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Abstract
Carbonate rocks have complex pore structures as a result of sedimentological and
diagenetic processes. We investigated the pore network of four carbonate rock sam-
ples originating from an oil well in Hungary. Two samples were from the productive
part of the Sarmatian limestone, and the other two were from the dry interval. We
employed X-ray computed tomography (micro-XCT) in combination with lab mea-
surements and microfacies analysis. To achieve accurate X-ray image segmentation
we investigated and compared several segmentation techniques, including entropy and
clustering. We then employed the Naïve Bayes classifier and tenfold cross-validation
to assess the accuracy of our results. Our study achieved high accuracy with the
type-2 fuzzy entropy technique on various metrics, including precision and recall.
The comparison between the measured helium porosity and image-derived porosity
showed a close match. Micro-XCT measurements revealed connected pore structure
in the productive interval, compared to isolated pores in the dry interval. Microfa-
cies analyses indicated that both the rocks of the productive and dry intervals were
deposited in a marine environment, but different diagenetic processes altered the sed-
iment into productive and dry rocks, respectively. The diagenesis of the productive
rocks occurred in a meteoric phreatic environment, where secondary pores were cre-
ated (porosity enhancement). In contrast, the dry rocks underwent meteoric vadose
and marine diagenesis, where all previously created pores were filled with cement
(porosity destruction). Our study highlights the importance of accurately character-
izing the pore network of carbonate rocks, which can aid in understanding reservoir
properties and predicting fluid flow behavior.
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1 Introduction

In the field of geosciences, the application of advanced mathematical methodologies
assumes a crucial role. Mathematics is instrumental throughout this study, spanning
from image processing to pore network extraction and visualization.

Carbonate reservoir rocks have a complicated pore system as a result of sedimen-
tological and diagenetic processes (Scoffin 1987; Arns et al. 2004; Flügel 2004).

Contrary to siliciclastic reservoirs, where the main component is the chemically
resistant quartz, carbonate minerals (calcite and aragonite) are very susceptible to
extensive diagenetic change, dissolution, cementation, recrystallization and replace-
ment at ambient conditions in a variety of diagenetic environments or during a
succession of diagenetic episodes.

Dissolution of carbonate minerals plays a determining role in the development
of the pore system. This intricacy frequently results in a lack of interrelationships
betweenporosity andpermeability,making it difficult to characterizefluidflow through
carbonates (Arns et al. 2004).

In recent years, the use of micro X-ray computer tomography (micro-XCT) imag-
ing to assess the pore space of reservoir rocks has grown in popularity. This technique
depicts 3D pore network at micron scale (Brunke et al. 2010), which can provide
valuable information on the complex pore system of rock samples and their interrela-
tionships between porosity and permeability. Prior to the availability of micro-XCT,
3D pore characterization could only be accomplished using statistical models to recon-
struct 3D porous media from 2D thin section images (Hazlett 1995) or process-based
models (Øren and Bakke 2002). Both statistical and process-based models have mer-
its, but with the recent advancements in X-ray technology, complicated pore-networks
in 3D down to sub-micron scale may now be seen (Brunke et al. 2007). Only 3D pore-
network representation can improve the understanding of the evolution of porosity
and permeability of a rock sample (Youssef et al. 2007a, b).

The efficacyofmicro-CT imaging for characterizingpore network in sandstones and
carbonates was presented by Al-Kharusi and Blunt (2007) and Chauhan et al. (2016).
The authors demonstrated that this technique enables them to visualize the complicated
pore network as well as identify different pore types and their interconnectedness. This
data can be utilized to gain a better understanding of the processes that affect fluid
flow in reservoir rocks. The authors used this technique to investigate the fluid flow
in carbonate rocks and showed that the pore network geometry plays a critical role in
determining the permeability of these rocks.

Laboratory experiments or well logs can be used to assess the porosity of reservoir
rocks. These measurements can provide data on the overall pore space but cannot go
farther in characterizing the pore organization, such as connectivity and coordination
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number. Where, the coordination number of a given pore represents the number of
pore throats that are connected to and radiate out from that central pore node. Another
limitation of these measures is that they cannot provide a three-dimensional extent
of the pore network. Current improvements in micro-XCT enable a solution to this
problem by quantifying pore network geometry from high-resolution 3D images (Al-
Ansi et al. 2013; Andrä et al. 2013). The use of micro-XCT and image analysis has
improved 3Dmaterial characterization, particularly for pore network geometry studies
in micron scale.

To a large extent the success of pore network models depends on the way they rep-
resent the real pore space in terms of its geometrical and topological characteristics
for a given application (Xiong et al. 2016). In CT scans, the pore space is segmented
from the solid phase, yielding important geometrical properties such as pore size dis-
tribution, connectivity and tortuosity.Where, tortuosity is a property that characterizes
the complexity of a pore network or flow path through a porous medium. Therefore,
accurate image segmentation (separating the pore phase from the solid one) is the
first step toward pore network modelling and analysis (Gonzalez and Woods 2008).
The literature reports a variety of techniques for image segmentation, nevertheless,
no universal segmentation algorithm can produce consistent results for every type
of data (Wildenschild and Sheppard 2013). A sensitivity study by Leu et al. (2014)
stated that the segmentation stage will determine the success or failure of the final
results, demonstrating that a small bias in the accuracy of the binarization may cause
a significant error in the calculated permeability (Leu et al. 2014).

In the recent past many articles described several methods of enabling the depiction
of pore network in micron scale using mico-XCTmeasurement for instance. Absolute
permeabilities were predicted by Al-Kharusi et al. (2007) through the utilization of
newly extracted networks from a representation of Fontainebleau sandstone. Another
study by Sok et al. (2010) integrated geological heterogeneity from centimetre (plug)
scale to the 100 nm scale. A research conducted by Wang et al. (2012) encompassed
the collection of 2D thin sections from carbonate images, undertaken at two distinct
scales. These efforts culminated in the creation of detailed 3D digital models, cap-
turing both macro and micro pores. By contrast only a few publications explain the
origin of the various pore types while also depicting the pore network (Bauget et al.
2005;Knackstedt et al. 2006; Youssef et al. 2007a, b).

