and Farooq 2020), presenting applications of some methods; work
(Dibaj et al. 2021) considers coupled frameworks linking surface hydrodynamics river
networks with salinity intrusion. Study (Chala et al. 2022) has to do with diverse fac-
tors related to the salinity intrusion, as a common contaminant that affects unconfined
coastal aquifers.

Further, we refer to some current representative flow surface-subsurface studies,
on numerical mixed partial differential equation (PDE) models (Edward et al. 2008;
ZhiGuo and WeiMing 2009; Delfs et al. 2013). In work (Edward et al. 2008) numer-
ical simulations of a coupled surface-subsurface flow and transport model, through
interconnected aquifers separated by aquitards are implemented; study (ZhiGuo and
WeiMing 2009) is concened with a physical integrated hydrologic model, that simu-
lates rainfall surface water flow and saturated subsurface flow, as well as contaminant
transport in the coupled system. Work (Delfs et al. 2013) develops a soil-air model,
as a numerical coupled system of PDEs for hydrostatic shallow flow and two-phase
flow in a porous medium.

Lastly, we describe surface-subsurface mixed variational models where, in con-
trast to our subpotential evolution mixed subdifferential methodology, divers classical
approaches are applied (Lipnikov et al. 2014; Magiera et al. 2016; Caucao et al.
2022): In work(Lipnikov et al. 2014) locallized mass conservative variational approx-
imations of Darcy-Stokes flows, are implemented by surface Stokes discontinuous
Galerkin finite elements, and mimetic Darcy subsurface finite difference technics,
determining optimal convergence estimates; paper (Magiera et al. 2016) considers
coupled surface-subsurface flows with a nonlinear kinematic wave equation for the
surface fluid, and a Brinkman model governing the subsurface fluid pressure–velocity
dynamics, implemented utilizing coupled hyperbolic-elliptic finite volume numerical
discretizations. And finally, study (Caucao et al. 2022) has to do with a new multi-
point stress-flux mixed finite element method for a coupled problem, governed by the
Stokes-Biot equations, of a free fluid and a poroelastic medium, having fluid velocity
and poroelastic pressure Lagrange interface transmission constraints.

A description of the paper is the following. In Sect. 2 the variational real functional
macro-hybrid mixed reflexive Banach frameworks for the filtration transport systems,
as coupled media pairs, are introduced. Primal and dual abstract general variational
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multidomain mixed initial/boundary-value problems are stated in Sect. 3 in terms
of subpotential maximal monotone inclusion systems, whose resolvent fixed-point
existence-uniqueness qualitative results are established in Sect. 4 via corresponding
evolution duality principles. Section5 is concerned about the mixed filtration under-
ground free boundary fractional two-phase coastal hydraulic Darcian system, with
immovile seawater intrusion, leading to amixed pressure–velocity qualitative physical
descriptionof the incompressibleflowprocess;whosevariational analysis is performed
as a macro-hybridized subpotential inclusion mixed system. Section6 has to do with
the multidomain surface reservoirs, coupled incompressible primal and dual evolution
Stokes mixed flow models, as well as with their variational formulation and analysis,
as subpotential initial/boundary-value subdifferential problems. In Sect. 7 the surface-
subsurface contaminant transport flow coupled process is treated variationally, via
a multidomain dual evolution mixed formulation. Lastly, in Sect. 8, the variational
macro-hybrid mixed filtration transport coupled systems of the study are established.
Once appropriate surface-subsurface flux-traction-velocity interfacemechanical trans-
missions, and corresponding Lagrangian dual solution subspaces, are determined, –
these related to interface multidomains, – dual evolution transport coupled systems are
concluded: a primal-dual traction coupled system and a dual-primal velocity coupled
one. Last Sect. 9, states the conclusions of the work.

2 Macro-hybridmixed functional frameworks

In this section, we start introducing the variational macro-hybrid mixed reflexive
Banach real functional frameworks, for the surface-subsurface filtration transport sys-
tems to be treated in this paper as coupled media pairs.

Let � ⊂ �d , d ∈ {1, 2, 3}, be a bounded domain with a Lipschitz boundary ∂�,
which for the material continuous mechanical coupled Darcy/Stokes flow system, will
has the spatial disjoint decomposition defined by

� = �D ∪ �S the D/S media pair,
�D/S = ∂�D ∩ ∂�S the D/S interface pair,

(1)

where the interface �D/S is assumed to be Lipschitz. In this way, the global domain
� is decomposed into a nonoverlapping Darcy/Stokes (D/S) multimedia pair. Then,
utilizing themedia subindexM ∈ {D, S}, as the stationary functionalmulti-framework
we consider the mixed primal and dual reflexive Banach spaces V (�M ) and Y ∗(�M ),
with topological duals V ∗(�M ) and Y (�M ). Further, we introduce their primal and
dual pivot Hilbert spaces H(�M ) and Z∗(�M ); i.e., V (�M ) ⊂ H(�M ) ⊂ V ∗(�M )

and Y ∗(�M ) ⊂ Z∗(�M ) ⊂ Y (�M ), with continuous and dense embeddings. Also,
the primal and dual boundary trace spaces are defined by the reflexive Banach space
B(∂�M ) and its topological dual B∗(∂�M ).

Next, in accordance with Alduncin (2007b), Alduncin (2011), we introduce the
the multimedia M-pair �M , which on the basis of connected disjoint spatial local
subdomains {�Me }, e ∈ {1, ..., EM }, is expressed by
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�M =
EM⋃

e=1

�Me , the M-multidomain,

�Me = ∂�Me ∩ ∂�M e = 1, 2, ..., EM , theM-external boundaries,
�Me = ∂�Me ∩ �M e = 1, 2, ..., EM , theM-internal boundaries,
�Mek = �Me ∩ �Mk 1 ≤ e < k ≤ EM , theM-interfaces,

(2)

with piecewise Lipschitz boundaries. Then, as a macro-hybrid mixed M-functional
framework we have the product spaces: VMHM = ∏EM

e=1 V (�Me ), Y∗
MHM

=
∏EM

e=1 Y
∗(�Me ), with duals V∗

MHM
= ∏EM

e=1 V
∗(�Me ), YMHM = ∏EM

e=1 Y (�Me ), as

well as the primal internal boundary product space BMH�M
≡ ∏EM

e=1 B(�Me ) and its

dual B∗
MH�M

≡ ∏EM
e=1 B

∗(�Me).
Thereby, for a macro-hybridization of the multidomain multisystem pairs of the

study, we shall consider that the primal �M -field stationary space V (�M ) is decom-
posable in terms of a macro-hybrid internal boundary transmission condition

V (�M ) =
{
vM ∈ VMHM : π�MvM ∈ QM

}
, (3)

where π�M is the primal linear continuous internal boundary trace operator, satisfying
in the context of Sobolev spaces the fundamental compatibility condition (Adams and
Fournier 2003)

(Cπ�M
) π�M ∈ L(VMHM ,BMH�M

) is surjective.

Hence, QM ⊂ BMH�M
corresponds to the continuity transmission variational sub-

space guaranteeing a global internal boundary primal weak continuity.We should note
that, significantly, trace surjectivity condition (Cπ�M

) is characterized by the lower

boundedness of its own transpose trace operatorπT
�M

∈ L(B*
MHM

,V*
MH�M

), property
that in turn is equivalent to the own transpose injectivity with a closed range Yosida
(1974).

On the other hand, the dual �M -field stationary space and Hilbert pivot spaces
are supposed to be decomposable in the natural unconstrained product forms:
Y ∗(�M ) = Y*

MHM
, H(�M ) = HMHM ≡ ∏EM

e=1 H(�Me ) and Z∗(�M ) = Z*
MHM

≡
∏EM

e=1 Z
∗(�Me ).

As a last result in this stationary context, we state the central macro-hybrid varia-
tional composition dualization lemma that allows the primal variational incorporation
of internal boundary transmission conditions, which follows by a process of convex
and composition dualizations (cf. Alduncin 2005, Lemma 2.1).

Lemma 1 Due to primal trace surjective compatibility condition (Cπ�M
), for uM ∈

VMHM and λ*M ∈ B*
MHM

, the macro-hybrid compositional dualization

π�MuM ∈ ∂I*
QM

λ*
M ⇐⇒ πT

�M
λ*
M ∈ ∂(IQM ◦ π�M)uM (4)
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holds true, where I∗
QM

stands as the conjugate of indicator functional IQM .

Proof By convex dualization π�MuM ∈ ∂I*
QM

λ*
M ⇔ λ*

M ∈ ∂IQMπ�MuM . Then,
compositional characterization (4) is satisfied, since under condition (Cπ�M ) the
variational inequalities of primal inclusions λ*

M ∈ ∂IQMπ�MuM and πT
�M

λ*
M ∈

∂(IQM ◦ π�M )uM turn out to be equivalent:

π�MuM ∈ QM ⊂ BMH�M
:

IQM (π�MvM) ≥ IQM (π�MuM) + 〈
λ*
M,π�MvM − π�MuM

〉
BMH�M

,

∀ π�MvM ∈ BMH�M
and
uM ∈ D(IQM ◦ π�M ) ⊂ VMHM :
(IQM ◦ π�M )(vM) ≥ (IQM ◦ π�M )(uM) + 〈

πT
�M

λ*
M, vM − uM

〉
VMHM

,

∀ vM ∈ VMHM .

��
Additionally, we introduce the multidomain media pair evolution mixed functional

frameworks that will be required by the mechanical incompressible flow models, of
subsurface Darcy and surface Stokes evolution variational problems. Given a time
interval (0, T ), T > 0 arbitrary and fixed, we define the primal and dual evolution
reflexive Banach spaces, for 2 ≤ p < ∞ and q∗ = p/(p − 1),

VMHM = Lp(0, T ;VMHM )

≡
{
{vMe } : [0, T ] → VMHM / ‖{vMe }‖VMHM

=
[ ∫ T

0
‖{vMe }(t)‖p

VMHM
dt

]1/p
< ∞

}
, (5)

Y*
MHM

= Lq*(0, T ;Y*
MHM

)

≡
{
{y∗

MMe
} : [0, T ] → Y*

MHM
/ ‖{y∗

Me
}‖Y∗

MHM

=
[ ∫ T

0
‖{y∗

Me
}(t)‖q∗

Y ∗
MHM

dt

]1/q∗

< ∞
}
,

whose respective topological duals are V*
MHM

= Lq*(0, T ;V*
MHM

), YMHM =
Lp(0, T ;YMHM ).

