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Abstract
We analyse amodel of the phosphorus cycle in the ocean given by Slomp andVanCap-
pellen (Biogeosciences 4:155–171, 2007. https://doi.org/10.5194/bg-4-155-2007).
This model contains four distinct oceanic boxes and includes relevant parts of the
water, carbon and oxygen cycles. We show that the model can essentially be solved
analytically, and its behaviour completely understood without recourse to numerical
methods. In particular, we show that, in the model, the carbon and phosphorus concen-
trations in the different ocean reservoirs are all slaved to the concentration of soluble
reactive phosphorus in the deep ocean, which relaxes to an equilibrium on a time scale
of 180,000 y, and we show that the deep ocean is either oxic or anoxic, depending on
a critical parameter which we can determine explicitly. Finally, we examine how the
value of this critical parameter depends on the physical parameters contained in the
model. The presented methodology is based on tools from applied mathematics and
can be used to reduce the complexity of other large, biogeochemical models.

Keywords Phosphorus cycle · Mathematical model · Ocean anoxia event · Model
reduction

Mathematics Subject Classification 37N10 · 86A05 · 37N25 · 92-10 · 92F05

1 Introduction

There are two obvious reasons for wishing to study the phosphorus cycle in the world’s
oceans. The first is that it is intimately linked to variations in oxygen, carbon and other
elements, both in the atmosphere and in the oceans, and hence also to climate (Van
Cappellen and Ingall 1996; Mackenzie et al. 2002). The phosphorus cycle is closely
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tied to the biological cycle, particularly in the oceans.While on land either phosphorus
or nitrogenmay be the limiting nutrient, in the ocean it is phosphorus that is believed to
be the limiter on geological time scales. This is due to the population of algae (nitrogen
fixers) which are able to source nitrogen from the atmosphere (Tyrrell 1999).

The second reason is that in order to fully understand the effect of anthropogenic
alteration of the nitrogen and phosphorus cycle through the use of agricultural fertilis-
ers, an understanding of the underlying processes and their time scales of operation
is necessary, particularly in view of the impending phosphate crisis (Abelson 1999;
Cordell et al. 2009).

The phosphorus (or phosphate) cycle has been frequently described (Filipelli 2002,
2008; Föllmi 1996), but in order to assess and parameterise its effects in the geological
past, it is necessary to describe the system using a mathematical model. A number of
such models have been put forward (e. g., Van Cappellen and Ingall 1994; Anderson
and Sarmiento 1995; Lenton and Watson 2000; Bergman et al. 2004; Tsandev et al.
2008; Ozaki et al. 2011), with various applications in mind.

One particular application of much recent interest has to do with the occurrence of
‘oceanic anoxia events’ (OAEs), which have occurred in the geological past, partic-
ularly in the Jurassic and Cretaceous periods (Schlanger and Jenkyns 1976; Jenkyns
2010). These events are marked in the marine sedimentary record by the occurrence of
organically rich ‘black shales’, and mark periods (of hundreds of thousands of years)
during which the deep ocean became anoxic, thus promoting anaerobic digestion and
the production of sulphides and other reduced substances.

It has become increasingly clear that OAEs are frequently associated with the
formation of large igneous provinces (LIPs) (Turgeon and Creaser 2008; Sell et al.
2014; Percival et al. 2015), and that these may also be associated with increased
weathering (Percival et al. 2016), as well as extinction episodes, which themselves
might be due to increased upwelling of anoxic water (Jarvis et al. 1988).

OAEs are also associated with severe changes in climate: warming occurs due to
carbon change in the atmosphere, leading to enhanced precipitation and weathering,
hence increased nutrient supply to the oceans, and consequent biomass blooms: this
causes increased oxygen demand in the upper ocean, and this can lead to deep ocean
anoxia (Jenkyns 2010). Eutrophic conditions in the surface ocean may be further
enhanced by redox-dependent release of phosphorus from anoxic sediments (Van
Cappellen and Ingall 1994). In view of anthropogenic climate change, this raises the
question as to whether ocean anoxia is a prospective consequence of present rates
of atmospheric carbon increase (Watson 2016). On the other hand, Niemeyer et al.
(2017) suggest that the positive benthic P-release feedback may be mitigated by the
configuration of the modern ocean, preventing a full-scale OAE.