To fully comprehend the hydrocarbon reservoirs, it is crucial to investigate not
only the 3D pore network, but also the sedimentological and diagenetic processes
that have shaped them. Depicting the pore network in 3D on a micron scale may not
provide a complete understanding of the geological processes involved in hydrocarbon
exploration. Therefore in our studywe employed a combination ofmicro-CT analyses,
lab measurements and facies analyses. Using the methods outlined above, we can
elucidate the reasons behind one section of the reservoir yielding productive results
while the other remains dry.

The primary goal of this research is to advance our understanding of carbonate reser-
voir rocks and their intricate pore systems shaped by sedimentological and diagenetic
processes. Specifically, this study aims to:
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• Compare productive and dry intervals in carbonate reservoirs usingXCT, laboratory
analysis, and microfacies characterization to understand productivity differences
and gain a comprehensive understanding of pore systems at micron and millimeter
scales.

• Refine pore network models: improve accuracy by enhancing image segmentation
for geometric properties extraction.

• Explore pore types: investigate the origins of pore types and the processes influenc-
ing their formation through the application of microfacies analysis

2 Methodology

2.1 Rock sample

The samples investigated originate from an oil well drilled in the Mid-Hungarian
Mega-Unit on the Northern part of the Somogy Dráva basin, SW Hungary. The well
penetrated 24.5 m Sarmatian (Middle Miocene) limestone (Fig. 1).

The limestone can be divided into two distinct sections based on their porosity
and permeability characteristics. The lower (dry) part, which is very dense and tight,
exhibits low porosity and practically zero permeability, with some few exceptions, and
contains resedimented volcanic rock fragments. In contrast, the upper (productive) part
is highly porous and permeable, making it more productive. Several unconformities
can be found between the two parts, indicating either uplift or a drop in sea level (see
Fig. 1). Our samples were collected from both the upper (1966 m and 1967 m) and
lower (1979 m and 1980 m) intervals (see Fig. 2).

The primary goal of our study to understand the differences in the pore networks of
productive and dry carbonates by utilizing high-resolution micro-XCT to characterize
the pore networkgeometry at themicron scale. This approach allowedus to identify and
implement robust image classification and segmentation techniques that significantly
improved the probability of precise image segmentation. Micro-XCT is currently the
only method that enables characterization and visualization of pore network geometry
at such a small scale (Brunke et al. 2010). This technique facilitated the identification of
relationships among different pore network parameters, such as coordination number,
pore throat radius, throat length and porosity. Moreover, it allowed us to calculate
permeability (Wildenschild and Sheppard 2013).

For all samples, cylindrical plugs were taken from the main cores with a diameter
of 2 mm for μ-CT acquisition. The samples were scanned by the YXLON FF35 CT
industrial micro-CT. The scanning parameters were: scan type cone beam stop and
go, 140 kV accelerating voltage, focus object distance 8 mm, focus detector distance
700 mm. The resulting number of images was 1000/sample. For image segmentation
and segmentation evaluation, one tomogram was used. To avoid artifacts occurring
on the edges of the scanned sample—such as beam hardening—a sub-volume in the
middle part of the imagewas extracted for segmentation.The resolutionof the extracted
sub-volume lattice for the four samples was 680 × 660 × 1000.

Our second goal was to compare the petrophysical parameters obtained by micro-
XCT with the lab measures on the plugs. We cut standard core plugs (37 × 70 mm)
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from the same samples and conducted porosity and permeability measurements at the
Research Institute of Applied Earth Sciences in Miskolc University. We compared
the results of the laboratory measurements with those calculated from the micro-
XCT images to verify the accuracy. Finally, we aimed to explain the reasons behind
the differences in productivity between the upper and lower parts of the carbonate
succession. Hydrocarbon exploration and exploitation require an understanding of the
geology of the reservoir to recover more oil and gas with fewer wells and at minimal
cost (Slatt 2009). Therefore, our study aimed not only to depict the pore network of the
productive anddry carbonates but also to contribute significantly to the characterization
of the deposits. We prepared thin sections from the four samples using blue-stained
resin and performed microfacies analyses to understand the sedimentological and
diagenetic history that made one part of the rock sequence productive and the other
dry.

2.2 Morphological image segmentation

In our previous work, we utilized a combination of unsupervised and supervisedmeth-
ods to segment tomographic rock sample images (Atrash and Velledits in press). We
briefly discuss these methods, review our results, and then proceed to pore network
extraction and analysis.

Unsupervised segmentation involved using K-means clustering, a popular and sim-
ple partitional algorithm (Dhanachandra et al. 2015). This technique organizes data by
discovering natural groupings, with objects in the same group having high similarity
and those in different groups having low similarity. The process involves two phases:
initializing K centroids and assigning data points to the closest centroid. Centroids
are iteratively updated to the mean of their data points until convergence, ensuring
minimum distance between points and their centroids in each cluster. Several methods
can be used to define the distance of the nearest centroid. Among them, Euclidean
distance is one of the most frequently used approaches.

Fuzzy c-means clustering (FCM) offers advantages over hard clustering due to its
tolerance to ambiguity and retention of more original image information (Leu et al.
2014). In FCM, amembership function characterizes each point’s similarity to all clus-
ters, with the sum of memberships for each sample totaling unity. High membership
values indicate strong similarity to a cluster, while low values suggest little similarity
(Zadeh 1965). FCM employs iterative optimization of an objective function based on a
membership function (Toz et al. 2019), with local extremums indicating optimal data
clustering (Han and Peters 2008). It has been utilized in image segmentation, particu-
larly for images with simple textures and backgrounds (Choudhry and Kapoor 2016).
However, FCM falls short when dealing with complex textures, backgrounds, or noisy
images, as it only considers gray-level information and not spatial information (Leu
et al. 2014).