Then, appropriate evolution primal and dual solution reflexive Banach spaces are
given by

WMHM =
{
{vMe } : {vMe } ∈ VMHM , d{vMe }/dt ∈ V*

MHM

}
,

X *
MHM

=
{
{y∗

Me
} : {y∗

Me
} ∈ Y*

MHM
, d{y∗

Me
}/dt ∈ YMHM

}
, (6)
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with corresponding operator norms ‖{vMe }‖WMHM
= ‖{vMe }‖VMHα

+ ‖d{vMe }
/dt‖V∗

MHM
and ‖{y∗

Me
}‖X ∗

MHM
= ‖{y∗

Me
}‖Y∗

MHM
+ ‖d{y∗

Me
}/dt‖YMHM

. In this man-

ner the following important structural properties are guaranteed, indispensable for the
solvability consistency of variational initial value problems (Lions 1969): primal solu-
tion spaceWMHM is continuous densely embedded inC([0, T ];HMHM ), the space of

HMHM -continuos functions, with initial values set
{
{vMe }(0) : {vMe } ∈ WMHα

}

= HMHα ; and dual solution space X *
MHM

is continuous densely embedded in

C([0, T ];Z*
MHM

), the space of Z*
MHM

-continuos functions, with initial values set{
{q∗

Me
}(0) : {q∗

Me
} ∈ X *

MHM

}
= Z*

MHM
.

Regarding the associated evolution internal boundary macro-hybrid trace spaces,
we have the reflexive Banach space BMHM = Lp(0, T ;BMHM ) and its dual B*

MHM
=

Lq*(0, T ;B*
MHM

).

3 Primal and dual evolutionmacro-hybridmixed variational
constrained initial/boundary-value problems

Next, we formulate and analyze the abstract macro-hybrid evolution mixed con-
strained boundary-value problems, which will be applied to the surface-subsurface
filtration transport multidomain phenomena of the paper, with seawater intrusion
in relation to a three-dimensional nonhomogeneous anisotropic unconfined coastal
aquifer. Existence-uniqueness resolvent fixed-point results will be established.

Applying the macro-hybrid mixed functional reflexive Banach frameworks of
Sect. 2, let us consider the evolution variational macro-hybridized mixed constrained
boundary-value problems of the theory, set on the evolution framework of reflex-
ive Banach spaces (5) and (6). In a general sense, we shall utilize the media index
M ∈ {D, S}, for D-Darcy and S-Stokes models (to be presented below in Sects. 5 and
6).

As a primal evolution mixed model problem, we have the variational macro-
hybridized constrained initial/boundary-value problem

(MMHM)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given f *M ∈ R(−�T
M) ⊂ V*

MHM
gM ∈ YMHM ,

and ûM0 ∈ HMHM :
find (uM, p*M) ∈ WMHM × Y*

MHM
:

−�T
Mp*M

∈ duM
dt

+ ∂FMuM + (πT
M∂�M ◦ πM)uM,

−πT
MN

p̂*M + (πT
�M

∂IQM ◦ π�M )uM − f *M, in V*
MHM

,

�MuM ∈ ∂G*
Mp*M + gM, in YMHM ,

uM(0) = ûM0 ,

where, for M-material local systems, primal operator ∂FM : VMHM → 2V
*
MHM

models local mechanical balance or constitutive subpotential maximal monotone
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inclusions, and for computing purposes dual operator ∂G*
M : Y*

MHM
→ 2YMHM

states dualized distributed primal constraints. Operators �M ∈ L(VMHM ,YMHM )

and its transpose �T
M ∈ L(Y*

MHM
,V*

MHM
) are single-valued linear continuous local

mixed coupling operators. Further, the primal external boundary composition opera-

tor πT
M∂�M ◦ πM : VMHM → 2V

*
MHM incorporates variationally the local essential

Dirichlet boundary conditions and constraints of the pairs system. Dual trace p̂*M
denotes the prescribed local natural Neumann boundary condition. Also, the internal

boundary composition subpotential operator πT
�M

∂IQM ◦ π�M : VMHM → 2V
*
MHM

imposes the macro-hybrid local constraint in (3).
For a variationalmaximalmonotonicity structure of evolution problem (MMHM ),

a fundamental property for its qualitative analysis, as well as numerical analysis, we
consider the following composition duality result applicable to variational composition
subpotential subdifferential operators (cf. Alduncin 2010, Lemma 2.1; and Lemma 5.1
in Alduncin 2017).

Lemma 2 In the context of mixed reflexive Banach spaces, proper lower semicon-
tinuous convex functionals J : E → � ∪ {+∞} and linear continuous operators
S ∈ L(D, E), with transpose ST ∈ L(E∗, D∗), under the compatibility condition

(CS) S ∈ L(D, E) is surjective

(equivalent to the traspose ST injevtivity with a closed range (Yosida 1974)) the
composition duality relation

ST ∂ J ◦ S = ∂(J ◦ S) (7)

holds true; i.e., subpotential subdifferential composition operator ST ∂ J ◦ S : D →
2D

*
results to be maximal monotone.

Proof Since compatibility condition (CS) implies the injectivity of transpose operator
ST ∈ L(E∗, D∗), for any functional d∗ ∈ R(ST ) ⊂ D∗ and its ST -preimage e∗ ∈ E∗
necessarily, for d̃ ∈ D,

d∗ ∈ ST ∂R(Sd̃) ⇐⇒ e∗ ∈ ∂R(Sd̃)

holds true. Moreover, in turn, the equivalence

e∗ ∈ ∂R(Sd̃) ⇐⇒ d∗ ∈ ∂(R ◦ S)(d̃)

is further satisfied since their corresponding variational inequalities

Sd̃ ∈ D(R) ⊂ E : R(e) ≥ R(Sd̃) + 〈
e∗, e − Sd̃

〉
E∗,E , ∀e ∈ E,

d̃ ∈ D(R ◦ S) ⊂ D : (R ◦ S)(d) ≥ (R ◦ S)(d̃) + 〈
d∗, d − d̃

〉
D∗,D, ∀d ∈ D,

are equivalent due to the S-surjectivity. Then the desired result is concluded. ��
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Furthermore, applying the interior domain condition for the sum of maximal mono-
tone operators to be maximal monotone in a setting of reflexive Banach spaces
(Rockafellar 1970; Barbu 2010), we have the following conclusive result that estab-
lishes the maximal monotonicity structure of the problem.

Corollary 3 Under primal trace compatibility condition (Cπ�M
), the primal vari-

ational composition monotone operator of macro-hybridized evolution problem
(MMHM),

∂ ˜FM = ∂FM + πT
M∂�M ◦ πM + πT

�M
∂IQM ◦ π��M : VMHM → 2V

*
MHM , (8)

is maximal monotone whenever its own interior domain condition

(C
∂ ˜FM

) int D(∂FM) ∩
(
D(πT

M∂�M ◦ πM) ∩ D(πT
�M

∂IQM ◦ π�M)
)

�= ∅

is satisfied, and in such a case, problem (MMHM) becomes a maximal monotone
variational inclusion problem, due to the additional maximal monotonicity of the vari-
ational time differentiation operator densely defined by (cf. Zeidler 1990, Proposition
32.10)

d/dt : D(d/dt) = {vM ∈ WMHM : vM(0) = 0} ⊂ VMHM → V*
MHM

. (9)

Regarding the boundary conditions and constrains of problem (MMHM ), we
shall assume that the local external boundaries �Me = ∂�Me ∩ ∂�M , e =
1, 2, ..., EM , are decomposed in terms of disjoint complementary sub-boundaries,
�Me = �MDe

∪�MNe
∪�MCe

. Then, as prescribed essential primal Dirichlet and nat-
ural dual Neumann boundary conditions, we introduce the following ones: πMDuM =
ûM ∈ BMHMD

= ∏EM
e=1 B(�MDe

) and δ*Mp*M = p̂*M ∈ B*
MHM

= ∏EM
e=1 B∗(�Me),

δ*M ∈ L(Y*
MHM

,B*
MH�M

) denoting the dual external boundary trace operator. For
local external boundary constraints, we consider on the complementary boundary
space BMHMC

= ∏EM
e=1 B(�MCe

) that boundary constraints are modeled by means

of subpotential maximal monotone mechanisms ∂�MeC
BMHMC

→ 2
B*

MHMC (Duvaut
and Lions 1972).

Thereby, as an explicit variational primal external boundary composition subdif-
ferential component, of the general model problem, the following one is achieved:

(πT
M∂�M ◦ πM)uM
= (πT

MD
∂ÎuM ◦ πMD)uM + πT

MN
p̂*M + (πT

MC
∂�MC ◦ πMC )uM

in V*
MHM

(10)

were the essential Dirichlet boundary condition is implemented by the indicator func-
tional IûM .
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Similarly, a dual evolution general abstract variational problem is given by

(M*
MHM

)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given f *M ∈ R(−�T
M) ⊂ V*

MHM
gM ∈ YMHM ,

and p̂*M0
∈ ZMHM :

find (uM, p*M) ∈ VMHM × X *
MHM

:
−�T

Mp*M ∈ ∂FMuM + (πT
M∂�M ◦ πM)uM − πT

MN
p̂*M

+(πT
�M

∂IQM ◦ π�M )uM − f *M in V*
MHM

,

�MuM ∈ dp*M
dt

+ ∂G*
Mp*M + gM in YMHM ,

p*M(0) = p̂*M0
.