It is clear that the mechanisms through which OAEs are sustained are controversial
(Beil et al. 2020) with evidence often generated through the simulation of detailed
numerical box models, for example those of Handoh and Lenton (2003), Slomp and
van Capellen (2007) and Wallmann et al. (2019). Thus, there is a need to enhance
understanding of how these models produce a prediction, rather than allowing them
to become black boxes (Maeda et al. 2021). Unfortunately, a common feature of such
models is their inaccessibility; typically a large number of variables in a number
of oceanic ‘boxes’ describe the concentrations of various chemical components, and
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these are governed by differential equations which relate changes of the concentrations
to reaction terms and inter-box fluxes. The complexity of the models is visible even
in the opacity of their presentation, and their solution is inevitably obtained through
numerical simulation. Because of this, it is difficult to interrogate the models and
virtually impossible to unravel key mechanisms which control the dynamics.

The purpose of this paper is to present a methodology, based on tools of applied
mathematics, which can be used to digest such complicated models, and reduce them
to a form where their solutions can be obtained cheaply and simply, and the behaviour
of the model can be specifically interpreted in terms of the prescribed parameters of
the model.

In particular,weprovide an exegesis of themodel of SlompandvanCapellen (2007),
which elaborated the model of Van Cappellen and Ingall (1996) to take account of the
difference between continental shelves and the deep ocean. They were particularly
interested in the effects of ocean mixing on phosphorus burial, and consequently on
deep ocean anoxia. The numerical results from thismodel (henceforth called the Slomp
model) indicate that oxygen concentration and mixing between boxes significantly
affects the phosphorus cycle: in particular, they say: “the simulations show that changes
in oceanic circulation may induce marked shifts in primary productivity and burial of
reactive phosphorus between the coastal and open ocean domains”. Our aim will be
to provide explicit parametric interpretation of their results.

Our methods, while simple in concept, are sophisticated in practice. They are based
on the ideas of non-dimensionalisation, scaling, and then asymptotic simplification.As
is often the case, the simplifications arise because most of the describing equations act
on a faster time scale than the slowest, and thus rate-controlling, equations. This allows
us to achieve our goal. In the rest of the paper, the model is described and presented in
Sect. 2, and it is then non-dimensionalised in Sect. 2.1. The resulting non-dimensional
model is incorrectly scaled; we identify the reason for this, and correct the problem (by
rescaling appropriately). The resulting asymptotic simplifications are described in 3.1,
and lead to the result that all the ocean variables are slaved to the deep ocean soluble
reactive phosphorus, which relaxes to an equilibrium on a time scale of 180,000 y.

In Sect. 3.2, we show that the deep ocean oxygen and reduced substances concen-
trations can be determined analytically, and we show that there is a switch from an
oxic deep ocean to an anoxic deep ocean at a critical value of one of the dimension-
less parameters. In Sect. 4, we endeavour to unravel the interpretation of our results
in terms of the physical processes and parameters of the problem; this is the section
where the mathematics-averse should go. Finally we offer our conclusions in Sect. 5.
We consign much of the algebraic debris to the Appendix.

2 The Slomp and van Capellenmodel

The Slomp model divides the ocean into four distinct boxes: proximal coastal, dis-
tal coastal, surface ocean and deep ocean, having volumes W1–W4. Volume fluxes
between the boxes are denoted by WFi , i = 1, 2, . . . , 7. The boxes and fluxes are
shown in Fig. 1. As shown in Table 1, the fluxes corresponding to river input (WF1),
ocean upwelling (WF5) and coastal upwelling (WF6) are defined empirically, via
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Fig. 1 Modelling the oceanic water cycle as four distinct boxes with W1–W4 representing water volumes
and WFi , i = 1, 2, . . . , 7 representing volume fluxes between the boxes. The volume fluxes are defined in
Table 1

Table 1 Definition of water
fluxes in the Slomp model. The
values of the constants Wk1,
Wk5, Wk6, vo and vc are given
in Table 2 of the Appendix

Label Flux Definition

WF1 River input Wk1
WF2 Proximal to distal = WF1

WF3 Distal to surface = WF2 + WF6

WF4 Ocean downwelling = WF5 + WF6

WF5 Ocean upwelling voWk5
WF6 Coastal upwelling vcWk6
WF7 Evaporation = WF1

constants that we will refer to as Wk1, Wk5 and Wk6 respectively. Changes in circu-
lation are modelled by multiplying the oceanic and coastal upwelling constants by the
non-dimensional parameters vo and vc, respectively. The remaining four fluxes in the
oceanic circulation system then arise by imposing conservation of stationary water
volume within each box. The values assigned to the water-cycle parameters are listed
in Table 2 of the Appendix.

