
GEM - International Journal on Geomathematics            (2024) 15:3 
https://doi.org/10.1007/s13137-023-00242-9

ORIG INAL PAPER

A dispersion analysis of uniformly high order, interior and
boundaries, mimetic finite difference solutions of wave
propagation problems

Otilio Rojas1,2 · Larry Mendoza3 · Beatriz Otero4 · Jorge Villamizar5,6 ·
Giovanni Calderón6,7 · Jose E. Castillo8 · Guillermo Miranda2

Received: 30 March 2022 / Accepted: 24 October 2023
© The Author(s) 2023

Abstract
A preliminary stability and dispersion study for wave propagation problems is devel-
oped for mimetic finite difference discretizations. The discretization framework
corresponds to the fourth-order staggered-grid Castillo-Grone operators that offer a
sextuple of free parameters. The parameter-dependent mimetic stencils allow prob-
lem discretization at domain boundaries and at the neighbor grid cells. For arbitrary
parameter sets, these boundary and near-boundary mimetic stencils are lateral, and we
here draw first steps on the parametric dependency of the stability and dispersion prop-
erties of such discretizations. As a reference, our analyses also present results based
on Castillo-Grone parameters leading to mimetic operators of minimum bandwidth
that have been previously applied in similar physical problems. The most interior
parameter-dependent mimetic stencils exhibit a specific Toeplitz-like structure, which
reduces to the standard central finite difference formula for staggered differentiation
at grid interior. Thus, our results apply to the whole discretization grid. The study done
for the 1-D problem could be applied to the discretization of a free surface boundary
condition along an orthogonal gridline to this boundary.
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1 Introduction

Differentiation operators introduce dispersion anomalies on wave propagation simu-
lations due to the discrete sampling of propagation wavelengths across the grid. These
errors drive simulation waves to travel at a different speed relative to the continu-
ous propagation velocity. To minimize such errors, the use of high-order operators
allows increasing wave sampling and improving numerical accuracy, without den-
sifying numerical meshes. Moreover, tuning of Finite Difference (FD) stencils may
reduce such errors to gain fidelity. Now, dispersion analyses at mesh interior based on
the Von Neumann method are well established and available in the technical literature
(for instance, see Moczo et al. 2007 for a formal discussion in elasticity), but their
application at the vicinity of domain boundaries for error quantification is missing.
Fourier hypothesis of an infinite or periodic domain is no longer valid, avoiding the
development of such analyses.

Similar to alternative volume-discretization schemes, dispersion errors on FD solu-
tions are cumulative with propagation distances, and modern methods use fourth- and
higher-order FD discretization stencils in space to suppress these anomalies on trav-
eling wavelengths. For low dispersive simulations, fourth-order FD methods employ
discretization meshes that allow sampling the minimum propagation wavelength with
at least 6 nodes (Levander 1988; de la Puente et al. 2014). In these cases, the dis-
cretization of time derivatives uses the second-order Leapfrog scheme based on central
stencils that employs wavefields at two previous time steps. Theoretical support for
this commonly used meshing constraint is probably based on the Von Neumann anal-
ysis developed in Moczo et al. (2000, 2004) at interior mesh nodes. No guidelines for
dispersion analysis are given in these references, to explore the dispersion effects of the
lateral discretization approach employed by their well established 3-D FD numerical
method when modeling Free Surface (FS) boundary conditions.

In thiswork,we drawfirst steps towards a stability and dispersion analysis amenable
for FD lateral discretization of linear boundary conditions, i.e., no ghost grid cells are
considered. In particular, the fourth-order Staggered-Grid (SG) Mimetic Finite Dif-
ference (MFD) Castillo-Grone (CG) operators Gradient denoted asG and Divergence
denoted as D, that offer a sextuple of free parameters (αG , βG , γG ), and (αD , βD ,
γD ), respectively. The dependency of the stability and dispersion properties of our
numerical scheme on these parameters is explored in order to experimentally find
quasi-optimal parameters. A potential application area of outcomes of this work com-
prises seismic wave propagation problems, where the FD method on SG has become
a flexible and efficient tool for realistic modeling (see again, Moczo et al. 2007).

Here, we limit ourselves to FD discretizations of wave propagation models, where
boundary conditions are discretized by lateral FD stencils as given in Castillo and
Yasuda (2003) for second order accuracy, and in Castillo et al. (2001), Castillo and
Grone (2003) for fourth- and sixth-order calculations. In addition, time integration
proceeds under a second-order Leapfrog scheme. In Solano Feo (2017) and Solano-
Feo et al. (2016), acoustic waves are modeled by means of a fully mimetic scheme that
include the three D,G and B operators. In the following works, fourth-order D andG
have been exclusively used, i.e. the boundary operator B has been neglected to avoid
the limited experimental accuracy to second order, as reported in Blanco et al. (2016).