Finally, we can conclude from the above external boundary result, in conjunction
with macro-hybrid composition duality result (4) of Lemma 1 (on interior internal
boundary transmission conditions), the macro-hybrid variational versions of macro-
hybridized problems (MMHM ) and (M*

MHM
):

(MHM)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given f *M ∈ R(−�T
M) ⊂ V*

MHM
gM ∈ YMHM ,

and ûM0 ∈ HMHM :
find (uM, p*M) ∈ WMHM × Y*

MHM
:

−�T
Mp*M − πT

�M
λ*
M

∈ duM
dt

+ ∂FMuM + (πT
M∂�M ◦ πM)uM

−πT
MN

p̂*M − f *M in V*
MHM

,

�MuM ∈ ∂G*
Mp*M + gM,

in YMHM ,

uM(0) = ûM0 ,

and

(MH*
M)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given f *M ∈ R(−�T
M) ⊂ V*

MHM
gM ∈ YMHM ,

and p̂*M0
∈ ZMHM :

find (uM, p*M) ∈ VMHM × X *
MHM

:
−�T

Mp*M − πT
�M

λ*
M ∈ ∂FMuM + (πT

M∂�M ◦ πM)uM

−πT
MN

p̂*M − f *M in V*
MHM

,

�MuM ∈ dp*M
dt

+ ∂G*
Mp*M + gM in YMHM ,

p*M(0) = p̂*M0
,

which are both synchronized in terms of the macro-hybrid evolution subpotential
subdifferential dual problem, which implements their local internal boundary �M-
transmission multidomain constraints:
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(T *
MHM

)

{
Find λ*

M ∈ B*
MHM :

π�MuM ∈ ∂I*
QM

λ*
M in BMHM .

Such evolution variational abstract problems, will correspond specifically to the
subsurface Darcy and surface Stokes flow macro-hybrid mixed problems to be treated
below in Sects. 5 and 6, respectively.

4 Macro-hybridmixed resolvent fixed-point solvability analysis

Regarding qualitative solvability results for multimedia mixed pair evolution varia-
tional systems, we next apply primal and dual fixed-point mixed results established in
Alduncin (2010), Alduncin (2014), via primal and dual duality principles and resolvent
fixed-point characterizations.

For the variational existence analysis of primal and dual evolution macro-hybrid
mixed constrained boundary-value problems (MHM) and (MH*

M), equivalent to
their macro-hybridized versions (MMHM ) and (M*

MHM
), primal and dual evo-

lution duality principles are required. Thus, we introduce the respective classical
macro-hybrid compatibility domain interior conditions (cf.Alduncin 2007b, Sect. 3):

(
CGM ,�M

)
int D(GM) ∩ R(�M) �= ∅,

(
C

(∂ ˜F
*
M/VMHM

,−�T
M)

)
int D

(
∂ ˜F

*
M/VMHM

)
∩ R(−�T

M) �= ∅,

under which the composition duality relations

�T
M∂GM ◦ �M = ∂(GM ◦ �M),

−�M ∂ ˜F
*
M/VMHM

◦ −�TM = ∂
(

˜F
*
M/VMHM

◦ −�T
M

)
,

(11)

hold true (Ekeland and Temam 1974). Thereby, primal and dual duality principles for
the macro-hybrid evolution problems are necessarily achieved as follows (cf.Alduncin
2007b. Lemma 3.1).

Lemma 4 Let primal trace compatibility condition (C[π�αe ]), as well as compatibility
domain interior conditions

(
CGM,�M

)
and

(
C

(∂ ˜F
*
M/VMHM

,−�T
M)

)
be satisfied. Then

primal and dual evolution macro-hybrid mixed problems (MHM) and (MH*
M)

are respectively equivalent in a solvability sense to their evolution macro-hybridized
primal and dual problems:
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(PMHM)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Find uM ∈ WMHM :

0*M ∈ duM
dt

+ ∂ ˜FMuM + ∂(GM ◦ �M )(uM − wgM) − ˜f
*
M,

in V*
MHM

,

uM(0) = ûM0,

and

(D*
MHM

)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Find p*M ∈ X *
MHM

:

0M ∈ d p*M
dt

+ ∂G*
Mp*M + ∂(F̃∗

M/VMHM

◦ (−�T
M ))(p*M − q*

˜f *M
)

+gM in YMHM ,

p*M(0) = p̂*M0
,

where wgM is a �M-preimage of functional gM and q*
˜f
*
M

a −�T
M-preimage of ˜f

*
M .

The sufficiency of these evolution duality principles is due to the fact that, indeed,
such principles apply as well to the primal and dual macro-hybridized systems
(MMHM ) and (M*

MHM
). Further, by condition (C[π�αe ]) and the Closed Range

Theorem, even such macro-hybridized systems turn out to be equivalent (in a solv-
ability sense) to their own macro-hybrid mixed systems (MHM) and (MH*

M) (cf.
Alduncin 2007b, Theorems 3.2 and 3.2∗).

Next, we state existence results for primal and dual evolution problems (PMHM )

and (D*
MHM

) (Alduncin 2014), which correspond to a fixed-point analysis via a
resolvent characterization of preconditioned augmented and exactly penalized formu-
lations, of their primal and dual variational inclusions, respectively. Because of the
important role played by such results in our study, we shall provide the details of their
validity.

Theorem 5 Let the macro-hybrid monotone primal and dual operator conditions

(C
∂ ˜FM

)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ ˜FM : VMHM → 2V
*
MHM is strongly monotone; i.e., ∃ β̃M > 0 :

〈
w*
M − v*M,wM − vM

〉
VMHM

≥ β̃M‖wM − vM‖2VMHM
,

∀ wM, vM ∈ VMHM , w*
M ∈ ∂ ˜FMwe, v*M ∈ ∂ ˜FMvM,

and

(C∂G*
M
)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂G*
M : Y*

MHM
→ 2YMHM is strongly monotone; i.e., ∃ β∗

M > 0 :
〈
sM − qM, s*M − q*M

〉
Y∗

MHM

≥ β∗
M‖s*M − q*M‖2Y∗

MHM
,

∀ s*M, q*M ∈ Y*
MHM

, sM ∈ ∂G*
Ms*M, qM ∈ ∂G*

Mq*M,
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be fulfilled. Then for primal and dual initial conditions as regular as

ûM0 ∈ VMHM ⊂ H*
MHM

and

p̂*M0
∈ Y*

MHM
⊂ Z*

MHM
,

(12)

evolution macro-hybridized primal problem (PMHM) and dual problem (D*
MHM

)

have a unique solution, respectively.

Proof First taking advantage of the initial condition regularity (12)1, we can consider
the primal evolution inclusion, with homogeneous initial data,

( ˜PMHM )

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Find sM ∈ WMHM :

0*M ∈ dsM
dt

+ ∂ ˜FMsM + ∂(GM ◦ �M )(sM − pgM ) − ˜f
*
M,

in V*
MHM

,

sM(0) = ̂0M0 ,

whose solvability, for sM = uM + ûM0 , is readily equivalent to that of problem
(PMHM ). Further, taking into account the maximal monotonicity of the linear vari-
ational time derivative operator d/dt : VMHM → V*

MHM
densely defined in (9), we

can apply a fixed-point subdifferential approach for the existence analysis following
Alduncin (2010). Indeed, we then have that primal monotone condition (C

∂ ˜FM
) is

equivalent to the combined primal operator similar condition

(C
∂ ˜AM

)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

˜AM = d/dt + ∂ ˜FM : VMHM → 2V
*
MHM is strongly monotone;

i.e., ∃ α̃M > 0 :
〈
w*
M − v*M,wM − vM

〉
VMHM

≥ α̃M‖wM − vM‖2VMHM
,

∀ wM, vM ∈ VMHM , w*
M ∈ ∂ ˜AMwe, v*M ∈ ∂ ˜AMvM .

In fact, since intD(d/dt) ∩ D(∂ ˜FM) �= ∅, operator ˜AM is maximal monotone. For a
precondition augmented and exact penalized formulation of primal inclusion problem

( ˜PMHM ), we introduce anm-linearly stronglymonotone and a-Lipschitz continuous
preconditioning operatorMM : VMHM → V*

MHM
and an exact penalization param-

eter r > 0, having then the augmented primal inclusion version, for s*M ∈ ˜AM(sM),

MM(sM) − r(s*M − ˜f
*
M) ∈ (MM + r∂(GM ◦ �Mwg

))(sM)

⇐⇒ sM = Fr
s*M

(sM) ≡ JrMM ,∂(GM◦�Mwg )
(MM(sM) − r(s*M − ˜f

*
M)).

(13)
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Here JrMM ,∂(GM◦�Mwg )
= (MM + r∂(GM ◦ �Mwg

))−1 : V*
MHM

→ VMHM is

the MM-resolvent operator of the maximal monotone operator ∂(GM ◦ �Mwg
) =

∂(GM ◦ �M )((·) − wg), which is a well defined 1/m-firm contraction (Alduncin

2005). Thereby, primal problem ( ˜PMHM ) has the MM-resolvent fixed-point prob-
lem characterization

(
˜

˜PMHM )

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Find sM ∈ D( ˜AM + ∂(GM ◦ �Mwg
)) ⊂ VMHM :

for s*M ∈ ˜AM(sM),

sM = Fr
s*M

(sM).

Then by the Banach fixed-point theorem, such a fixed-point problem has a unique
solution since the 1/m-firm contraction resolvent property implies the contraction of
the operator Fr

s*M
: D( ˜AM + ∂(GM ◦ �Mwg

)) → D( ˜AM + ∂(GM ◦ �Mwg
)), for

r > (a − m)/α ≥ 0, with contraction parameter 1/m(a − rα) < 1. Finally, in the
same fashion, the dual existence result case is demonstrated. ��
Therefore, the following solvability result is lastly concluded.

Corollary 6 Under the duality principle compatibility condition of Lemma 4 and the
fixed-point existence qualifying condition of Theorem 5, the evolution macro-hybrid
mixed constrainedboundary-value problems (MHM)and (MH*

M)attain a solution,
with respective unique primal and dual solution component.