To address this limitation, an improved FCM algorithm called "fast and robust
fuzzy c-means" (FRFCM) was proposed by Leu et al. (2014). FRFCM incorporates
morphological reconstruction to enhance noise tolerance and preserve image details.
Furthermore, it replaces the membership partition with membership filtering, which
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depends solely on the spatial neighbors of themembership partition, thereby improving
segmentation effectiveness (Leu et al. 2014).

Various entropy-based thresholdingmethods are discussed in the literature, broadly
categorized into three groups: entropic thresholding, cross-entropic thresholding, and
fuzzy entropic thresholding (Mahmoudi and El Zaart 2012). Cross-entropic threshold-
ing involves minimizing an information-theoretic distance to determine the threshold
(Sezgin and Sankur 2004). Entropy can also serve as a measure of separation, distin-
guishing information into regions above and belowan intensity threshold (Al-Attas and
El-Zaart 2006). Entropic thresholding treats the image foreground and background as
distinct signal sources, optimizing the threshold when the sum of two-class entropies
is maximized (Sezgin and Sankur 2004). The minimum cross-entropy (MINCE) cri-
terion aims to minimize information content before and after segmentation through
thresholding.

In Type-2 fuzzy entropy (T2FE), a classical set A consists of elements that may or
may not belong to set A. In contrast, fuzzy sets lack clear boundaries or well-defined
characteristics. Two types of fuzzy sets exist, with Type-I fuzzy sets represented in
Eq. (1) for a finite set X � {x1, x2 …, xn}:

A � {x, μA(x) | x X, 0 ≤ μA(x) ≤ 1} (1)

where μA(x) is called the membership function, which measures the closeness of x
to A and it can only take a single value. In a Type-2 fuzzy set, a range of membership
values is used instead of a single value. If A is a Type-2 fuzzy set, then:

A �
{
x , μ

High
A (x), μLow

A (x)|x ∈ X, 0 ≤ μ
High
A (x), μLow

A (x) ≤ 1
}

(2)

In the above definition μ
High
A and μLow

A are the upper and lower membership func-
tions respectively. A fuzzy entropy measure is a concept used to assess the amount
of vagueness within a fuzzy set. Among the supervised learning classifiers, the Naive
Bayes classifier treats the image properties as random variables, and derives a proba-
bilistic model based on Bayesian decision theory (Duda and Hart 1973) that provides
the foundation for Bayesian image segmentation. The motivation for the application
of a stochastic framework is the assumption that the variation and interactions between
image attributes can be described by probability distributions. The histogram, serves
as an estimator for the probability associated with a particular gray value and uses
(n− 1) thresholds to divide the histogram into n classes {c0… cn−1} (Otsu 1979). The
Naive Bayes classifier canminimize the classification error (McCann and Lowe 2012).
For given data, we need to estimate P (x|ck), which is the probability of x occurring
given evidence ck has already occurred providing that any particular value of vector x
conditional on ck is statistically independent of each dimension (McCann and Lowe
2012):

P(x |ck) �
n∏

i�0

P(xi |ck) (3)

where x is a n-dimensional vector. The Naive Bayes classifier can then be calculated
as:
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K � argmaxkp(ck)
n∏

i�0

P(xi|ck) (4)

The suggestion put forth by Dietterich (1998) was to employ 10 k-fold cross-
validation as a robust strategy for addressing biases and handling changes in the sizes
of training and testing datasets. In this method, the dataset is initially divided into 10
equally sized subsets or folds, ensuring stratification. Then, 10 repetitions of training
and validation occur, with each repetition holding out a different fold for validation
while using the rest for learning. Our dataset consists of 100 tomograms, with 50 for
training and 50 for testing, chosen to best represent the investigated features.

We created ground truth images through manual annotation for validation. To clas-
sify image pixels into labeled features (pores and matrix), we applied clustering and
entropy algorithms. These features were divided into two groups, each forming a fea-
ture vector. We trained a Naive Bayes classifier using these features, calculating mean
and standard deviation of posterior probabilities for each cluster in the training set.
These values were used to predict posterior probabilities for testing data.

To evaluate our approach, we employed k-fold cross-validation to prevent overfit-
ting and ensure evaluation on diverse data subsets. Various metrics, including AUC,
classification accuracy (CA), F1 score, and precision, were used for evaluation. AUC
measures overall classification quality, with higher values indicating better perfor-
mance. CA represents the proportion of correctly classified pixels, while the F1-score
is a weighted average of precision and recall. Precision measures the proportion of
true positives among positive classifications, while recall assesses the proportion of
true positives among actual positive pixels. Figure 3 illustrates the workflow of 10
k-fold cross-validation combined with Naive Bayes.

Fig. 3 Schematic of the supervised machine learning approach utilizing Naive Bayes and k-fold cross-
validation. To classify image pixels into labeled features (pores and matrix), we employed clustering and
entropy algorithms. Features were grouped into homogeneous sets and used to train a Naive Bayes classifier.
Performance evaluation was conducted using tenfold cross-validation
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2.3 Pore network extraction from the segmented images

Several methods have been attempted to extract pore networks from arbitrary 3D
images, with the medial axis and maximal ball algorithms being commonly used. The
medial axis transforms the pore space into a reduced medial axis, which serves as a
topological skeleton running along the middle of pore channels, introduced by Blum
(1967). This transformation can be achieved using thinning algorithms (Baldwin et al.
1996) or pore space burning algorithms (Lindquist et al. 1996). Pore space partitioning
along the skeleton helps identify pore throats at local minima along branches and pore
bodies at nodes.Thismethodpreserves the fundamental topological andmorphological
properties of the pore space but requires clean-up processes to remove small details
caused by sensitivity to image noise (Lindquist and Venkatarangan 1999), which may
lead to ambiguous pore identification (Dong and Blunt 2009). In contrast, theMaximal
Ball (MB) algorithm avoids information loss by not entirely removing voxels during
processing (Silin et al. 2003). Instead, it stores information in an aggregate format. The
algorithm calculates the maximal ball radius for each voxel, incrementing the radius
until it hits a solid-phase voxel. Redundant balls are then removed, and master–slave
relationships are established based on overlapping maximal balls, with the one having
the largest radius designated as the master (pore body) and the other as the slave (pore
throat). This method efficiently identifies explicit pores but does not guarantee that
every throat corresponds to a hydraulic restriction, as noted byDong and Blunt (2009).