123



GEM - International Journal on Geomathematics             (2024) 15:3 Page 3 of 21     3 

Non linear rupture problems in elastic media are modeled by Rojas et al. (2008, 2009),
using the minimum-bandwidth CG operators, and these authors do not draw conclu-
sions that favor the use of integrations of higher order. In 2-D elastic media, surface
Rayleigh wave modeling also benefit frommimetic lateral discretizations and the con-
tribution in Rojas et al. (2014) standouts from previous vacuum based FD treatments.
A potential cause of vacuum formulation inaccuracies is the material extrapolation
out of the physical domain. Mimetic discretization of boundary conditions based on
lateral stencils avoid these type of formulations where ghost points might require
field extrapolations beyond boundaries that lacks of physical sense Castillo and Grone
(2003).

In addition, results achieved by Rojas et al. (2017) in 1-D propagation scenarios
show the reduction of dispersion anomalies thanks to the use of fourth- and higher-
order Lax Wendroff temporal corrections. In addition, three-dimensional boundary
fitted curvilinear coordinates have allowed the precise MFD implementations of non-
flat topographies and bathymetries on deformed SG to model seismic motion on
geometrically realistic domains (de la Puente et al. 2014; Shragge and Tapley 2017;
Konuk and Shragge 2021; Sethi et al. 2022). As reported, these high-order applica-
tions do not explore the contribution of mimetic parameters available in D and G.
To the best of our knowledge, an alternative family of mimetic parameters has been
explored in Córdova (2017), where an approximate negative adjoint condition leads
to a sextuple that enlarge the Courant-Friedrichs-Lewy (CFL) stability range on 1-D
acoustic experiments. The work in Córdova (2017) is an extension of the previous
method in Córdova et al. (2016) to model acoustic wave propagation.

The matrix stability analysis of second-order MFD methods for the wave equation
and for the diffusion equation, developed in Solano-Feo et al. (2016) andCastillo-Nava
and Guevara-Jordan (2023), respectively are insightful on the accuracy properties
of these methods. This analysis is mainly based on eigenvalue estimations of the
associated matrix to the method discrete formulation which allows CFL bounding, but
are not useful to understand dispersion in wave propagation simulations.

This paper is structured as follows. First, we present our MFD SG discretization
of the 1-D wave model in Sect. 2, and develop a formal Von Neumann stability and
dispersion. Then, we proceed with an intensive parameter exploration to find low
dispersive candidates in Sect. 3, which are confirmed by numerical results. Finally,
brief conclusions and future guidelines are presented in Sect. 4.

2 Stability and dispersion: 1-D Fourier analysis

Von Neumann based stability and dispersion analysis at mesh interior are well estab-
lished and available in a well established literature (for instance,Moczo et al. 2007 and
Strikwerda 2004). On the contrary, similar studies in the vicinity of domain boundaries
for error quantification are missing, mainly because Fourier hypothesis of an infinite
domain or function periodicity are no longer valid. In this work, we propose a stabil-
ity and dispersion analysis amenable for FD lateral discretization of linear boundary
conditions. Several FD methods to model elastic wave propagation are derived from
the velocity v and stress τ formulation of the wave equation, e.g., Levander (1988),
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Fig. 1 Discretization of the 1-D velocity-stress wave formulation along a staggered grid

Gao and Keyes (2020), and Sethi et al. (2021). Here, we consider the following 1-D
velocity-stress formulation

{
ρv̇ = τx
τ̇ = μvx

; (1)

to be solved along an infinite string where an artificial interface is introduced at the
point x = 0, as illustrated in Fig. 1. Above, ρ represents material density and μ

corresponds to a Lame modulus.
We introduce a uniform grid of step h = xi − xi−1 > 0 for all i and define

the distribution of discrete velocities at nodes xi , with i = 0,±1,±2, . . . ,±N , and
its cells (elements) are the intervals [xi−1, xi ]. The discrete stresses are defined at
intermediate centers of the cells given by xi+1/2 = (xi + xi+1)/2, in addition to
boundary stress values at x0 . By using MFD operators, the SG differentiation can be
given by τx ≈ G(τ0 , τ1/2 , . . .)

T and vx ≈ D(v0 , v1 , . . .)
T . The parametric definition of

G and D has been developed in Castillo et al. (2001) and Castillo and Grone (2003),
and recently the textbook Castillo andMiranda (2013) spends its appendix J to present
a comprehensive formulation of these operators. Fourth-order G and D are given by

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g11 g12 g13 g14 g15 g16 0 · · ·
16
105 − 128

35 αG − 31
24 + 9αG

29
24 − 12αG − 3

40 + 54
5 αG

1
168 − 36

7 αG αG 0 · · ·
− 128

35 βG
1
24 + 9βG − 27

24 − 12βG
27
24 + 54

5 βG − 1
24 − 36

7 βG βG 0 · · ·
− 16

105 − 128
35 γG

3
8 + 9γG − 11

24 − 12γG − 27
40 + 54

5 γG
51
56 − 36

7 γG γG 0 · · ·
0 0 0 1

24 − 27
24

27
24 − 1

24 · · ·
.
.
.