5 Multidomain two-phase dual mixed filtration with seawater
intrusion

In this section, we present and analyze the mixed variational coastal aquifer flow
component of the hydrological surface-subsurface system of the paper. Once we give
a qualitative characterization of the Darcian mixed pressure–velocity evolution flow,
weconsider an adaptationof the twophase fractionalmixedflowmodel treatedbyChen
and Ewing (1999), Chen (2001), that amount to an innovative evolution variational
coastal aquifer approach of a stationary total velocity-global pressure and an evolution
wetting velocity-complementary pressure coupled underground flow system. Formore
details we refer to our study (Alduncin 2015).

5.1 The qualitative mixed physical model

Let �D ⊂ �3 denote the spatial configuration of an open coastal aquifer, a bounded
connected three-dimensional domain with a Lipschitz boundary ∂�D , which cor-
responds to the Darcian domain component of the material continuous mechanical
coupled Darcy/Stokes (D/S) flow system (1) described in Sect. 2. For this subsystem,
we shall consider the decomposed Darcian (D) aquifer boundary ∂�D components
(see Fig.1):

123



GEM - International Journal on Geomathematics             (2024) 15:7 Page 15 of 39     7 

Fig. 1 A section of an open coastal aquifer and surface reservoirs

∂�Dim = the impervious part,
∂�D f w = the part under surface water (the interface pair �D/S),

∂�Dsw = the part in contact with seawater,
∂�Doa = the part in contact with open air (the seepage face).

(14)

Thereby, under the assumption of immobile air and seawater phases, the aquifer
flow problem amounts to analyze the evolution of the fresh water flow in the wet set
� ⊂ QD = �D × (0, T ). Thus, relative to ∂�D , the wet set of sub-boundaries for
∂� ⊂ ∂QD = ∂�D × (0, T ) turn out to be:

�Dim = ∂� ∩ ∂QDim

� f w = ∂� ∩ ∂QD f w(= ∂� ∩ ∂QS the evolutionary interface pair �D/S),

�Dsw = ∂� ∩ ∂QDsw

�Doa = ∂� ∩ ∂Qoa (the evolutionary seepage face),
�Ds f b = the saturation interface free boundary ⊂ QD

�Di f b = the fresh and seawater interface free boundary ⊂ QD.

(15)

For the aquifer incompressible flow process, we introduce the parameters: ρ f and
ρs , the constant aquifer fresh water and seawater mass densities, such that ρs > ρ f >

0, and its negative hydraulic relation ρ ≡ 1 − ρs/ρ f < 0. Further, the time-varying
ordinate levels ĥ ∈ {̂h1, ĥ2, ..., ĥnr } of the nr fresh water surface coupled reservoirs,
relative to the fixed sea level as the origin (y = 0), and the bottom lowest ordinates of
the j th reservoir b̂ j are given (see Figure 1).
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On the other hand, according to Alduncin (2013), we introduce the conditions

(H1) b̂ j ≥ ĥ j/ρ, j = 1, 2, ..., nr

(H2) ny ≡ grady · n = 0 on �Di

(16)

under which, the fundamental modeling constraints: seawater intrusion cannot be in
contact with the fresh water surface reservoirs, and that the (possibly empty) imper-
vious flow boundary �Dim = ∂� ∩ ∂�Dim be geometrically vertical, are guaranteed.
Then, the maximum principle applies for the Darcian pressure functions p∗

D and
p∗
D − (ρ − 1)y in �, and then the flow pressure field is bounded from below in

accordance with

p∗
D > ϕ∗ ≡ max

(
0, (ρ − 1)y

)
=

{
0 y ≥ 0

(ρ − 1)y, y < 0
in �. (17)

Thereby, the coastal aquifer flow domain is characterized by

QD = �+ ∪ � ∪ �−

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�+ = [p∗
D = 0] ≡ {(x, y, z, t) ∈ QD : p∗

D(x, y, z, t) = 0},
� = [p∗

D > ϕ∗] ≡ {(x, y, z, t) ∈ QD : p∗
D(x, y, z, t) > ϕ},

�− = [p∗
D = (ρ − 1)y] ≡ {(x, y, z, t)

∈ QD : p∗
D(x, y, z, t) = (ρ − 1)y},

(18)

and consequently the following qualitative result can be concluded (Alduncin 2013).

Theorem 7 Any solution system (p∗
D,uD,�) of the evolution filtration problem may

be extended to all of QD in pressure and Darcian velocity by

p∗
D + {(1 − ρ)H0(p

∗
D) + ρH0(p

∗
D − ϕ∗

QD
)}y =

⎧
⎪⎪⎨

⎪⎪⎩

0 in �+

p∗
D + y, in �

0 in �−
(19)

and

uD = −grad p∗
D − {(1 − ρ)H0(p∗

D) + ρH0(p∗
D − ϕ∗

QD
)}grad y

=

⎧
⎪⎪⎨

⎪⎪⎩

0 in �+

−grad (p∗
D + y), in �

0 in �−

(20)

respectively, where H0 denotes the Heaviside function, and ϕ∗
QD

is the continuous
extension to QD of the obstacle function in (17), by zero in �+ and by (ρ − 1)y in
�−.
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Lastly, we introduce the pressure (hydraulic charge) boundary conditions of this
qualitative model

p∗
D + y = ĥ, on �D f w(= �D/S = ∂�D ∩ ∂�S),

p∗
D + y = ρy, on �Dsw ∪ �Di f b

p∗
D + y = y, on �Doa ∪ �Ds f b

(21)

as well as the complementary impervious boundary condition, and the seepage flux
constraint

uD · n = 0, on �Dim ∪ �Di f b

uD · n ≥ 0 on �Doa .
(22)

Additionally, we introduce the prescribed initial conditions

� = �0 ⊂ �D, at t = 0, and p∗
D(0) = p̂∗

D0
, in �0 (23)

assuming that p̂∗
D0

> ϕ∗ ≡ max (0, (ρ − 1)y) in �0.
In our previous work (Alduncin 2013), utilizing qualitative incompressible Darcian

flow properties (17)–(20) and boundary-value/initial conditions (21)–(23), the clas-
sical single-phase primal evolution mixed variational coastal flow model was treated
extending its formulation from the flow wet set domain � ⊂ QD = �D × (0, T )

to the whole domain QD , à la Baiocchi Baiocchi et al. (1973). In the following
subsections, following Alduncin (2015), we generate and analyze a general three-
dimensional evolution mixed variational two-phase flow model which results to be,
indeed, more suitable for: macro-hybridization, variational macro-hybrid mixed finite
element approximations, parallel proximal-point algorithms as well as proximation
semi-implicit time marching schemes (cf.Alduncin 2015, Sects. 3 and 4).

5.2 The fractional two-phasemixed physical model

Next, we proceed to apply the abstract macro-hybridized evolution constrained
boundary-value problems formulated and analyzed in Sects. 3 and 4, to a two-phase
dual mixed physical version of the coastal aquifer model described qualitatively in the
previous subsection.

Let us consider an immiscible two-phase Darcian incompressible flow, neglecting
the effect of evaporation and assigning to the atmospheric pressure a zerovalue,without
mass transfer. We shall denote a wetting phase by α = w and a nonwetting phase by
α = n, in the whole aquifer space-time domain QD = �D × (0, T ). Hence, for a
nonhomogeneous anisotropic coastal aquifer, we have with the dependent α-phase
variables of velocity uDα , pressure p∗

Dα
and saturation sDα , the governing constitutive
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and mass-conservation mixed equations:

uDα = −κrDα
(sDα )

μDα

K(grad p∗
Dα

− ρDαg),

φ
∂(ρDα sDα )

∂t
+ div(ρDαuDα ) = ρDα q̂Dα (sDα ),

⎫
⎪⎪⎬

⎪⎪⎭
in QD. (24)

Here, as hydraulic parameters we have: K, the symmetric positive definite absolute
permeability tensor, κrDα

, μDα , ρDα and q̂Dα , the α-phase relative permeability, vis-
cosity, mass density and volumetric flow rate, respectively. Further, φ stands as the
porosity of the media and g is the gravity acceleration vector.

Additionally, as complementary equations to model (24), we have the flow volume
balance constraint and the capillary pressure relation

sDw + sDn = 1

p∗
Dc

(sDw) = p∗
Dn

− p∗
Dw

.
(25)

• The two-phase fractional flow model.
Next, we reformulate physical two-phase model (24), (25), as a fractional one: a

coupled mixed model of a stationary total velocity-global pressure uD-p∗
D and an evo-

lutionary wetting velocity-complementary pressure uDw -θ
∗
D; due to Chen and Ewing

(1999), Arbogast (1992):

uD = uDw + uDn

p∗
D = p∗

Dn
−

∫ sDw

0

(
fDw

∂ p∗
Dc

∂sDw

)
(s) ds

θ∗
D = −

∫ sDw

0

(
fDw fDn

∂ p∗
Dc

∂sDw

)
(s) ds

(26)

where fDα (sDw) = λDα /λD stand as α-phase fractional flow functions, α ∈ {w, n},
defined in terms of the phase mobilities λDα = κrDα

/μDα and total mobility λD =
λDw + λDn .

Thereby, the dual mixed fractional flow system corresponds to

λ−1
D (θ∗

D)K−1uD = −grad p∗
D − γ 1(θ

∗
D),

div uD = q̂(θ∗
D);

λ−1
D (θ∗

D)K−1uDw = −grad θ∗
D − γ 2(θ

∗
D),

∂θ∗
D

∂t
+ div uDw = q̂D(θ∗

D),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

in QD (27)
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with q̂D = q̂Dw + q̂Dn the total volumetric flow rate, and

γ 1 = − fDwgrad p∗
Dc

+
∫ sDw

0
grad

(
fDw

∂ p∗
Dc

∂sDw

)
(s)ds − ( fDwρDw + fDnρDn )gD

γ 2 = fDwgrad p∗
D − fDwgrad p∗

Dc
+ fDw

∫ sDw

0
grad

(
fDw

∂ p∗
Dc

∂sDw

)
(s) ds

+
∫ sDw

0
grad

(
fDw fDn

∂ p∗
Dc

∂sw

)
(s) ds − fDwρDwgD.