The model describes the quantities of phosphorus, carbon and oxygen in the dif-
ferent oceanic boxes. Phosphorus is assumed to be in one of three forms: reactive
(SRP), organic particulate (POP), or authigenic calcium phosphate (fish hard parts).
The quantities in each box are denoted by Si (SRP), Pi (POP) and Fi (fish P). (Here
we deviate from Slomp and van Capellen (2007), who allocate Pi , i = 1, 2, . . . , 12
to these variables.) The phosphorus budgets are altered either by reactive processes
within an oceanic box, or by travelling from one box to another.

The carbon cycle is a good deal simpler. It is described by modelling particulate
organic carbon (POC) and is associated with living and detrital biomass. POC may
grow within an oceanic box depending on phosphorus levels, and additionally there
are inter-box fluxes. The concentration of POC in box i is denoted by Ci .

The modelling of the oxygen system is assumed to be important only for the deep
ocean, W4. The surface-level boxes, W1, W2 and W3, are assumed to be fully oxic
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as they are in communication with the atmosphere. As such, we only model deep
ocean oxygen budget G4, which changes in response to water-cycle fluxes, and also
aerobic respiration within W4. In an oxygen depleted system, reduced substances
like sulphides can be removed from the system via burial, upwelling or by being
oxidised. The concentration of these reduced substances is denoted by R4, and is
measured in oxygen equivalents. Importantly, the rate of microbial respiration divides
the consumption of deep ocean organic carbon into two components, one of which
uses oxygen as the terminal electron acceptor, while the other represents the use of
reduced substances; the split between the two is taken to depend on the deep ocean
oxygen concentration. The full description of the model is given by Slomp and van
Capellen (2007), although some of the finer detail is only accessible through their
Matlab code.

In all, the Slomp model thus consists of eighteen first order differential equations
for the variables Ci , Pi , Si , Fi , G4 and R4. The quantities Xi , X = C, P, F, S,G, R
are budgets, i. e., measured in moles, but we prefer to write them as concentrations,
thus xi = Xi/Wi , where Wi are the volumes of the boxes. The fluxes of the water,
phosphorus, carbon and oxygen cycles are associated with a set of parameters denoted
Wki , Pki , Cki and Oki respectively. Their description and values are given in Table 2
of the Appendix. The conversion of moles to concentrations produces a transformed
version of this parameter set which is described in Table 3 of the Appendix. We find
that the converted model takes the form

ċ1 = b3s1 − b4c1,

ċ2 = b5c1 + b6s2 − (b81v + b7)c2,

ċ3 = b8s3 + (b82v + b9)c2 − b10c3,

ċ4 = {1 − b85φ(g)}(b83v + b11)c2 + {1 − b85φ(g)}b12s3 − b13c4,

ṡ1 = a53 + a14 p1 + a15 f1 − m71s1,

ṗ1 = m72s1 − a18 p1,

ḟ1 = m73s1 − a20 f1,

ṡ2 = a21s1 + a22 p2 + a23 f2 − (a74v + m74)s2 + vm54s4,

ṗ2 = m75s2 + a26 p1 − (a81v + a27)p2,

ḟ2 = m76s2 − a29 f2,

ṡ3 = a30 p3 + m56vs4 + (a82v + a31)s2 − (m32v + b32)s3,

ṗ3 = m77s3 + (a83v + a34)p2 − (b84v + b35)c2 − a36 p3,

ḟ3 = m78s3 − a38 f3,

ṡ4 = a39 p4 + a40 f4 + vm58s3 − vm58s4 − a59ψ(g),

ṗ4 = (b86v + b41)

[
R−1
CP − b85

(C/P)oxic
χ(g)

]
c2

+ b42

[
R−1
CP − b85

(C/P)oxic
χ(g)

]
s3 − a43 p4,

ḟ4 = a44 f3 − a45 f4,
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ġ = vm0(gs − g) − b1
c4g

Km + g
− kredox�(r , g),

ṙ = b1c4

(
1 − g

Km + g

)
− kprecθ(r) − kredox�(r , g), (2.1)

where we have written g4 = g and r4 = r as they have no counterparts in the other
boxes. The coefficients ai and bi are positive constants related to the phosphorus and
carbon cycle respectively, whereas the coefficients mi are positive constants that do
not fit neatly into either of the former categories. Their values are given in Table 3 of
the Appendix. Furthermore, RCP is the Redfield ratio of carbon to phosphorus with
(C/P)oxic and (C/P)anoxic the ratios of carbon to phosphorus for sedimentary organic
matter buriedunder oxic and anoxic conditions, respectively. Finally, kredox controls the
reduced-substances reoxidation rate, kprec controls the removal of reduced substances
via precipitation, Km is a Monod constant, gs is the fully oxic surface concentration
and v is a dimensionless mixing parameter. The functions in (2.1) are defined by