.

.

.
.
.
.

.

.

.

(2)

where
g11 = − 124832

42735 + 16512
1295 αG + 18816

2035 βG + 13696
1295 γG , g12 = 10789

3256 − 1161
37 αG − 9261

407 βG − 963
37 γG ,

g13 = − 421
9768 + 1548

37 αG + 12348
407 βG + 1284

37 γG , g14 = − 12189
16280 − 6966

185 αG − 55566
2035 βG − 5778

185 γG ,

g15 = 11789
22792 + 4644

259 αG + 5292
407 βG + 3852

259 γG g16 = − 48
407 − 129

37 αG − 1029
407 βG − 107

37 γG .

Likewise, the three-parameter family of fourth-order accurate divergence D reads
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D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d11 d12 d13 d14 d15 d16 0 · · ·
1
24 − αD − 27

24 + 5αD
27
24 − 10αD − 1

24 + 10αD −5αD αD 0 · · ·
−βD

1
24 + 5βD − 27

24 − 10βD
27
25 + 10βD − 1

24 − 5βD βD 0 · · ·
− 1

24 − γD
5
24 + 5γD − 3

8 − 10γD − 17
24 + 10γD

11
12 − 5γD γD 0 · · ·

0 0 0 1
24 − 27

24
27
24 − 1

24 · · ·
0 0 0 0 1

24 − 27
24

27
24 · · ·

0 0 0 0 0 1
24 − 27

24 · · ·
0 0 0 0 0 0 1

24 · · ·
.
.
.

.

.

.
.
.
.

.

.

.

(3)

where
d11 = − 6851

7788 + 39
59αD + 675

649βD + 551
649 γD, d12 = 8153

15576 − 195
59 αD − 3375

649 βD − 2755
649 γD ,

d13 = 3867
5192 + 390

59 αD + 6750
649 βD + 5510

649 γD, d14 = − 9005
15576 − 390

59 αD − 6750
649 βD − 5510

649 γD

d15 = 3529
15576 + 195

50 αD + 3375
649 βD + 2755

649 γD, d16 = − 24
649 − 39

59αD − 675
649βD − 551

649 γD .

Notice that the left upper block of matricesG and D in Eqs. (2) and (3) may become
a full 4×6matrix for arbitrary values of parameters αG , βG , γG , αD , βD , and γD . In the
special case of (αG , βG , γG , αD , βD , γD ) = (0, 0, −1/24, 0, 0, −1/24), the bandwidth of
such upper blocks reduces and we call the resulting mimetic G and D as the minimum
bandwidth operators. Namely,

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 47888
14245

1790
407 − 14545

9768
8997
16280 − 2335

22792
25

9768 0 · · ·
16
105 − 31

24
29
24 − 3

40 − 1
168 0 0 · · ·

0 1
24 − 27

24
27
24 − 1

24 0 0 · · ·
0 0 1

24 − 27
24

27
24 − 1

24 0 · · ·
...

...
...

...

(4)

and

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 4751
5192

909
1298

6091
15576 − 1165

5192
129
2596 − 25

15576 0 · · ·
1
24 − 27

24
27
24 − 1

24 0 0 0 · · ·
0 1

24 − 27
24

27
24 − 1

24 0 0 · · ·
0 0 1

24 − 27
24

27
24 − 1

24 0 · · ·
...

...
...

...

(5)
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The resulting minimum bandwidth G and D operators given above have been used
to implement boundary conditions for elastic wave propagation in Rojas et al. (2008,
2009, 2014, 2017). In addition, Shragge and Tapley (2017) employs D for similar
purposes on elastic-acoustic problems.

The interface continuity conditions at x = 0 are v(0−, t) = v(0+, t), and
τ(0−, t) = τ(0+, t). By considering time differentiation of the velocity continuity
in addition to the wave equation, the continuity of τx across the interface proceeds.
This condition is discretized by using the operatorG, i.e., the lateral FD stencil defined
by the first G row. Thus, upon lateral discretization of τx

⌉m
0+ and τx

⌉m
0− , we obtain

τm
0

= − 1

2g11

{
g12
(
τm
1/2

+ τm−1/2

)
+ g13

(
τm
3/2

+ τm−3/2

)
+ g14

(
τm
5/2

+ τm−5/2

)

+g15

(
τm
7/2

+ τm−7/2

)
+ g16

(
τm
9/2

+ τm−9/2

) }
(6)

Next, we state our numerical scheme based on a staggeredLeapfrog time integration
and a MFD spatial discretization

⎧⎨
⎩

vm+1/2 − vm−1/2 =
(

�t
ρh

)
Gτm

τm+1 − τm =
(

�tμ
h

)
Dvm+1/2

(7)