We lastly note that the nonwetting phase velocity is related to complementary
pressure θ∗

D by

uDn = K(λ(θ∗
D)grad θ∗

D − λDn (θ
∗
D)grad p∗

D + γ 3(θ
∗
D))

γ 3 = −λDn

∫ sDw

0
grad

(
fDw

∂ p∗
Dc

∂sDw

)
(s) ds

+λD

∫ sDw

0
grad

(
fDw fDn

∂ p∗
Dc

∂sw

)
(s) ds + λDnρDngD. (28)

5.3 Variational macro-hybridized wetting velocity-complementary pressure
models

We next proceed to apply the abstract general macro-hybridized and macro-hybrid
primal-dual variational models (MMHM )-(M*

MHM
) and (MHM)-(MH*

M) of
Sect. 3, to the evolutionary component of fractional two-phase flow system (27)2. The
complementary instantaneous component of flow system (27)1, could be treated in a
similar manner, but we shall concentrate here only on the evolutionary flow case.

Toward this end we apply the duality procedures of Alduncin (2005), Alduncin
(2010) (also, see Alduncin 2009), taking into account the pressure and velocity
boundary conditions and constraints of the aquifer system, (21) and (22), expressed
subdifferentially as variational inclusions for thewetting-velocity and complementary-
pressure fields uDw and θ∗

D , as follows:

δ∗
imθ∗

D ∈ ∂ψim(πimuDw) = ∂ I{0im }(πimuDw), in B∗(∂�im)

δ∗
fwθ∗

D ∈ ∂ψ fw(π fwuDw) = {̂h(t) − y}, in B∗(∂� fw),

δ∗
swθ∗

D ∈ ∂ψsw(πswuDw) = {ρy − y}, in B∗(∂�sw)

δ∗
oa∪s f bθ∗

D ∈ ∂ψoa(πoa∪s f buDw) = {0oa∪s f b}, in B∗(∂�oa∪s f b)

(29)

with the seepage flux constraint

δ∗
oaθ

∗
D ∈ ∂ψoa(πoauDw) = ∂ I{uDν ≥0oa}(πoauDw), in B∗(∂�oa). (30)
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5.3.1 Variational macro-hybridized primal evolution initial/boundary-value problem

Acordingly, the primal evolutionvariationalmacro-hybridized complementarypressure-
wetting velocity model turns out to be

(MMHD)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given ûDw ∈ BMHD , q̂D ∈ R(gradTD) ⊂ YMHD ,

̂θ
*
D0

∈ Z*
MHD

, γ *
2D

∈ R(gradD) ⊂ V*
MHD

,

find (θ*D,uDw) ∈ X *
MHD

× VMHD :
gradTDuDw

∈ dθ*D
dt

+ (πT
D∂�D ◦ πD)θ*D − πT

fwûDw − πT
swûDw

+ (πT
�D

∂IQD ◦ π�D)θ*D − q̂D(θ*D), in YMHD ,

θ*D(0) = ̂θ
*
D0

,

−gradDθ*D ∈ λ−1(θ*D)K-1uDw + γ *
2D

(θ*D), in V*
MHD

,

where the explicit variational external boundary composition subdifferential primal
component is given by

(πT
D∂�D ◦ πD)θ*D =

(
πT
im∂I{0im} ◦ π im) + (πT

fw∂I{̂h(t)−y} ◦ π fw)

+(πT
sw∂I{ρy−y} ◦ π sw

)
θ*D

+ πT
fwûDw + πT

swûDw , in YMHD . (31)

Moreover, from macro-hybrid composition duality result (4) of Lemma 1, the
macro-hybrid version of problem (MMHD) is obtained.

(MHD)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given ûDw ∈ BMHD , q̂D ∈ R(gradTD) ⊂ YMHD ,

̂θ
*
D0

∈ Z*
MHD

, γ *
2D

∈ R(gradD) ⊂ V*
MHD

,

find (θ*D,uDw) ∈ X *
MHD

× VMHD :
gradTDuDw − πT

�D
˜λ
*
D

∈ dθ*D
dt

+ (πT
D∂�D◦πD)θ*D − πT

fwûDw − πT
swûDw

− q̂D(θ*D), in YMHD ,

θ*D(0) = ̂θ
*
D0

,

−gradDθ*D ∈ λ−1(θ*D)K-1uDw + γ *
2D

(θ*D), in V*
MHD

,
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synchronized by the internal boundary �D-transmission subpotential subdifferential
dual problem

(˜T ∗
MHD

)

⎧
⎨

⎩
Find ˜λ

*
D ∈ B*

MHD
:

π�Dθ*D ∈ ∂I*
QD

˜λ
*
D in BMHD .

5.3.2 Variational macro-hybridized dual evolution initial/boundary-value problem

Next, as the dual version of primal evolution problem (MMHD), we have the fol-
lowing one.

(M∗
MHD)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given ̂θ
*
D ∈ BMHD , q̂D ∈ R(gradTD) ⊂ YMHD ,

̂θ
*
D0

∈ Z*
MHD

, γ *
2D

∈ R(gradD) ⊂ V*
MHD

,

find (uDw , θ*D) ∈ VMHD × X *
MHD

:
−gradDθ*D

∈ λ−1(θ*D)K-1uDw + (πT
D∂�D ◦ πD)uDw

− πT
fw

̂θ
*
D − πT

sw
̂θ
*
D + (πT

�D
∂IQD ◦ π�D)uDw

+ γ *
2D

(θ*D), in V*
MHD

,

gradTDuDw ∈ ∂θ*D
∂t

− q̂D(θ*D), in YMHD ,

θ*D(0) = ̂θ
*
D0

,

where the explicit variational external boundary composition subdifferential primal
component is given by (cf. (31))

(πT
D∂�D ◦ πD)uDw

= (πT
im∂I{ûDwν ≥0oa} ◦ π im)uDw + πT

fw
̂θ
*
D + πT

sw
̂θ
*
D, in V*

MHD
. (32)

Furthermore, as before, from macro-hybrid composition duality Lemma 1, the
macro-hybrid version of dual macro-hybridized problem (M*

MHD
) is obtained.
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(MH*
D)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given ̂θ
*
D ∈ BMHD , q̂D ∈ R(gradTD) ⊂ YMHD ,

̂θ
*
D0

∈ Z*
MHD

, γ *
2D

∈ R(gradD) ⊂ V*
MHD

,

find (uDw , θ*D) ∈ VMHD × X *
MHD

:
−gradDθ*D − πT

�D
˜λ
*
D

∈ λ−1(θ*D)K-1uDw + (πT
D∂�D◦πD)uDw

− πT
fw

̂θ
*
D − πT

sw
̂θ
*
D + γ *

2D
(θ*D), in V*

MHD
,

gradTDuDw ∈ ∂θ*D
∂t

− q̂D(θ*D), in YMHD ,

θ*D(0) = ̂θ
*
D0

,

synchronized as in the primal case by the internal boundary �M-transmission subpo-
tential dual inclusion problem

(˜T *
MHD

)

⎧
⎨

⎩
Find ˜λ

*
D ∈ B*

MHD
:

π�DuDw ∈ ∂I*
QD

˜λ
*
D in BMHD .

5.3.3 Variational primal and dual evolution resolvent fixed-point solvability results

For evolutionary wetting velocity-complementary pressure primal and dual mixed
variational systems, macro-hybridized (MMHD) and (M*

MHD
) problems, as well

as macro-hybrid (MHD) and (MH*
D) problems, in the context of Sect. 4 on resol-

vent fixed-point solvability analysis, we have the following existence qualitative
results. Indeed, taking into account the corresponding macro-hybrid domain interior

conditions (C
(∂ ˜FD/VMHD

-divTD)

)
and (CGD,divD

)
, as well as the strong monotonicity

subpotential subdifferential operator conditions (C
∂ ˜FD

) and (C∂G*
D
), we conclude:

Theorem 8 Let the macro-hybrid compatibility conditions (CGD,divD

)
, (C(∂ ˜FD/VMHD

,

−divTD)
)
, as well as the qualifying conditions (C

∂ ˜FD
), (C∂G*

D
), be satisfied. Then for

dual initial condition regularity

̂θ
*
D0

∈ Z*
MHD

(33)

evolution macro-hybridized primal problem (PMHD) and dual problem (D*
MHD)

have a unique solution.

Moreover, as a conclusive result we have the following one.
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Corollary 9 Under the conditions of Lemma 4 on primal and dual duality principles,
and those of fixed-point existence Theorem 5, evolution macro-hybrid mixed con-
strained initial/boundary-value problems (MHD) and (MH*

D) possess a unique
solution.

6 Multidomain evolutionmixed incompressible stokes surface flow
system

In this section, we treat the surface fresh water reservoirs of the hydraulic coupled
coastal aquifer system of the paper. We shall consider incompressible surface flows
modeled by the stress-stretching constitutive equation

T = −pI + 2μD, (34)

whereD stands as the streching tensor, symmetric component of the velocity gradient,
and for the spherical stress pI, p denotes the pressure field whose expanded stress-
velocity form may be expressed by

− gradT v* = −1/μ T − 1/μ pI + grad v*, (35)

where the parameter μ ≥ 0 corresponds to the constant shear viscosity of the fluid,
(cf. Gurtin et al. 2010, Chapter 46).

In addition, we shall consider the complementary non-convective momentum bal-
ance motion equation

ρ
∂v*

∂t
= div T + b, (36)

with a body force b. We recall that the velocity material change rate, has as spatial

description the convective acceleration field ρ ∂v*
∂t +ρ(grad v*)v* (Gurtin et al. 2010).

Next, we shall formulate and analyze Stokes flow model (34)–(36), variationally
in the sense of multidomain evolution mixed constrained initial/boundary-value prob-
lems of Sect. 3.