θ(r) =
[

r

CRP
− 1

]
+

,

�(r , g) = 10−6rg,

ψ(g) =
⎧⎨
⎩

g

g0
for g < g0,

1 for g ≥ g0,

χ(g) =
⎧⎨
⎩
0.75 + 0.25g

g0
for g < g0,

1 for g ≥ g0,

φ(g) =

⎧⎪⎨
⎪⎩

(
0.75 + 0.25g

g0

)[
g

g0
+ (C/P)oxic

(C/P)anoxic

(
1 − g

g0

)]−1

for g < g0,

1 for g ≥ g0,
(2.2)

where g0 is a deep oxygen threshold, [x]+ = max(x, 0), and we have assumed that
r > 0 and g > 0 in the definition of �. These functions correspond to the flux terms
given in equations (3)–(7) of Slomp and van Capellen (2007). However, for χ , ψ and
φ, only the definitions corresponding to g < g0 are reported in the article proper. Note
that the factor of 0.25 in the definitions of χ and φ arises from the assumption that
anoxia may reduce the burial flux of p4 by up to 25%. Finally, we note that before
the rate law (describing reoxidation of reduced substances) given in Slomp and van
Capellen’s equation (4) can be applied, we must first convert r and g from units of
moles m−3 to units of moles l−1. This leads to the factor of 10−6 in (2.2).

2.1 Non-dimensionalisation of themodel

Our procedure for simplifying the model begins by non-dimensionalising the system.
Numerically, using the parameter values estimated by Slomp and van Capellen (2007),
the solution approaches a steady state. Our aim is to scale the system so that the scaled
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concentration variables are O(1) at this steady state. We first note that in Slomp and
van Capellen’s model, the mixing parameter v was taken to be = 1 for a well-mixed
ocean, but was lower for poorly mixed anoxic oceans, with values v ∼ va = 0.1. We
use this anoxic value in our choice of scales below, but because later in Sect. 3.2 we
also consider the case of a well-mixed ocean, it is useful to retain the dimensionless
parameter

ν = v

va
(2.3)

in order to facilitate the possibility of adjusting the mixing parameter in a straightfor-
ward manner.

Next, we ensure that the scaled concentrations are O(1) at the steady state by
identifying the largest terms on the right hand sides of system (2.1) and balancing
them. For example, let s1 = [s1]s̄1, where [s1] denotes the scale, and s̄1 is the new
dimensionless variable. For some equations, the scaling argument is straightforward;
consider for example (2.1)1, which becomes

[c1]
[t] ˙̄c1 = b3[s1]s̄1 − b4[c1]c̄1, (2.4)

where [t] is the chosen time scale. A balance of the two terms on the right hand side
gives

0 = b3[s1] − b4[c1], (2.5)

which relates the scales of [s1] and [c1]. For equations with more than two terms, the
results of a numerical simulation are used to infer the largest two terms. One must be
careful in some situations where a cyclic definition of scales is found. For example,
consider (2.1)5 and (2.1)6, where taking the largest two terms gives

0 = a14[p1] − m71[s1],
0 = m72[s1] − a18[p1], (2.6)

for which the only solution is [p1] = [s1] = 0. To resolve this conundrum,we consider
also the next largest term. In this particular case, it is the constant riverine input, giving

0 = a53 + a14[p1] − m71[s1],
0 = m72[s1] − a18[p1], (2.7)

which has a non-trivial solution. Physically, this occurs because a large amount of
phosphorus is cycled between SRP and POP phases compared to the net input and
output. Two further instances of this cyclicity occur in the choice of scales for s2 and
s3. It is perhaps easier to see how scales are chosen by restricting ourselves to the most
obvious balances. These are

r ∼ CRP , 10−6rg = � ∼ m0vags
kredox

,

s1 ∼ b4c1
b3

∼ a18 p1
m72

∼ a20 f1
m73

,
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s2 ∼ b7c2
b6

∼ a29 f2
m76

∼ a27 p2
m75

,

s3 ∼ b10c3
b8

∼ b13c4
b12

∼ a36 p3
m77

∼ a38 f3
m78

∼ a43RCP p4
b42

,

s4 ∼ a39 p4
m58va

, f4 ∼ a44 f3
a45

, t ∼ 1

m58va
∼ 3,000 y, (2.8)

with the time scale being chosen as the longest time scale of any of the equations,
which leads to the consequence that all of the time derivatives (bar that of the slowest
equation) will be multiplied by parameters less than one (and in fact much less than
one). The values associated with these scales are given in (A.1) of the Appendix. The
resulting scaled system is given by