In the following, we develop a Von Neumann analysis of this scheme to quantify
the stability and dispersion dependence on the parameters αG , βG , γG , αD , βD , and γD .
The discrete equation for velocity updating at any node x j for j = ±1,±2,±3,±4
is simply given by

vm+1/2
j−1

− vm−1/2
j−1

=
(

�t
ρh

) {
gj1τ

m
0

+ gj2τ
m

1/2
+ gj3τ

m
3/2

+ gj4τ
m

5/2
+ gj5τ

m
7/2

+ gj6τ
m

9/2

}
(8)

This equation can be rewritten by substituting τ0 by using condition (6) and the
consistency FD property gj2 = −gj1 − gj3 · · · − gj6 , in the form

vm+1/2
j−1

− vm−1/2
j−1

=
(

�t
ρh

) {
�τ, j

exp + �τ, j
cos

}
(9)

where
�

τ, j
exp =

{
− g j1τ1/2 + g j3

(
τm
3/2

− τm
1/2

)
+ g j4

(
τm
5/2

− τm
1/2

)
+ g j5

(
τm
7/2

− τm
1/2

)

+g j6

(
τm
9/2

− τm
1/2

)}

�
τ, j
cos =

{
− f j2

(
τm
1/2

+ τm−1/2

)
− f j3

(
τm
3/2

+ τm−3/2

)
− f j4

(
τm
5/2

+ τm−5/2

)

− f j5

(
τm
7/2

+ τm−7/2

)
− f j6

(
τm
9/2

+ τm−9/2

)}

for coefficients f jl defined as f jl = gj,1g1,l /2g1,1 , with l = 2, 3, . . . , 6.
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In a similar way, the Leapfrog updating equation for near-boundary stresses can be
written after using the consistency equation on D stencils as

τm+1
J

− τm
J

=
(

μ�t
h

) {
�v, j

exp

}
(10)

where J = ±1/2, ±3/2, ±5/2, ±7/2, and

�
v, j
exp =

{
d j2

(
v
m+1/2
1 − v

m+1/2
0

)+ d j3

(
v
m+1/2
2 − v

m+1/2
0

)+ d j4

(
v
m+1/2
3 − v

m+1/2
0

)
+d j5

(
v
m+1/2
4 − v

m+1/2
0

)+ d j6

(
v
m+1/2
5 − v

m+1/2
0

)}

Our numerical scheme results after coupling these two discrete Eqs. (9) and (10)
for tuples ( j, J ) = ±(0, 1/2),±(1, 3/2),±(2, 5/2),±(3, 7/2), i.e., j = J − 1/2.

Next, we proceed with our Von Neumann analysis by assuming the following dis-
crete harmonic solutions

τm
J

= Bei(−ωm�t + k Jh)
, J = ±1/2, ±3/2, ±5/2, . . . (11a)

v
m±1/2
j = Ae

i
(− ω(m ± 1/2)�t + k jh

)
, j = 0,±1,±2, . . . , m = 0, 1, 2, . . . ,

(11b)

where ω is the angular frequency, i.e., ω = 2π f , being f frequency, and k is
wavenumber, also known as the spatial frequency of a wave. Coefficients A and B are
arbitrary wave amplitudes. A basic physical relation, between k and the wavelength λ

is k = 2π/λ. Now, according to the Nyquist theorem the numerical grid must sample
each propagation wavelength with at least two nodes. Therefore, 0 ≤ h ≤ λ/2. If we
use the relation between k and λ, then we get

0 ≤ h ≤ π/k

which is equivalent to 0 ≤ kh ≤ π . Thus, we define the angle θ = kh and then
θ ∈ [0, π ]. The concepts of wavenumber and wavelength, along with Nyquist theorem
applications can be found in textbooks, such as Marks II (2009), Stein and Wysession
(2009). By introducing,

zm = e−imω�t

the harmonic solutions (11a) and (11b) can be written as

τm
J

= BzmeiJθ
(12)

vm±1/2
j

= Azm+1/2ei jθ (13)
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The next step is writing the right-hand side terms of Eqs. (9) and (10) considering
the above expressions for τm

J
and v

m±1/2
j . First, we have

τm
J

− τm
1/2

= Bzm
(
eiJθ − eiθ/2

)

= Bzmeiθ/2
(
ei(J − 1/2)θ − 1

) (14)

for J = 3/2, 5/2, 7/2, 9/2 that allows writing

�τ, j
exp = Bzm�τ, j

exp (15)

for

�
τ, j
exp = eiθ/2

(
−g j1 + g j3

(
eiθ − 1

)
+ g j4

(
e2iθ − 1

)
+ g j5

(
e3iθ − 1

)
+ g j6

(
e4iθ − 1

))

Second, please note that

τm
J

+ τm−J
= Bzm

(
eiJθ + e−iJθ

)
= 2Bzm cos (Jθ)

for J = 1/2, 3/2, 5/2, 7/2, 9/2 that lead us to

�τ, j
cos = 2Bzm�τ, j

cos (16)

for

�
τ, j
cos =

〈
− f j2 cos

(
1
2 θ
)