2.3.1 Hybrid method

The Avizo software (http://www.amiravis.com) played a principal role in extracting
pore networks and analyzing transport properties in two carbonate rock samples. It
employed a hybrid algorithm known as the Distance Ordered Homotopic Thinning
(DOHT) method, as proposed by Pudney (1996, 1998).

The DOHT method combines distance map computation using Chamfer methods
to find the shortest distance from each void point to the background with a thinning
algorithm to skeletonize the pore space while preserving the topology guided by the
distance map. This approach marks each skeleton point with its minimum distance to
the space boundary. The workflow, illustrated by Youssef et al. (2007a, b) in Fig. 4,
involves identifying channel lines (representing central axes of pores) and pore lines
(corresponding to pore edges).Dead ends (tips of channels) are also identified.Channel
lines are segmented based on their minimum diameter, and pore segments are labeled
according to the nearest channel line. Labeled pore segments are reconstructed to
estimate pore volume. Subsequently, a "constrained growing algorithm" is used to
refine the pore network byfilling gaps and holes in the initial segmentation, considering
predefined criteria and constraints like voxel intensity, gradient, distance from seed
point, and connectivity to existing regions.

This pore network extraction method retains the topology of void space and allows
determination of pore connectivity and tortuosity. Figure 5 illustrates the pore network
for samples 1966 and 1967 using these algorithms.
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Fig. 4 Schematic illustration of the workflow of the Distance Ordered Homotopic Thinning algorithm:
a initial skeleton of the pore space, b identifying channel line (light blue), pore lines (yellow) and dead ends
(dark blue), c identifying thresholds in the channel lines (minimum diameter) and labelled pore segments;
d reconstruction of labeled pores for pore volume estimation. Modified after Youssef et al. (2007a, b) (color
figure online)

Fig. 5 3D pore network representation with corresponding assigned radii for samples: a 1966, and b 1967. In
the figure, pore bodies are visualized as white spheres, while pore channels are represented by red channels
(color figure online)
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2.4 Fractal dimension

The fractal dimension is a parameter used to quantify the complexity of the rock’s pore
structure (Zhang and Weller 2014). The fractal dimension can be used in quantifying
irregular and complex pore structure (Pavón and Díaz 2023; Xie et al. 2010). One
popular method for calculating the fractal dimension is the box-counting method
(Russell et al. 1980), which is derived from the following equation:

D � LN(ε)

LN (N (ε))
(5)

Implementing this method, the binary image is covered with cubic boxes of length
ε and by counting the number of cubes that contain the pore space using different ε

values and by fitting the slope of LN (N (ε)) versus LN(ε) the fractal dimension of the
pores is acquired. The 2D fractal dimension is a number higher than 1 and lower than
2. Standard geometric features such as lines and circles take a value of 1, the more
complex and irregular the shape, the higher the number.

3 Results

3.1 Segmentation results and accuracy evaluation

Weevaluated the performance of segmentation and classification techniques formicro-
CT images of reservoir rock samples. A combination of clustering and entropy-based
methods was used to preprocess the images and extract morphological features for
classification. As shown in Table 1, our approach achieved high accuracy across mul-
tiple evaluation metrics including AUC, CA, F1 score, and precision.

The ability of unsupervised (k-means, fuzzy c-means, minimum cross-entropy,
type-2 fuzzy entropy) and supervised (NaiveBayes) classificationmethods to delineate
pore phase pixels was also assessed. The resulting binary images from each technique
are displayed in Fig. 6a–g. Calculated pore volume fractions and counts from the
different segmentation approaches are illustrated in Fig. 7a, b.

3.2 Productive interval samples evaluation and comparison

A 2 × 2 mm subsample was extracted from the middle part of each plug at 680 × 660
× 1000 volume as described in detail in chapter 2.

3.2.1 Sample 1966

The average porosity obtained from micro-XCT images is 24%, which is close to the
He porosity measured in the lab which was 25%.

For further analysis, the connected porosity, channel, and throat radius of the given
samples are investigated (Fig. 8). The 3D pore distribution is shown in Fig. 8a. The
binarized images resulting from the segmentation scheme were imported to Avizo
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Fig. 6 2D binary images using unsupervised and supervised classification: a the original image, b–g the
resulted binary images from each classification method. Pores appear in black and matrix in white in all
binary images

Fig. 7 a Porosity values and b pore count obtained using unsupervised and supervised classifiers. The results
indicate that pore volume increased when utilizing clustering techniques, suggesting over-segmentation of
the pore space. Entropy techniques demonstrated relatively similar results compared to naive and ground
truth methods
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Fig. 8 Sample 1966: a 3D view of the pore network, b pore radius, channel length and throat radius dis-
tribution, c coordination number distribution, d microfacies, blue patches indicate pores The microfacies
illustrates the irregularity of the pores and the variations in pore shapes and diameters (color figure online)

software for pore analysis. The pore radius varies between 13 and 131 microns while
the throat radius is mainly distributed between 0.6 and 30 microns (Fig. 8b). The
coordination number distribution is also plotted (Fig. 8c). Coordination number 7 is
the most frequent but up to 35 have also been observed. P10, P50, and P90 values (the
pore radius at 10%, 50%, and 90% of the cumulative pore results respectively) were
estimated to depict the macro pore contribution to the total pore volume. The P10, P50
and P90 values are shown in Table 2.

The interrelationship between pore throat and pore radius is shown in Fig. 9a.
Fig. 9a also shows the relationship between pore radius and coordination number.
The 3D distribution of pore and throat radius smaller than 65 mμ, which is the most
common pore and throat value, is shown in Fig. 9b.