6.1 Multidomain primal and dual evolutionmacro-hybrid mixed stokes surface
flow systems

In preparation for the surface-subsurface interface transmission analysis of Sect. 8, we
consider the primal and dual evolution macro-hybrid mixed velocity-stress variational
incompressible Stokes system models, whose macro-hybridized versions are stated as
follows:
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(MMHS)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given b ∈ R(gradS) ⊂ VMHS , v̂
*
S0 ∈ H*

MHS

find v*S ∈ W*
MHS

⊂ V*
MHS

and T ∈ Y*
MHS

gradS T ∈ ρS
∂v*S
∂t

+ (πT
S ∂�S ◦ πS)v*S − πT

SN ŝ

+(πT
S ∂IQS ◦ πS)v*S − b, in VMHS

v*S(0) = v̂
*
S0

−gradTS v
*
S = −1/μ Te − 1/μ pI + gradS v*S in YMHS

where the external boundary primal composition subdifferential has the explicit form

(πT
S ∂�S ◦ πS)v*S = (πT

SD
∂I {̂v*S} ◦ πSD)v*S + πT

SN
ŝ, in VMHS (37)

and whose dual evolution macro-hybrid mixed alternative flow system is given by

(M∗
MHS)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given b ∈ R(gradS) ⊂ VMHS , v̂
*
S0 ∈ H*

MHS
,

find T ∈ Y*
MHS

and v*S ∈ W*
MHS

⊂ Y*
MHS

:
−gradTS v

*
S ∈ −1/μ Te − 1/μ pI + gradS v*S

+(πT
S ∂�S ◦ πS)T − πT

SN
v̂
*
S

+(πT
S ∂IQS ◦ πS)T in YMHS ,

gradS T ∈ ρS
∂v*S
∂t

− b, in VMHS ,

v*S(0) = v̂
*
S0 ,

with an explicit external boundary primal composition subdifferential

(πT
S ∂�S ◦ πS)T = (πT

SD
∂I {̂sS} ◦ πSD)T + πT

SN
v̂
*
S, in YMHS . (38)

On the other hand, the macro-hybrid versions of such macro-hybridized evolution
Stokes problems follow as before from the macro-hybrid composition duality result
(4) of Lemma 1:

(MHS)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given b ∈ R(gradS) ⊂ VMHS , v̂
*
S0 ∈ H*

MHS
,

find v*S ∈ W*
MHS

⊂ V*
MHS

and T ∈ Y*
MHS

:

gradS T − πT
�S

λ*
S ∈ ρS

∂v*S
∂t

+ (πT
S ∂�S ◦ πS)v*S − πT

SN ŝ − b,

in VMHS ,

v*S(0) = v̂
*
S0 ,

−gradTv*S = − 1/μ Te − 1/μ pI + grad v*S in YMHS;
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as well as the dual macro-hybrid variational version

(MH*
S)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given b ∈ R(gradS) ⊂ VMHS , v̂
*
S0 ∈ H*

MHS
,

find T ∈ Y*
MHS

and v*S ∈ W*
MHS

⊂ Y*
MHS

:
−gradTS v

*
S − πT

�S
λ*
S

∈ −1/μ T − 1/μ pI + gradS v*S

+(πT
S ∂�S ◦ πS)T − πT

SN
v̂
*
S in YMHS ,

gradS T ∈ ρS
∂v*S
∂t

− b, in VMHS ,

v*S(0) = v̂
*
S0 ,

synchronized both systems by the internal boundary �S-transmission subpotential
dual subdifferential inclusion problem

(T *
MHS

)

{
Find λ*

S ∈ B*
MHS

:
π�Sv

*
S ∈ ∂I*

QS
λ*
S in BMHS .

6.2 Evolution resolvent fixed-point solvability results for primal (MMHS) and
dual (M*

MHS) problems

Existence-uniqueness results for primal anddual evolutionmacro-hybridmixedStokes
problems, once again, in accordance with Lemma 4, Theorem 5 and Corollary 6 estab-

lished in Sect. 4, correspond to the domain interior conditions (C
(∂ ˜FS/VMHS

−gradTS )

)
,

(CGS,-gradTS

)
, and to the strong monotonicity subpotential subdifferential operator

conditions (C
∂ ˜FS

), (C∂G*
S
).

Lemma 10 Under compatibility conditions
(
C

(∂ ˜FM/VMHM
,−divTM)

)
and (CGM,divM),

Stokes evolution macro-hybridized primal problem (PMHS) and dual problem
(D*

MHS
) are equivalent in a solvability sense to macro-hybrid incompressible Stokes

problems (MHS) and (MH*
S), respectively.

Lastly, we have the conclusive result.

Theorem 11 Let compatibility conditions of Lemma 10, as well as the monotonicity
qualifying conditions (C

∂ ˜FM
) and (C∂G*

M
) be fulfilled. Then for regular primal initial

condition

v̂
*
S0 ∈ H*

MHS
(39)
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macro-hybrid mixed constrained initial/boundary-value incompressible Stokes prob-
lems (MHS) and (MH*

S) possess a unique solution.

7 Dual evolutionmacro-hybridmixed transport systems

We continue with the transport model applicable to both the underground Darcian
and free Stokeisian flow mechanical coupled systems of the coastal aquifer. For
M ∈ {D, S}, we shall consider transport processes with a distributed contaminant
M-chemical solute, modeled in terms of mixed fields of a primal scalar mass concen-
tration c*M and a dual vector flux dM = −DuM grad c*M , and a distributed intrinsic
mass concentration control primal vector field sM . Here, DuM denotes the diffusion-
dispersion tensor dependent on the flowM-velocity vector field uM (cf., e.g., deMarsil
1986). In addition the field ̂f M will be a corresponding given contaminant source.

Then, related to the multidomain �M = ⋃EM
e=1 �Me , (2)1, in the context of Sect. 2,

local mass conservation principles for the concentration field c∗
Me

are established
as follows. For instantaneous material connected parts of each M-subdomain �Me ,
PMet

(x), surrounding any point x ∈ �Me at a time t ∈ (0, T ), the Reynolds’ transport
theorem states that local mass balances must hold true (cf. e.g., Gurtin et al. 2010):

d

dt

∫

PMet

c∗
Me

d�Me =
∫

PMet

dc∗
Me

dt
+ div({uMe c

∗
Me

) d�Me

= −
∫

PMet

sMe d�Me +
∫

PMet

f̂Me d�Me

−
∫

∂PMet

dMe·nMe d∂�Me . (40)

Hence, applying the divergence theorem to (40)-boundary term and a continuous
integral localization, the following dual evolution mixed flux-concentration M-
multidomain physical transport model (utilizing a boldface compact notation) is
achieved.

dM = −DuMgradMc*M,

dc*M
dt

+ uM·gradMc*M + divMuMc*M + divMdM

= −sM + ̂f M,

sM ∈ ∂ϕ*
τM

c*M ⇔ c*M ∈ ∂ϕτM
sM,

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

in �M × (0, T ). (41)

Here, subpotential subdifferential ∂ϕτM denotes a primal distributed local M-control
mechanism for the intrinsic mass concentration control, the transport constraint of the
process, with an inverse M-control mechanism ∂ϕ∗

τM
, subdifferential of the conjugate

functional ϕ∗
τM

(cf. Duvaut and Lions 1972).
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Importantly, in contrast to the usual primal approach (cf. Alduncin 2019), here
we shall be considering a dual evolution transport formulation that results to be more
suitable for semi-implicit timemarching schemes, and associated iterative proximation
algorithms (cf. Alduncin 1997, 2007b).

7.1 Macro-hybridmixed variational dual evolution transport systems

As a constrained initial/boundary-value problem, localized macro-hybrid mixed
constrained M-transport system (41) has the following variational dual evolution
macro-hybridized formulation (cf. Alduncin 2007b, a).

(M*
τMHM

)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given ̂f M ∈ R(−divτM ) ⊂ YτMHM
, ĉ*M0

∈ Z*
τMHM

,

find dM ∈ VτMHM
and c*M ∈ X *

τMHM
:

divTτM
c*M ∈ D-1

uMdM + (πT
M∂�M ◦ πM)dM − πT

τNM
ĉ*M,

+(πT
�M

∂IQM ◦ π�M )dM in V*
τMHM

,

−divτMdM ∈ dc*M
dt

+ uM · gradτM
c*M + divτMc

*
M

+∂ϕ*
τM

c*M − ̂f M in YτMHM
,

c*M(0) = ĉ*M0

with an explicit variational external boundary composition subdifferential component

(πT
M∂�M ◦ πM)dM = (πT

τDM
∂I{̂dnM } ◦ πτDM

)dM + πT
τNM

ĉ*M,

in V*
τMHM

.
(42)

Once again, applying the macro-hybrid composition duality result (4) of Lemma 1,
the macro-hybrid version of dual evolution transport problem (M∗

τMHM
) turns out

to be as follows.

(MH*
τM

)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given ̂f M ∈ R(−divτM ) ⊂ YτMHM
, ĉ*M0

∈ Z*
τMHM

,

find dM ∈ VτMHM
and c*M ∈ X *

τMHM
:

divTτM
c*M − πT

τ�M
λ*

τM

∈ D-1
uMdM + (πT

M∂�M ◦ πM)dM − πT
τNM

ĉ*M,

in V*
τMHM

,

−divταdM ∈ dc*M
dt

+ uM · gradτM
c*M + divτMuMc*M

+∂ϕ*
τM

c*M − ̂f M in YτMHM
,

c*M(0) = ĉ*M0
,
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synchronized by themacro-hybrid evolution subpotential subdifferential dual problem

(T ∗
MHM

)

⎧
⎨

⎩

Find λ*
τM

∈ B*
MHτM

:
πτ�M

dM ∈ ∂IQ*
τM

λ*
τM

in BMHτM
,

which implements the local internal boundary�M-transmissionmultidomain transport
constraints.