− f j3 cos
(
3
2 θ
)

− f j4 cos
(
5
2 θ
)

− f j5 cos
(
7
2 θ
)

− f j6 cos
(
9
2 θ
)〉

In addition, we have

vm+1/2
j

− vm+1/2
0

= Azm+1/2
(
ei jθ − 1

)

for j = 1, 2, 3, 4, 5 that allows writing

�v,J
exp = Azm+1/2�v,J

exp (17)

for

�
v,J
exp = d j2

(
eiθ − 1

)
+ d j3

(
e2iθ − 1

)
+ d j4

(
e3iθ − 1

)
+ d j5

(
e4iθ − 1

)
+ d j6

(
e5iθ − 1

)

where j = J − 1/2.
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Now, we reduce the left-hand side of Leapfrog Eqs. (9) and (10) to the case of
solutions (12) and (13). First,

vm+1/2
j−1

− vm−1
j−1

= Azm
(
z1/2 − z−1/2

)
ei( j − 1)θ

and after noting that z1/2 − z−1/2 = (−2i) sin
(

ω�t
2

)
the term above equals to

v
m+1/2
j−1 − v

m−1/2
j−1 = (−2i)Azmei( j − 1)θ

sin
(

ω�t
2

)
(18)

Similarly, in the case of equation (10), we have

τm+1
J − τmJ = BzmeiJθ

(z − 1) (19)

Finally, by using Eqs. (15), (16) and (18), the first Leapfrog equation (9) can be
expressed in the form

A sin
(

ω�t
2

) = 1
2 (Bi)

(
�t
ρh

)
e−i( j − 1)θ {

�τ, j
exp + 2�τ, j

cos

}
, (20)

In a similarmanner, we use Eqs. (17) and (19) towrite the second Leapfrog equation
(10) as

BzmeiJθ
(z − 1) =

(
μ�t
h

)
Azm+1/2�v

exp

that simplifies to

BeiJθ (
z1/2 − z−1/2

)
=
(

μ�t
h

)
A�v

exp

and finally leads to

B sin
(

ω�t
2

) = 1
2 iA

(
μ�t
h

)
eiJθ {

�v,J
exp

}
, (21)

where J = 1/2, 3/2, 5/2, 7/2.
Then, we consider the product of previous Eqs. (20) and (21) that simplifies to

sin2
(

ω�t
2

) = − 1
4 p

2 j,J�
v,J
exp

{
�τ, j

exp + �τ, j
cos

}
. (22)

Above  j,J = e−i( j + J − 1)
and p = c�t/h is the CFL ratio that controls

numerical stability in time-dependent problems Strikwerda (2004). Now, we next
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state the necessary stability condition

1
2 p
∣∣∣ j,J�

v,J
exp

(
�τ, j

exp + �τ, j
cos

)∣∣∣1/2 ≤ 1 (23)

The limiting CFL is given by the maximum pmax value that allows bounding by 1
the right hand side of Eq. (23). In this way, there exist real solutions for ω, and the
model solutions (11a) and (11b) are harmonic in time, and therefore bounded. Next,
we state the numerical wave speed cnum = ω/k after obtaining the numerical angular
frequency ω from equation (22), i.e.,

cnum = 2
k�t arcsin

(
p

2

√
−Re

(
 j,J�

v,J
exp

(
�

τ, j
exp + �

τ, j
cos

)))
. (24)

Above only the real part of the right hand side of equation (22) intervenes in the
definition of cnum (see, for instance, Bohlen and Wittkamp 2016). We further develop
this equation by writing the square root argument in terms of quantities

� j,J =
(
Re

(
 j,J

)
Re

(
�v,J

exp

)
− Im

(
 j,J

)
Im

(
�v,J

exp

) )(
Re

(
�τ, j

exp

)
+ �τ, j

cos

)
(25)

and

ϒ j,J = −
(
Re

(
 j,J

)
Im

(
�v,J

exp

)
+ Im

(
 j,J

)
Re

(
�v,J

exp

) )
Im

(
�v, j

exp

)
(26)

The ratio cnum/c measures the numerical dispersion of the MFD method, being
c = √

μ/ρ the material wave speed. Below, we denote this ratio asD (4)
j,J to emphasize

the couple staggered nodes ( j, J ), and corresponding mimetic stencils, involved in
definitions of �

τ, j
exp, �

v,J
exp, and �

τ, j
cos . In addition, the exponent 4 denotes the accuracy

order of such stencils. In Appendix A, we present dispersion curves for the case of
second-order operators G and D, which are denoted as D (2)

j,J .
It is worth noting, that the expression in Eq. (22) can be rewritten by using the

trigonometric identity

sin2(θ) = 1
2 (1 − cos(2θ)) (27)

in the following way

−  j,J�
v,J
exp

{
�τ, j

exp + �τ, j
cos

}
= 2

p2
(1 − cos(ω�t)). (28)