3.2.2 Sample 1967

The average porosity obtained from XCT images is 27% which is close to the He
porosity (28.04%) measured in the Lab. 3D pore distribution and pore radius, channel
length, throat radius and coordination number are plotted in Fig. 10. The pore radius
varies between 15 and 160 microns while the throat radius is mainly between 0.6 and
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Fig. 9 Sample 1966, a Correlation between pore radius and coordination number, as well as pore radius and
throat radius. Strong correlations are observed when pore sizes are smaller than 0.08 mm, b 3D view of the
pore distribution showing sizes smaller than 0.08 mm, which represents the predominant pore size in the
sample

36 microns. The coordination number distribution is plotted in Fig. 10c where 6 was
the dominant coordination number and coordination number 25 was also observed.
Moreover, P10, P50 and P90 values were estimated and are shown in Table 3. The
interrelationship between pore throat and pore radius is shown in Fig. 11a. Fig. 11a
also shows the relationship between pore radius and coordination number. The 3D
distribution of pore and throat radius smaller than 65 mμ, which is the most common
pore and throat value, is shown in Fig. 11b.

3.3 Dry interval samples evaluation and comparison

3.3.1 Sample 1979

The average porosity obtained from micro-XCT images is 11.9%, whereas the He
porosity measured in the lab is 12.4%. The 3D pore network and pore radius distribu-
tion are presented in Fig. 12. The 3D pore distribution and the lack of connectivity of
the pore space, with a few exceptions of pore connections found at different locations,
is illustrated in Fig. 12a. The pore size distribution and the pore radius at p10, p50 and
p90 are illustrated in Fig. 12c. The pore radius varies between 4 and 15 μm and the
most dominant pore size is 9 μm.

3.3.2 Sample 1980

The average porosity obtained from XCT images is 14%, whereas the He porosity is
11.84%. Figure 13a illustrates the 3D pore distribution and the lack of connectivity of
the pore space. Figure 13c shows the PSD and the pore radius at p10, p50 and p90.
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Fig. 10 Sample 1967: a 3D view of the pore network, b pore radius, channel length and throat radius
distribution, c coordination number distribution, dmicrofacies, blue patches indicate pores The microfacies
illustrates the irregularity of the pores and the variations in pore shapes and diameters (color figure online)

The pore radius varies between 4 μm and 40 μm and the most dominant pore size is
13 μm.

In Fig. 14a the PSD for the four samples in Fig. 14b the p10, p50 and p90 percentiles
for all samples are compared.

Figure 15a compares the 2D pore volume fraction against the calculated 2D fractal
dimension. The 2D fractal dimension has high values ranging between 1.65 and 1.67
indicating irregular pore shapes and rough pore surfaces. 3Dvisualization of individual
pores through each sample is shown in Fig. 15b. For the samples from the lower part,
the fractal values are a bit lower than the samples from the upper part but are still
high ranging between 1.61 to 1.63. The pore structure takes complex irregular shapes
and no correlation was observed between the pore volume and the fractal dimension.
From Fig. 15b it is obvious that the pores have irregular, complicated shapes. This
irregularity continues to appear at all depth intervals regardless of pore sizes.
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Fig. 11 Sample 1967, a Correlation between pore radius and coordination number, as well as pore radius
and throat radius. Strong correlations are observed when pore sizes are smaller than 0.08 mm, b 3D view
of the pore distribution showing sizes smaller than 0.08 mm, which represents the predominant pore size
in the sample

Fig. 12 Sample 1979. a 3D view of isolated pores in one area, highlighting their spatial distribution. Also, a
3D view of the pore space is presented, bMicrofacies representation, showing circumgranular desiccation
cracks filled by mosaic calcite (indicated by arrows) on the left and right sides, and Microcodium in the
middle. The destruction of porosity during diagenesis phases of the pores contributes to low porosity and
the presence of scattered isolated pores, c Pore size distribution, pore volume, connectivity, and pore radius
percentile
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Fig. 13 Sample 1980 a 3D view of isolated pores in one area, highlighting their spatial distribution. Also, a
3D view of the pore space is presented, bMicrofacies representation, showing circumgranular desiccation
cracks filled by mosaic calcite (indicated by arrows) on the left and right sides, and Microcodium in the
middle. The destruction of porosity during diagenesis phases of the pores contributes to low porosity and
the presence of scattered isolated pores, c Pore size distribution, pore volume, connectivity, and pore radius
percentile

3.4 Microfacies analysis

The goal of the microfacies analyses was to identify distinctions in depositional and
diagenetic conditions between the productive and dry rock intervals.

For microfacies analysis, blue-dyed epoxy was employed. After polishing the rock
samples, they were immersed in blue epoxy resin, filling the pores. Under the micro-
scope, pores appeared as blue patches, making them easily distinguishable from the
rock’s components and matrix.

Diagenesis plays a more significant role in carbonate reservoirs than in siliciclastic
ones, mainly due to the presence of chemically unstable aragonite in calcareous sed-
iments. During diagenesis, compaction occurs, and fluids with varying compositions
infiltrate the calcareousmud. The chemical composition andCO2 content of interstitial
water determine whether dissolution or precipitation of calcareous cement dominates.
Undersaturated interstitial water leads to dissolution and increased porosity, while
saturated water results in cementation, reducing or eliminating porosity.

Based on infiltrating water composition, marine, meteoric, and deep burial diage-
netic environments are differentiated. Cement crystals precipitate in a manner specific
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Fig. 15 Comparative analysis of porosity fraction and fractal dimension for four samples, a Plotting the 2D
porosity fraction against the 2D fractal dimension for each sample. This analysis elucidates the relationship
between fractal dimension and porosity fraction, providing insights into the geometric complexity, b 3D
visualization of individual pores in each sample, accompanied by their respective 3D fractal dimension
values. This visualization highlights the connectivity of pores within the samples from the upper interval,
demonstrating a well-connected pore network. In contrast, the samples from the lower interval exhibit
isolated pores. The high 3D fractal dimension values indicates to irregular complex pores shapes for all the
samples

to their diagenetic environment. In the marine environment, pores are filled with sea-
water. Meteoric diagenesis occurs near the water table, with vadose (above the water
table) and phreatic (below the water table) zones. Vadose environments have air and
fresh water in pores, while phreatic zones contain a mix of fresh and seawater (Scholle
and Ulmer-Scholle 2003).
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3.5 Samples 1966 and 1967 (productive interval)

Have a porosity of 28% and 25%, respectively. Most matrix and components (fossils,
grains) are dissolved, leaving a frame of micritic envelopes. Deposition occurred in a
marine environment, followed by organic activity-induced micritization. Diagenesis
continued in a meteoric phreatic environment, leading to dissolution due to CaCO3
undersaturation. Only the micritic envelopes remained, coated with phreatic calcite
cement.