Next, applying the resolvent fixed-point solvability analysis of Sect. 4, to
the dual evolution mixed flux-concentration transport system, modeled by the
equivalent macro-hybridized and macro-hybrid variational problems (M*

τMHM
)

and (MH*
τM), we identify the primal macro-hybrid domain interior condition

(C
(∂ ˜FM/VτMHM

divT τM )

)
as well as the strong monotonicity subpotential subdifferential

dual operator condition (C∂ϕ∗
τM

), concluding the following existence results:

Theorem 12 Let the macro-hybrid qualifying condition (C∂ϕ*
τM

) and the compatibility

condition
(
C

(∂ ˜FM/VτMHM
divTτM )

)
be satisfied. Then for regular dual initial conditions

in the sense

ĉ*M0
∈ Z*

τMHM
(43)

evolution macro-hybridized dual tranport problem (D*
τMHM

) has a unique solution;

then the following result is achieved.

Corollary 13 Under the condition (4) of Lemma 1 on a dual duality principle, and
the condition of fixed-point existence Theorem 5, in a transport sense, dual evolution
macro-hybridmixed constrained initial/boundary-value problem (MH*

τM)possesses
a solution with a unique dual component.

We lastly note that due to qualifying condition (C∂ϕ*
τM

), the dual constraints of

the transport processes should be governed by strongly monotone intrinsic M-control
concentration maximal monotone mechanisms ∂ϕ*

τM
(Duvaut and Lions 1972).

8 Multidomain evolutionmixed incompressible darcy/stokes
surface-subsurface filtration transport coupled systems

In this last section, we formulate and analyze the continuum mechanical coupling
of the physical filtration transport Darcy/Stokes incompressible flow models of the
coastal aquifer system under consideration. We shall treat the primal and dual evolu-
tionmacro-hybridmixedDarcian two phasewetting velocity-complementary pressure
and Stokesian velocity-stress variational initial/boundary-value flow problems of Sub-
sect. 5.3 and Subsect. 6.1, as well as the transport dual one of Subsect. 7.1. We will
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discuss the implementation of the corresponding mass flux-traction-velocity interface
transmission conditions in the sense of dual subpotential composition subdifferential
Lagrangian constraints.

8.1 Surface-subsurface transport flow interface transmission conditions

As it is natural for the coupling of subsystems in multiphysics, the basic interface
transmission fields for filtration transport flow coupled processes are the dM-fluxes,
sM-tractions and vM-velocities, νM-normal and τM-tangential components, for M ∈
{D, S}.

Hence, on the surface-subsurface Lipschitz interface �DS = ∂�D ∩ ∂�S of the
coastal aquifer phenomena under investigation, we have the

• Darcy/Stokes flux-traction-velocity transmission fields.

dνM = dM·νM and dτM = (I − νM⊗νM )dM

sS = TνS and sτS = (I − νS⊗νS)sS

vνM = vM·νM and vτM = (I − νM⊗νM )vM

(44)

where T stands as the stress field defined by incompressible (34) Stokes fluid consti-
tutivity.

Based on transmission fields (44), the surface-subsurface interface constraints of
the transport flow processes should resemble mechanical continuity conditions. For
instance, as natural interface constraints we have the following ones:

dνD = −dνS , (normal fluxes continuity),

θ*νD ≡ θ∗
DνD = −sS ≡ −TνS, (tractions continuity),

vνD = −vνS , (normal velocities continuity),

vτD = −vτS , (tangential velocities continuity),

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

on �DS .(45)

Taking into account the experimental work of Beavers-Joseph-Saffman on inter-
face conditions (Beavres and Joseph 1967; Saffman 1971), the tangential velocities
constraint (45)4 should be modified in the sense (Cimolin 2013)

vτS = −2μG(I − νS⊗νS)DνS (BJS-tangential surface velocity) on �DS, (46)

with G > 0 an experimental constant.

8.2 Mixed Darcy/stokes variational interface transmission constraints

Next, towards a variational macro-hybrid formulation of surface-subsurface transmis-
sion conditions (44), (45), related to the global spatial disjoint decomposition (1) of
Sect. 2

� = �D ∪ �S, the subsurface-surface media,

�DS = ∂�D ∩ ∂�S, the subsurface-surface interface,
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we shall consider the special M-multidomain nonoverlapping interface-noninterface
(int-nonint) decompositions:

�Mint =
Eint⋃

e=1

�Me , theM-interface multidomain,

�Mnonint =
EM⋃

e=Eint+1

�Me , theM-noninterface multidomain,

�M = �Mint ∪ �Mnonint , theM-multidomain,

�DS = ∂�Dint ∩ ∂�Sint , the Darcy/Stokes interface.

(47)

Thereby, as a central requirement for matching interface traces, we introduce the
interface multidomain condition

(C∂Dint ,∂Sint
) ∂�Dint ∩ �DS = �DS ∩ ∂�Sint .

In this manner, for compatible conforming local interface mechanical flux-traction-
velocity transmissions, we have the conditions, for e = 1, ..., Eint ,

{dνDe
} = −{dνSe

}, (fluxes continuity),

{θ*νDe } = −{sSe}, (tractions continuity),

{vνDe
} = −{vνSe

}, (normal velocities continuity),

{vτDe
} = −{vτSBJSe

}, (tangential velocities continuity),

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

on �DS, (48)

where {−vτ sBJSe
} stands for the Beavers-Joseph-Saffman surface local interface tan-

gential velocity, (46).
Hence, adapting the framework functional notation of Sect. 2 to special M-

multidomain decompositions (47), we introduce the stationary primal and dual reflex-

ive Banach M-interface spaces ˜VM = ∏Eint
e=1 V (�Me ) and ˜Y

*
M = ∏Eint

e=1 Y
∗(�Me ),

with respective duals ˜V
*
M = ∏Eint

e=1 V
∗(�Me ) and ˜YM = ∏Eint

e=1 Y (�Me ). Similarly, we

introduce the�DS-interface boundary reflexiveBanach space ˜BM ≡ ∏Eint
e=1 BM (�DSe )

and its dual ˜B
*
M ≡ ∏Eint

e=1 B
∗
M (�DSe), as well as the corresponding interface linear

continuous primal trace operator π�DS , assuming that it satisfies the compatibility
condition

(
Cπ�DS

)
π�DS ∈ L(

˜VM, ˜BM
)
is surjective.

Further, as evolution reflexive Banach spaces, for 2 ≤ p < ∞ and q∗ = p/(p −
1), we have primal and dual M-interface spaces ˜VM = Lp(0, T ; ˜VM) with dual
˜V*
M = Lq*(0, T ; ˜V

*
M), and ˜Y*

M = Lp(0, T ; ˜Y
*
M) with dual ˜YM = Lq*(0, T ; ˜YM),

and as evolution interface boundary spaces we have ˜BM = Lp(0, T ; ˜BM) with dual
˜B*
M = Lq*(0, T ; ˜B

*
M).
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Having stated the M-interface reflexive Banach frameworks, we define the product
flux-traction-velocity transmission continuity solution subspaces, for e = 1, ..., Eint

˜T fl =
{(

π�DDS
,π�SDS

)
(dνD , dνS) ∈ ˜BflD × ˜BflS :
π�DDS

dνD = −π�SDS
dνS

}
,

˜T tr =
{(

π�DDS
,π�SDS

)
(vνD , sS) ∈ ˜BtrD × ˜BtrS :
π�DDS

θ*νD = −π�SDS
sS

}
,

˜Tvν =
{(

π�DDS
,π�SDS

)
(vνD , vνS) ∈ ˜BvνD

× ˜BvνS
:

π�DDS
vνD = −π�SDS

vνS

}
,

˜T vτ =
{(

π�DDS
,π�SDS

)
(vτD , vτSBJS

) ∈ ˜BvτD
× ˜BvτS :

π�DDS
vτD = −π�SDS

vτSBJS

}
. (49)

Now, we are in a position to implement such interface transmissions by means of
Lagrange multipliers, product dual trace fields solutions of subpotential subdifferen-
tial variational dual problems, in the sense of the variational macro-hybrid internal
boundary transmission dual component of the general primal and dual evolution
internal/boundary-value problems (MM) and (M*

M) of Sect. 3

(T *
MHM)

{
Find λ*

M ∈ B*
MHM :

π�MuM ∈ ∂I*
QM

λ*
M in BMHM .

8.3 Mixed Darcy/stokes variational macro-hybrid coupled systems

For the multidomain variational dual evolution macro-hybrid mixed constrained
coupled transport system (MH*

τD
)-(MH*

τS
) of Subsect. 7.1, we have the subpo-

tential subdifferential variational dual problem for the transport flux interface product
Lagrange multiplier (μ̃

*
flD

, μ̃
*
flS

),

(T *
f l)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Find (μ̃
*
flD

, μ̃
*
flS

) ∈ ˜B*
flD

× ˜B*
flS

,

satisfying the dual flux �DS − tranmission condition
(
πDν�DS

,πSν�DS

)
(dD, dS)

∈ ∂I
˜T fl

(μ̃
*
flD

, μ̃
*
flS

), in ˜BflD × ˜BflS ,

where ˜T f l is the transport flux continuity transmission subspace defined by (49)1.
Concerning the dual-primal evolution variational macro-hybrid mixed constrained

coupled incompresssible flow system (M*
MHD)-(MMHS) of Subect. 5.4.2 and
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Subect. 6.1, for a traction interface product Lagrange multiplier (χ̃
*
trD , (χ̃

*
trS), we

consider the subdifferential dual problem

(T *
tr)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Find (χ̃
*
trD , χ̃

*
trS) ∈ ˜B*

trD × ˜B*
trS ,

satisfying the dual traction �DS − tranmission condition
(
πDν�DS

,πSν�DS

)
(θ*D,T)

∈ ∂I
˜T tr

(χ̃
*
trD , (χ̃

*
trS), in ˜BtrD × ˜BtrS ,

with ˜T tr standing as the traction continuity transmission subspace (49)2.
Similarly, in the case of the dual-primal evolution constrained coupled incompress-

sible flow system (M*
MHD

)-(MMHS) of subsections 5.3.2 and 6.1, we have the
variational dual problems, with the normal velocity and tangential velocity interface
product Lagrange multipliers (˜ζ vνD

, ˜ζ vνS
) and (˜ξ vτDe

˜ξ vτSe
) respectively:

(T *
vν )

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Find (˜ζ vνD
, ˜ζ vνS

) ∈ ˜B*
vνD

× ˜B*
vνS

,

satisfying the dual normal velocity �DS − tranmission condition
(
πDν�DS

,πSν�DS

)
(vνD , vνS)

∈ ∂I
˜T vν

(˜ζ vνD
, ˜ζ vνS

), in ˜BvνD
× ˜BvνS

,

(T *
vτ )

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Find (˜ξ vτD
,˜ξ vτS

) ∈ ˜B*
vτD

× ˜B*
vτS

,

satisfying the dual tangential velocity �DS − tranmission condition
(
πDτ�DS

,πSτ�DS

)
(vτD , vτSBJS

)

∈ ∂I
˜T vτ

(˜ξ vτD
˜ξ vτS

), in ˜BvτD
× ˜BvτS

,

˜T vν and ˜T vτ being the normal and tangential velocity continuity transmission sub-
spaces (49)3 and (49)4.