Given that 1 − cos(ω�t) ≥ 0 for ω ∈ R, we have that

− Re
(
 j,J�

v,J
exp

(
�τ, j

exp + �τ, j
cos

))
≥ 0, (29)
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and the Eq. (24) is well defined yielding real solutions for cnum .
Finally, the dispersion curves are stated after dividing Eq. (24) by c and considering

k = 2π/λ in the form

D (4)
j,J

(
h; p) = 1

pπh
arcsin

( p

2

√
� j,J + ϒ j,J

)
, (30)

for 0 ≤ h ≤ 1
2 and p ≤ pmax. On wave propagation problems, numerical dispersion

D depends on the grid resolution h, defined as h = h/λ. This scaled spatial step
represents the number of grid points sampling each simulation wavelength λ, where
h → 0 corresponds to high grid resolution, and h = 1

2 is the limitingNyquist sampling.
This term is typically referred to as points perwavelength. Equation (30) also expresses
the explicit dispersion dependence on theCFL number p. For validation, we repeat this
analysis using the standard central FD second- and fourth-order stencils to reconstruct
the dispersion and stability properties of traditional schemes, as discussed in Moczo
et al. (2004) and Levander (1988). Our results replicate these references as described
in Appendix A. In the next section, we undertake a computational search of mimetic
parameters that minimize D and report corresponding pmax values.

3 Stability and dispersion: results

Given its various applications, we first report on the minimum bandwidth parameter
set (αG , βG , γG , αD , βD , γD ) = (0, 0, −1/24, 0, 0, −1/24). Figure2 depicts dispersion
curves on the boundary stencil tuple (v0 , τ1/2), while Figs. 3, 4 and 5 show dispersion
curves on the three near-boundary stencil tuples (v1, τ3/2), (v2 , τ5/2) and (v3, τ7/2 ),
respectively. MFD discretization leading to the stencil tuples (v2 , τ5/2) and (v3 , τ7/2 )
only involves the central staggered stencil given in rows 3 and 4 of matrices G and D
in Eqs. (4) and (5). Thus, Figs. 3 and 4 replicate published results by Levander (1988)
(see, Appendix A). The four values of the CFL number p allow illustrating its effect
on the dispersion curves shown in different colors, being errors higher as p grows and
grid resolution reduces.

In every figure, the largest p value corresponds to the stability limit pmax of each
scheme stencil tuple, which is given in Table 1. We obtain these pmax values by
considering the angle partition θ = 0 : π/200 : π and finding the maximum value
M(θ) of the squared root term in (23). Thus, we have that pmax = 2/M . Notice that
the two lateral stencil tuples (v0 , τ1/2 ) and (v1 , τ3/2 ) lead to distinct dispersion curves,
especially the curves in Fig. 2, that shows a supersonic behavior where simulation
waves travel faster than the material wave speed, i.e, cnum > c for all p values. In
the rest of these figures, we find curves in the subsonic regime, i.e, cnum < c, with
observed transitions from super to subsonic regimes in the cases of p < pmax.

Concerning the stability limits given in Table 1, note that the two lateral stencil
tuples (v0 , τ1/2 ) and (v1 , τ3/2 ) impose lower CFL limits with respect to the interior
stencil couples, in 15% (0.73/0.857 ∼ 0.852) and 5% (0.814/0.857 ∼ 0.95), respectively.
Thus, the first lateral stencil tuple strongly limits the global stability of the MFD
scheme.
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Fig. 2 Dispersion curves of the stencil tuple (v0 , τ1/2 ) for the minimum bandwidth parameter set

Fig. 3 Dispersion curves of the stencil tuple (v1 , τ3/2 ) for the minimum bandwidth parameter set

Fig. 4 Dispersion curves of the stencil tuple (v2 , τ5/2 ) for the minimum bandwidth parameter set
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Fig. 5 Dispersion curves of the stencil tuple (v3 , τ7/2 ) for the minimum bandwidth parameter set

Table 1 Maximum CFL imposed by the discretization at boundary

Operators Order
(
v0 , τ1/2

) (
v1 , τ3/2

) (
v2 , τ5/2

) (
v3 , τ7/2

)
pmax [CFL]

Min bandwidth 4th 0.73 0.81 0.85 0.85 0.73

Low dispersive 4th 0.64 0.83 0.85 0.85 0.64

To study the method stability dependence on the six mimetic parameters, we vary
each parameter in the interval [−1, 1] using a sampling step of 1