3.6 Samples 1979 and 1980 (dry interval)

Contain foraminifera, algae, and other fossil fragments in a micritic matrix. The rock
consists of glaebules with spar-filled circumgranular shrinkage cracks, along with
abundant Microcodium. Presence of foraminifera and algae suggests deposition in
a marine environment. Diagenesis began under subaerial exposure, evidenced by
Microcodium and dessication cracks. It concluded in a marine environment, filling
all pores with mosaic calcite.

Comparing productive and dry rocks highlights the significant influence of dia-
genetic environment on porosity changes. Both intervals were deposited in marine
environments, but diagenesis for productive rocks occurred in meteoric phreatic con-
ditions, while for dry rocks, it began in a meteoric vadose environment and ended in
a marine environment.

In summary, diagenesis of productive rocks suggests a considerable decrease in
relative sea level, whereas diagenesis of dry rocks initially involved a sea level decrease
causing subaerial exposure, followed by a sea level increase, submerging the area in
seawater.

4 Discussion

The accurate determination of porosity in image-based measurement systems is a crit-
ical step in the characterization of porous media. Various models and methods must be
considered to evaluate uncertainty propagation in each step of the system. For instance,
a study by De Santo et al (2004) emphasized the necessity of examining how uncer-
tainty propagates in image-based measurement systems. In micro-CT image analysis
of porous carbonates, Rezaei et al. (2019) highlighted the crucial evaluation of various
thresholding algorithms to avoid distorted outcomes. Additionally, another study by
Xiong et al. (2016) highighted that the finite resolution of imaging techniques is the
main source of uncertainty in pore space characterization. To overcome these prob-
lems, Keller et al. (2013) suggested combining different techniques, such as Focused
Ion Beam (FIB)/Scanning Electron Microscope (SEM), nitrogen adsorption and FIB.

Moreover, recent studies have demonstrated the potential of machine learning algo-
rithms for automated analysis of complex geological structures. For example, Dos
Anjos et al. (2021) demonstrated the effectiveness of deep learning for lithological
classification of carbonate rock micro-CT images. This study highlights the potential
of machine learning algorithms in gaining a deeper understanding of the petrophysical
properties of rock samples.
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Furthermore, the study by Zhang et al. (2021) provided valuable insights into the
pore-scale characterization and pore network model simulations of multiphase flow in
carbonate rocks. By utilizing advanced imaging techniques and computational simu-
lations, the study shed light on the complex fluid behavior within the pore network,
highlighting the importance of considering heterogeneity and connectivity inmodeling
fluid flow in porous media.

Here the porosity was determined by using different ML techniques. The K-means
and FRFCM clustering tend to over-segment the pore volume by 7–12% compared
to other segmentation algorithms, where pore volume varies between 25 and 30%.
In general, this variability in pore volume can be attributed to the presence of micro-
crystalline cement formed during diagenetic processes at the microstructural scale and
deposited within the void space and on the pore edges, which cannot be resolved by the
micro-XCT. This situation leads to images having variable pixel intensities including
the pore edges. These pixels of varying intensities would not have been segmented
into the same class by different ML algorithms. This microcrystalline cement has been
observed by microscopic examination of the thin sections taken from the same sam-
ples. Figure 8a, b show that the detected pore count of the K-means clustering and
MINCE methods is higher than that of the other methods. In the case of T2FE, the
small pores aremore frequent than the large ones. In the case of the FRFCMalgorithm,
the large pores are more dominant.

Overall, the Type 2 fuzzy entropy classifier performed the best, achieving the high-
est AUC value of 0.984 and the highest CA, F1-score, precision and recall values
among all classifiers. The minimum cross entropy classifier also performed well, with
an AUC value of 0.974 and a CA of 0.946. The k-means and fuzzy c-means classifiers
achieved a slightly lower performance, with CA values of 0.877 and 0.888, respec-
tively. Both classifiers also had a higher number of misclassified pixels than the other
two classifiers, with fuzzy c-means having the highest number of misclassified pixels
at 403,100. The reported gray intensity range of the misclassified pixels was similar
for all classifiers, ranging from 85 to 112. However, the Naive Bayes showed relatively
reasonable pore size distribution, and the resulting binarized image was more realistic
in comparison to the original image and reference images.

5 Conclusion

The petrophysical properties of four carbonate samples were studied by using micro-
XCT imaging, laboratory measurements, and microfacies analysis. This integrated
approach effectively characterized the pore networks at multiple scales and provided
insights into the geologic processes governing reservoir productivity. Four different
machine learning algorithms were applied to segment the micro-XCT image pore
space. Among the tested methods, Naive Bayes showed stable and adequate binariza-
tion results. However, further studies on accuracy and the misclassification rate can
help to better assess the performance of these techniques.

Micro-XCT imaging revealed differences in pore network architecture between
the productive and dry intervals. The productive samples exhibited a well-connected
pore structure with a wide pore size distribution, supported by their higher measured
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porosities and permeabilities. In contrast, the dry interval samples contained isolated
pores with poorer connectivity, as reflected by their lower porosities. Quantification
of pore network parameters such as coordination number, pore throat radius, and
tortuosity further highlighted the stratified pore network in the productive rocks.

Comparing the He porosity measured in the lab with that of image-derived porosity
results in a close match (25/24%, 28.04/27%. 12.41/11.9%, 11.83/14%), validating
the accuracy of the segmentation and pore network extraction techniques.