Therefore, in this manner, the surface-subsurface mechanical transmission con-
ditions of the local filtration transport incompressible flow processes, in the coastal
aquifer, are implemented as subpotential maximal monotone subdifferential inclu-
sions, which, importantly, permit their incorporation as primal variational coupling
prescribed constraints via compositional dualization (cf. Alduncin 2007b, Lemma
2.1).
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8.3.1 Variational multidomain dual mixed transport coupled system
(MH*

�D
)-(MH*

�S
)

(MH*
τD−τS

)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given ( ̂f D, ̂f S) ∈ YτMHD
× YτMHS

,

(̂c*D0
, ĉ*S0) ∈ Z*

τMHD
× Z*

τMHS
,

find (dD, dS) ∈ VτMHD
× VτMHS

:
(
divTτD

, divTτS

)
(c*D, c*S) −

(
πT

τ�D
,πT

τ�S

)
(λ*

τD
,λ*

τS
)

−
(
π
TDν�DS ,π

TSν�DS

)
(μ̃

*
flD

, μ̃
*
flS

)

∈
(
D-1
uwD

,D-1
v*S

)
(dD, dS)

+
(
πT
D∂�D ◦ πD,πT

S ∂�S ◦ πS

)

(dD, dS) −
(
πT

τND
,πT

τNS

)
(̂c*D, ĉ*S),

in V*
τMHD

× V*
τMHS

;

and find (c*D, c*S) ∈ X *
τMHD

× X *
τMHS

:
−

(
divτD , divτS

)
(dD, dS)

∈
(
dc*D
dt

,
dc*S
dt

)
+ (

uD·gradτD
,uS·gradτS

)
(c*D, c*S)

+
(
divτD , divτS

)
(uDc*D,uSc*S)

+
(
∂ϕ*

τD
, ∂ϕ*

τS

)
(c*D, c*S) − ( ̂f D, ̂f S),

in YτMHD
× YτMHS

,

(c*D(0), c*S(0)) = (̂c*D0
, ĉ*S0),

synchronized by the macro-hybrid internal boundary dual �DS-transmission coupled
subdifferential problem

(T *
MHτD−τS

)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Find (λ*
τD

,λ*
τS

) ∈ B*
τMHD

× B*
τMHS

:
(
πτ�D

,πτ�S

)
(dD, dS) ∈

(
∂IQ*

τD
, ∂IQ*

τS

)
(λ*

τD
,λ*

τS
),

in BτMHD
× BτMHS

,
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and subjected to the dual transport flux �DS-interface transmission constraints

(T *
flD-flS

)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Find (μ̃
*
flD

, μ̃
*
flS

) ∈ ˜B*
flD

× ˜B*
flS

:
(
πDν�DS

,πSν�DS

)
(dD, dS) ∈ ∂I

˜T fl
(μ̃

*
flD

, μ̃
*
flS

),

in ˜BflD × ˜BflS .

8.3.2 Variational multidomain primal-dual mixed flow traction coupled system
(MHD)-(MH*

S)

(MHtrD-tr
S*

)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given (ûDw , q̂D,̂θ
*
D0

γ *
2D

) ∈ BMHD × YMHD × Z*
MHD

×V*
MHD

, (b, v̂*S0) ∈ VMHS × H*
MHS

,

find (θ*D,T) ∈ X *
MHD

× Y*
MHS

:
(
gradTD − gradTS

)
(uDw , v*S) − (πT

�D
˜λ
*
D,πT

�S
λ*
S)

−
(
πT
Dν�DS

,πT
Sν�DS

)
(χ̃

*
trD , χ̃

*
trS)

∈
(
dθ*D
dt

+ (πT
D∂�D ◦ πD)θ*D − πT

fwûDw

−πTsw ûDw − q̂D(θ*D),

−1/μ T − 1/μ pI + gradS v*S

+ (πT
S ∂�S ◦ πS)T − πT

SN
v̂
*
S

)
,

in V*
MHD

× YMHS;
θ*D(0) = ̂θ

*
D0

,

and find (uDw , v*S) ∈ VMHD × W*
MHS

) :
(

− gradD + gradS
)

(θ*D,T)

∈
(

λ−1(θ*D)K-1uDw + γ *
2D

(θ*D),

ρS
∂v*S
∂t

− b
)

, in V*
MHD

× YMHS ,

v*S(0) = v̂
*
S0 ,

synchronized by the internal boundary �DS-transmission subpotential subdifferential
dual problem
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(T *
MHDS

)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Find (˜λ
*
D,λ*

S) ∈ B*
MHD

× B*
MHS

:
(
π�D ,π�S

)
(θ*D,T) ∈

(
∂I*

QD
, ∂I*

QS

)
(˜λ

*
D,λ*

S),

in BMHD × BMHS ,

and subjected to the dual traction �DS-interface transmission constraints

(T *
tr)

⎧
⎨

⎩
Find (χ̃

*
trD , χ̃

*
trS) ∈ ˜B*

trD × ˜B*
trS,(

πDν�DS
,πSν�DS

)
(θ*D,T) ∈ ∂I

˜T tr
(χ̃

*
trD , χ̃

*
trS), in ˜BtrD × ˜BtrS .

8.3.3 Variational multidomain dual-primal mixed flow velocity coupled system
(MH*

D)-(MHS)

(MHD*S)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given (̂θ
*
D, q̂D,̂θ

*
D0

, γ *
2D

) ∈ BMHD × YMHD × Z*
MHD

×V*
MHD

,

(b, v̂*S0) ∈ VMHS × H*
MHS

,

find (uDw , v*S) ∈ VMHD × W*
MHS

:
(

− gradD, gradS
)
(θ*D,T) −

(
π�D ,π�S

)
(˜λ

*
D,λ*

S)

−
(
πDν�DS

,πSν�DS

)
(˜ζ vνD

, ˜ζ vνS
)

−
(
πDτ�DS

,πSτ�DS

)
(˜ξ vτD

,˜ξ vτS
)

∈
(

λ−1(θ*D)K-1uDw + (πT
D∂�D ◦ πD)uDw

−πT
fw

̂θ
*
D − πT

sw
̂θ
*
D + γ *

2D
(θ*D),

ρS
∂v*S
∂t

+ (πT
S ∂�S ◦ πS)v*S − πT

SN ŝ − b
)

in V*
MHD

× VMHS ,

v*S(0) = v̂
*
S0;

and find (θ*D,T) ∈ X *
MHD

× Y*
MHS :

(
gradTD,−gradTS

)
(uDw , v*S)

∈
(

∂θ*D
∂t

− q̂D(θ*D),−1/μ T − 1/μ pI + grad v*S

)
,

in YMHD × YMHS ,

θ*D(0) = ̂θ
*
D0

.
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synchronized by the internal boundary �DS-transmission subpotential subdifferential
dual proble

(˜T *
MHDS

)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Find (˜λ
*
D,λ*

S) ∈ B*
MHD

× B*
MHS

:
(
π�DuDw ,π�Sv

*
S

)

∈
(
∂I*

QD
, ∂I*

QS

)
(˜λ

*
D,λ*

S),

in BMHD × BMHS .

and subjected to the dual normal-tangential velocity �DS-interface transmission con-
straints

(T ∗
vν,vτ

)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (˜ζ vνD
, ˜ζ vνS

) ∈ ˜B*
vνD

× ˜B*
vνS

:
(
πDν�DS

,πSν�DS

)
(wD, v*S) ∈ ∂I

˜T vν
(˜ζ vνD

, ˜ζ vνS
),

in ˜BvνD
× ˜BvνS

;
and (˜ξ vτD

,˜ξ vτS
) ∈ ˜B*

vτD
× ˜B*

vτS
:

(
πDτ�DS

,πSτ�DS

)
(wD, v*S) ∈ ∂I

˜T vτ
(˜ξ vτD

,˜ξ vτS
),

in ˜BvτD
× ˜BvτS

.

9 Conclusions

On the basis of reflexive Banach functional frameworks, multidomain mixed varia-
tional constrained transport filtration processes of a coastal aquifer have been studied.
Coupled media pairs of incompressible surface Stokesian and subsurface Darcian
evolutionary flows, modeled the mechanical systems, with variational macro-hybrid
spatial nonoverlapping decompositions for parallel computing purposes. Primal and
dual abstract general macro-hybrid mixed variational initial/boundary-value problems
were proposed for a systematicmodeling and analyisis of the divers transport flow cou-
pled phenomena,which, importantly, corresponded to subpotentialmaximalmonotone
subdifferential inclusions. Concerning the qualitative solvability analysis, existence-
uniqueness fixed-point results where established via evolution duality principles.
The internal boundary macro-hybrid and interface surface-subsurface transmission
constraints of the free boundary coastal transport flow system, have been variation-
ally modeled as Lagrangian solutions of dual subpotential inclusions, the innovative
modeling of the study. Lastly, the coupled surface-subsurface transport flow of the
evolutionary local systems was established in terms of dual mass fluxes, primal-
dual coupling tractions and dual-primal coupling velocities, via product variational
Lagrangian dual fields.
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Impotant technologycal extensions of the present study, would be those concerning
hydrological systems with seawater intrusion, interconnected with lake-river-stream-
reservoir multisystems, which could be feasible.
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