100 and numerically
find pmax, as explained above. These evaluations are performed for each stencil couple
(v0 , τ1/2), (v1 , τ3/2), (v2 , τ5/2) and (v3 , τ7/2), given the dependency of Eq. (23) on the
stencil indexes ( j, J ) that define a discretization grid cell. In all these cases, we obtain
lower pmax values for the boundary-cell stencil (v0 , τ1/2). Thus, this border grid cell
also limits the global stability of the MFD scheme for these more general parameter
cases, as observed for the minimum bandwidth set. As an illustration, Figs. 6, 7, and 8,
depict results for the parameter tuples (αG , 0, 0, αD , 0, 0), (0, βG , 0, 0, βD , 0) and (0,
0, γG , 0, 0, γD ), respectively. As one can see, pmax drastically reduces as any of the
mimetic parameters approaches either 1 or−1. The pmax decay as any parameter goes
to±1 is a general behavior regardless of the values of the other parameters. Notice that
a small pmax value translates into a large number of simulation iterations, however, our
minimization of numerical dispersion considers all the available samples in (−1, 1) for
each mimetic parameter. This numerical exploration of the parameter space lasts for
5 days in an Intel Core i7 processor with 16 GB of RAM running MATLAB R2023b.

In order to quantify dispersion, we introduce the following error metric

ε j,J =
∫ 0.25

0

(
D (4)

j,J

(
h; pmax

)− 1
)2
dh (31)

where D (4)
j,J is given by Eq. (30), and stencil indexes ( j, J ) denote its dependence on

the discretization grid cell. We use the available evaluations of  j,J , �
v,J
exp , �

τ, j
exp, and
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Fig. 6 Maximum CFL values for
variation of αG and αD
parameters in the interval
[−1, 1]

Fig. 7 Maximum CFL values for
variation of βG and βD
parameters in the interval
[−1, 1]

�
τ, j
cos from the previous pmax study, and compute ε j,J for each stencil couple (v0 , τ1/2),

(v1 , τ3/2), (v2 , τ5/2) and (v3 , τ7/2). First, we observe higher ε values in the case of the
boundary-cell stencil tuple (v0 , τ1/2), for all parameters samples. Second, we obtain
lower values of ε0,1/2 for the parameter tuples (αG ,0,γG ,αD ,0,γD ), for each parameter
αG , αD , γG and γD taking values in the interval [−0.1, 0.1]. Thus, we further refine the
four-dimensional parameter space associated with (αG ,αD ,γG ,γD ) and find the sample
with the lowest dispersion that corresponds to (−1/40,0,−1/24,119/5494,0,−1/24) (after
expressing parameter values as fractions). This low dispersive parameter sample is
shown as a filled dot in Fig. 9a, b, where ε0,1/2 and pmax are depicted for variations of
αG andαD in the interval

[−1
24 , 1

24

]
. Finally, themaximumstabilityCFLvalues imposed

by this low dispersive parameter sample for each stencil couple are given in Table 1.
The boundary-cell stencil limits the stability of the MFD scheme at pmax = 0.64.

Next, we depict the dispersion curves of the low dispersive parameter set (αG , βG ,
γG , αD , βD , γD )=(−1/40, 0,−1/24, 119/5494, 0,−1/24) corresponding to the boundary
and near-boundary grid cells in Figs. 10 and 11, respectively. In these plots, we present
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Fig. 8 Maximum CFL values for
variation of γG and γD
parameters in the interval
[−1, 1]

Fig. 9 a Dispersion errors for variation of αG and αD parameters in the interval
[−1
24 , 1

24

]
. b Maximum

CFL values for variation of αG and αD parameters in the interval
[−1
24 , 1

24

]
. The low dispersive sample

(αG , βG , γG , αD , βD , γD )=(−1/40, 0, −1/24, 119/5494, 0, −1/24) is shown with a filled dot

the curves for reference CFL values of p = 0.1, 0.25, 0.5 used in Figs. 2 and 3 to
facilitate a direct qualitative comparison. In addition, Figs. 10 and 11 also show curves
associated with the particular maximum CFL pmax = 0.65. In the case of Fig. 10,
dispersion curves adopt a subsonic behavior as the grid resolution reduces, i.e., for
h → 1

2 . Alternatively, the dispersion curves in Fig. 2 consistently follow a supersonic
behavior as h increases.

In the particular case of the dispersion curve associated with pmax in Fig. 10 (the
green curve), it experiences a transition from supersonic to subsonic regimes along h,
and approaches 0.95 as h goes to 0.25. This represents a maximum dispersion error of
5% when the MFD method performs at pmax. The dispersion curve corresponding to
pmax inFig. 2, quantifies an error larger than10%at theminimumgrid resolutionofh =
0.25. On the other hand, Figs. 3 and 11 show a similar dispersion behavior by the near-
boundary stencil (v1 , τ3/2), for bothminimumbandwidth and low dispersive parameter
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Fig. 10 Dispersion curves of the stencil tuple (v0 , τ1/2 ) for the low dispersive parameter set

Fig. 11 Dispersion curves of the stencil tuple (v1 , τ3/2 ) for the low dispersive parameter set

sets. (αG , βG , γG , αD , βD , γD )=(−1/40, 0,−1/24, 119/5494, 0,−1/24) corresponding to
the boundary and near-boundary grid cells in Figs. 10 and 11, respectively. In these
plots, we present the curves for reference CFL values of p = 0.1, 0.25, 0.5 used in
Figs. 2 and 3 to facilitate a direct qualitative comparison as mentioned before.