Microfacies investigation revealed that this can be explained by their different dia-
genetic environments. Although the sedimentation in both cases happened in marine
environments different diagenetic processes altered the upper part of the limestone
into productive rocks and the lower part into dry rocks. In the first case diagene-
sis happened in a meteoric phreatic environment where the influence of fresh water
promotes secondary porosity enhancement. Freshwater also has a significant effect
on permeability. The dissolution of primary aragonitic components significantly aug-
ments permeability.

On the contrary, in the dry interval the meteoric vadose environment was followed
by a marine environment leading to pore-filling cementation and porosity destruction.
We can conclude that during diagenesis of the productive part the relative sea level
decreased considerably. This is in accordance with the results of Palotás (2014), who,
based on sedimentological investigation of Sarmatian carbonates in the Buda Hills,
revealed a drop of 5–7 m in sea level during the late Sarmatian. Due to this the water
become so shallow that fresh water had a considerable influence during diagenesis of
the upper part of the investigated succession.

Overall, this study demonstrates the value of an integrated analytical approach to
decipher the controls on carbonate reservoir productivity. The ability to characterize
pore network architecture atmicron scales usingmicro-XCTcombinedwith geological
context from petrophysical and sedimentological data provides valuable insights for
optimizing carbonate reservoir assessment and development.

Acknowledgements This work describes the result of HA’s PhD thesis which was supervised by FV. The
samples were provided by MOL, the Hungarian Oil Company. 3D lab tests were carried out at the Institute
of Physical Metallurgy Metal Forming and Nanotechnology University of Miskolc. Special thanks to Dr.
János Geiger for his continuous support and advice, to Prof. Dr. Valéria Mertinger for her generous help
and to Ádám Filep and Tamás Bubony for measuring the samples. We owe special thanks to Bill Parker,
for his grammatical corrections to the English text thereby making it more understandable, readable and
enjoyable. Finally, many thanks for István Hatvany and two anonymous reviewers for their constructive
comments.

Author contribution The authors applied the SDC approach for the sequence of authors. HA prepared
the materials and carried out the investigation and analysis of the micro-Ct. FV wrote chapter 3.2 and
contributed to chapter 5. All other work was done and written by HA.

Funding Open access funding provided by University of Miskolc.

Declarations

Conflict of interest This work is the result of HA’s PhD thesis which was supervised by FV The authors
have no competing interests to declare that are relevant to the content of this article.

123



GEM - International Journal on Geomathematics             (2024) 15:1 Page 27 of 29     1 

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

References

Al-Ansi, N., Gharbi, O., Raeini, A.Q., Yang, J., Iglauer, S., Blunt,M.J.: Influence ofmicro-computed tomog-
raphy image resolution on the predictions of petrophysical properties. In: IPTC 2013: International
Petroleum Technology Conference, pp. 1291–1298 (2013). https://doi.org/10.3997/2214-4609-pdb.
350.iptc16600

Al-Attas, R., El-Zaart, A.: Thresholding of medical images using minimum cross entropy. In: 3rd Kuala
Lumpur International Conference on Biomedical Engineering 2006, pp. 296–299 (2007). Springer

Al-Kharusi, A.S., Blunt, M.J.: Network extraction from sandstone and carbonate pore space images. J. Petr.
Sci. Eng. 56, 219–231 (2007). https://doi.org/10.1016/j.petrol.2006.09.003

Al-Kharusi, S., Blunt, M.: Network extraction from sandstone and carbonate pore space images. J. Petrol.
Sci. Eng. 56(4), 219–231 (2007). https://doi.org/10.1016/j.petrol.2006.09.003

Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M.,
Madonna, C., Marsh, M., Mukerji, T., Saenger, E., Sain, R., Saxena, N., Ricker, S., Wiegmann, A.,
Zhan, X.: Digital rock physics benchmarks—part i: imaging and segmentation. Comput. Geosci..
Geosci. 50, 25–32 (2013). https://doi.org/10.1016/j.cageo.2012.09.005

Arns, Y., Robins, V., Sheppard, A.P., Sok, R.M., Pinczewski, W.V., Knackstedt, M.A.: Effect of network
topology on relative permeability. Transp. PorousMedia 55(1), 21–46 (2004). https://doi.org/10.1023/
B:TIPM.0000007252.68488.43

Arns C.H., Bauget, F., Limaye A., Sakellariou, A., Senden. T.J., Sheppard, A. P., Sok, R.M., Pinczewski,
W.V., Bakke, S., Berge L.I., Øren, P.-E., Knackstedt M.A.: Pore-scale characterization of carbonates
using X-ray microtomography. SPE J. 475–484 (2005)

Atrash, H., Velledits, F.: Phase segmentation optimization of micro x-ray computed tomography reservoir
rock images using machine learning techniques. Geosci. Eng. (in press)

Baldwin, C.A., Sederman, A.J., Mantle, M.D., Alexander, P., Gladden, L.F.: Determination and characteri-
zation of the structure of a pore space from 3D volume images. J. Colloid Interface Sci. 181(1), 79–92
(1996). https://doi.org/10.1006/jcis.1996.0358

Blum, H.: A transformation for extracting new descriptions of shape. In: Models for the Perception of
Speech and Visual Form, pp. 362–380 (1967)

Brunke, O., Neuber, D., Lehmann, D.: NanoCT: visualizing of internal 3D-structures with submicrometer
resolution. MRS Online Proc. Lib. (OPL) (2007). https://doi.org/10.1557/PROC-0990-B05-09

Brunke, O., Santillan, J., Suppes, A.: Precise 3D dimensional metrology using high resolution X-ray com-
puted tomography (mu CT). In: Developments in X-Ray Tomography VII, vol. 7804, pp. 203–215
(2010). https://www.ndt.net/?id=9215

Chauhan, S., Rühaak, W., Anbergen, H., Kabdenov, A., Freise, M., Wille, T., Sass, I.: Phase segmentation
of x-ray computer tomography rock images using machine learning techniques: an accuracy and
performance study. Solid Earth 7(4), 1125–1139 (2016). https://doi.org/10.5194/se-7-1125-2016

Choudhry, M.S., Kapoor, R.: Performance analysis of fuzzy c-means clustering methods for MRI image
segmentation. ProcediaComput. Sci. 89, 749–758 (2016). https://doi.org/10.1016/j.procs.2016.06.052