To compare the performance of the low dispersive and the minimum bandwidth
parameter sets,we simulate the propagation of a 1-DGaussian pulse and allowmultiple
edge reflections for error accumulation. Results are shown in Fig. 12. It is noteworthy,
that the low dispersive candidate operates at maximum CFL condition, while simula-
tion using the minimum bandwidth parameter set employs a less restrictive CFL (by
5%). Dispersion anomalies are lower in the solution of our proposed candidate. That
is, the amplitude of the preceding and trailing wave oscillations around the main real
pulse are lower in the case of the low dispersive parameters. In addition, the spatial
shift between the peak amplitudes of the simulation pulse and their corresponding
peak exact values is slightly higher for the solution using the minimum bandwidth
parameters.
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Fig. 12 1-D propagation of a Gaussian pulse

4 Conclusions

We present a Von Neumman stability and dispersion analysis of a fourth-order
staggered-grid MFD method that allows finding mimetic parameters of low disper-
sion. Stability limits of the four different stencils that conform the method are also
established and the lateral discretization at the boundary point is the most restrictive
one. Although this fact is well known, our analytical finding serves as formal proof.
To validate this analysis, we perform 1-D numerical simulations and show the low dis-
persive performance of the proposed parameters. In addition, our analysis replicates
reference results when applied to conventional central stencils. This study also covers
the zero stress boundary conditions along a grid orthogonal direction, being relevant
to 2-D and 3-D acoustic wave propagation problems.

As a future work, a stability matrix analysis can be added to our current analysis.
In addition, the quasi adjoint parameter given by Córdova et al. (2017) can be also
considered. Rigorous Fourier stability and dispersion analysis of acoustic and elastic
wave equations is cumbersome in 2-D and 3-D (for instance, see Sethi et al. (2021)),
and we also plan on extending our current work to undertake such analysis following
the methodology in Moczo et al. (2000).
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Appendix A: Central nodes and second-order case

Here, we show results for interior nodes as a way to verify the previous formulation.
The SG distribution of discrete wavefields is shown in Fig. 13. The fourth order central
FD stencil is given by c0 = h−1 27

24 , c1 = −h−1 1
24 applied at interior nodes and the

resulting Leapfrog method (7) in the Fourier domain simply becomes

A sin
(

ω�t
2

) = B
(− 1

2i

) (
�t
ρh

)
ei(J − j)θ

�τ , (A-1)

B sin
(

ω�t
2

) = A
(− 1

2i

) (
μ�t
h

)
ei( j − J )θ

�v. (A-2)

By combining the previous Eqs. (A-1) and (A-2) result

sin2
(

ω�t
2

) = − 1
4 p

2{�τ · �v
}

(A-3)

where

�τ · �v =
{
c0

(
1 − e−iθ

)
+ c1e

iθ
(
1 − e−3iθ

)}
. (A-4)

The right hand side simplifies to

�τ · �v = {
c2
0
(1 − cos θ) + 2C0c1(cos θ − cos 2θ) + c2

1
(1 − cos 3θ)

}
. (A-5)

By simply using | cos θ | ≤ 1, the stability relationship establishes that

∣∣ sin (ω�t
2

)∣∣ ≤ p
(|c0 | + |c1 |

) ≤ 1

and leads to the simpler stability constraint

p ≤ 1

|c0 | + |c1 |
= 1

27
24 + 1

24

= 6

7
≈ 0.8571428571 . . .

This result is derived in Fornberg (1988), where the dispersion relation is

D(2)(h; p) = 1

π ph
arcsin

(
1√
2
p
{
c2
0
(1 − cos θ) + 2c0c1 (cos θ − cos 2θ) + c2

1
(1 − cos 3θ)}

)
,
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Fig. 13 Interior nodes along a staggered grid

Fig. 14 Dispersion curves for lateral second order discretization

Fig. 15 Dispersion curves for central second order discretization

with 0 ≤ h ≤ 1
2 . Now, if we interchange notation co by c1 and c1 by −c2 to correct

minor typographical errors in Levander (1988), our results match his original ones.
Finally, we show the lateral second order dispersion curves for different CFL values

in Fig. 14. These curves are obtained by replacing four order G and D operators in
Eqs. (6) and (7) by their second order counterparts explicitly given in Castillo and
Yasuda (2003). Notice a supersonic stage that differs from the subsonic behavior of
the central discretization as shown in the well known Fig. 15 (found in Moczo et al.
(2004), for instance). In this context, numerical super(sub)sonic propagation refers
that simulation wavelengths travel faster(slower) than the material wave speed.
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