De Santo, M., Liguori, C., Paolillo, A., Pietrosanto, A.: Standard uncertainty evaluation in image-based
measurements. Measurement 36(3–4), 347–358 (2004). https://doi.org/10.1016/j.measurement.2004.
09.011

Dhanachandra, N., Manglem, K., Chanu, Y.J.: Image segmentation using k-means clustering algorithm and
subtractive clustering algorithm. Procedia Comput. Sci. 54, 764–771 (2015). https://doi.org/10.1016/
j.procs.2015.06.090

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3997/2214-4609-pdb.350.iptc16600
https://doi.org/10.1016/j.petrol.2006.09.003
https://doi.org/10.1016/j.petrol.2006.09.003
https://doi.org/10.1016/j.cageo.2012.09.005
https://doi.org/10.1023/B:TIPM.0000007252.68488.43
https://doi.org/10.1006/jcis.1996.0358
https://doi.org/10.1557/PROC-0990-B05-09
https://www.ndt.net/?id=9215
https://doi.org/10.5194/se-7-1125-2016
https://doi.org/10.1016/j.procs.2016.06.052
https://doi.org/10.1016/j.measurement.2004.09.011
https://doi.org/10.1016/j.procs.2015.06.090


    1 Page 28 of 29 GEM - International Journal on Geomathematics             (2024) 15:1 

Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms.
Neural Comput.comput. 10(7), 1895–1923 (1998). https://doi.org/10.1162/089976698300017197

Dong, H., Blunt, M.J.: Pore-network extraction from micro-computerized-tomography images. Phys. Rev.
E 80(3), 036307 (2009). https://doi.org/10.1103/PhysRevE.80.036307

dos Anjos, C., Avila,M., Vasconcelos, A., Pereira Neta, A.,Medeiros, L., Evsukoff, A., Surmas, R., Landau,
L.: Deep learning for lithological classification of carbonate rock micro-CT images. Comput. Geosci..
Geosci. 25, 971–983 (2021). https://doi.org/10.1007/s10596-021-10033-6

Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis, vol. 3. Wiley, New Jersey (1973)
Flügel, E.: Microfacies of carbonate rocks. In: Analysis, Interpretation and Application. Springer, Berlin

(2004)
Gonzalez, R.C.,Woods, R.E.: Digital Image Processing, 3rd edn. Pearson Prentice Hall, Upper Saddle River

(2008)
Goral, J., Walton, I., Andrew, M., Deo, M.: Pore system characterization of organic-rich shales using

nanoscale-resolution 3D imaging. Fuel 258, 116049 (2019). https://doi.org/10.1016/j.fuel.2019.11
6049

Han, L., Peters, J.F.: Rough neural fault classification of power system signals. In: Peters, J.F., Skowron,
A. (eds.) Transactions on Rough Sets VIII, pp. 396–519. Springer, Berlin (2008)

Hazlett, R.: Simulation of capillary-dominated displacements in microtomographic images of reservoir
rocks. Transp. Porous Media 20, 21–35 (1995). https://doi.org/10.1007/BF00616924

Keller, M., Schuetz, P., Erni, R., Rossell, M., Lucas, F., Gasser, P., Holzer, L.: Characterization of multi-
scale microstructural features in Opalinus Clay. Microporous Mesoporous Mater. 170, 83–94 (2013).
https://doi.org/10.1016/j.micromeso.2012.11.029

Knackstedt, M., Arns, C., Ghous, A., Sakellariou, A., Senden, T., Sheppard, A., Sok, R., Averdunk, H., Val
Pinczewski, W., Padhy. G.S., Ioannidis, A.: 3D imaging and flow characterization of the pore space
of carbonate core samples. In: International Symp. of the Soc. of Core Analysts. Trondheim. (2006)

Lei, T., Jia, X., Zhang, Y., He, L., Meng, H., Nandi, A.K.: Significantly fast and robust fuzzy c-means
clustering algorithm based on morphological reconstruction and membership filtering. IEEE Trans.
Fuzzy Syst. 26(5), 3027–3041 (2018). https://doi.org/10.1109/TFUZZ.2018.2796074

Leu, L., Berg, S., Enzmann, F., Armstrong, R.T., Kersten, M.: Fast x-ray micro-tomography of multi-
phase flow in berea sandstone: a sensitivity study on image processing. Transp. Porous Media 105(2),
451–469 (2014). https://doi.org/10.1007/s11242-014-0378-4

Lindquist, W., Venkatarangan, A.: Investigating 3D geometry of porous media from high resolution images.
Phys. Chem. Earth (a) 24(7), 593–599 (1999). https://doi.org/10.1016/S1464-1895(99)00085-X

Lindquist, W.B., Lee, S.-M., Coker, D.A., Jones, K.W., Spanne, P.: Medial axis analysis of void structure
in three-dimensional tomographic images of porous media. J. Geophys. Res. Solid Earth 101(B4),
8297–8310 (1996). https://doi.org/10.1029/95JB03039

Mahmoudi, L., El Zaart, A.: A survey of entropy image thresholding techniques. In: 2012 2nd Inter-
national Conference on Advances in Computational Tools for Engineering Applications (ACTEA),
pp. 204–209. IEEE (2012)

McCann, S., Lowe, D.G.: Local naive bayes nearest neighbor for image classification. In: 2012 IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3650–3656. IEEE (2012). https://doi.
org/10.1109/CVPR.2012.6248111

Mukhtar, T.: Sedimentological control on the productive and dry intervals in four investigated wells (2020)
Olivier, P., Cantegrel, L., Laveissière, J., Guillonneau, N.: Multiphase flow behaviour in vugular carbonates

using X-ray Ct. Petrophysics 46(6), 424–433 (2005)
Øren, P., Bakke, S.: Process based reconstruction of sandstones and prediction of transport properties.

Transp. Porous Media 46, 311–343 (2002). https://doi.org/10.1023/A:1015031122338
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern.cybern.

9(1), 62–66 (1979)
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