ε28ċ1 = s1 − c1,

ε29ċ2 = δ4c1 + s2 − ε103νc2 − c2,

ε30ċ3 = s3 + ε112νc2 + ε13c2 − c3,

ε31ċ4 = (ε14 + ε113ν)c2 − (ε15 + ε105ν)c2φ(g) + s3 − ε16s3φ(g) − c4,

ε20ṡ1 = λ1 + λ2 p1 + ε1 f1 − s1,

ε23 ṗ1 = s1 − p1,

ε27 ḟ1 = s1 − f1,

ε21ṡ2 = ε2s1 + λ3 p2 + ε3 f2 + ε4νs4 − ε101νs2 − s2,

ε24 ṗ2 = s2 + δ5 p1 − ε102ν p2 − p2,

ε34 ḟ2 = s2 − f2,

ε22ṡ3 = λ4 p3 + δ1νs4 + δ2s2 + λ20νs2 − ε106νs3 − s3,

ε25 ṗ3 = s3 + ε8 p2 + ε110ν p2 − ε9c2 − ε111νc2 − p3,

ε35 ḟ3 = s3 − f3,

ṡ4 = p4 + ε6 f4 + ε107νs3 − s4ν − λ5ψ(g),

ε26 ṗ4 = (ε33 + ε99ν)c2 − (ε10 + ε104ν)c2χ(g) + s3 − ε11s3χ(g) − p4,

ε36 ḟ4 = f3 − f4,

ε32 ġ = ν(1 − ε19g) − ε39
c4g

λ11 + g
− rg,

ε37ṙ = ε38c4

(
1 − g

λ11 + g

)
− [r − 1]+ − δ3rg, (2.9)

where we have omitted the overbars for convenience. The functions in these equations
are defined by

φ(g) =

⎧⎪⎨
⎪⎩

(
0.75 + 0.25

g

g∗
0

){
g

g∗
0

+ (C/P)oxic

(C/P)anoxic

(
1 − g

g∗
0

)}−1

for g < g∗
0 ,

1 for g ≥ g∗
0 ,
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ψ(g) =
⎧⎨
⎩

g

g∗
0
for g < g∗

0 ,

1 for g ≥ g∗
0 ,

χ(g) =
⎧⎨
⎩
0.75 + 0.25

g

g∗
0
for g < g∗

0 ,

1 for g ≥ g∗
0 ,

(2.10)

where g∗
0 = g0/[g].

The dimensionless coefficients are defined in (A.3)–(A.5) in the Appendix. They
are divided into three sets; parameters denoted λi are of O(1); parameters denoted δi
are small ∼ 0.1, but not very small; and parameters εi are ‘very small’, in practice
< 0.1. There is some fuzziness at the crossover, for example the parameters ε6, ε8,
ε13, ε14, ε33, ε99, ε107, ε110, ε112 and ε113 could all have been taken as δs.

The scales in (2.8) give fifteen of the eighteen scales necessary, and it can be seen
that of the equations, no precise balance has been applied in the equations for s1, s2 and
s3. As explained above, the scale for s1 is chosen by solving (2.7); this is equivalent
to choosing

λ2 = 1 − λ1. (2.11)

In a similar manner, the scales for s2 and s3 are chosen by defining

λ3 = 1 − ε2,

λ4 = 1 − δ2. (2.12)

This then completes the choice of scaling of the model. To determine if the scaling
is appropriate for a poorly-mixed ocean, we now compute the dimensionless steady
state solution with ν = 1; denoting these values with an asterisk, these are found to
be

g∗ = 0.55, c∗
1 = 1.04,

c∗
2 = 26.61, c∗

3 = 783.65,

c∗
4 = 774.87, s∗

1 = 1.04,

p∗
1 = 1.04, f ∗

1 = 1.04,

s∗
2 = 26.6, p∗

2 = 26.61,

f ∗
2 = 26.6, s∗

3 = 779.88,

p∗
3 = 783.7, f ∗

3 = 779.88,

s∗
4 = 906.27, p∗

4 = 782.81,

f ∗
4 = 779.88, r∗ = 1.14. (2.13)

We might expect that the steady state values would be O(1), but clearly this is not the
case. Inspecting the sixteen carbon and phosphorus variables, it seems that there is a
magnifying factor of about 30 from box 1 to the corresponding box 2 variable, and
then 30 from box 2 to the corresponding box 3 variable. There is some subtle effect
here, which needs to be elucidated. There are two key scales: [s2] and [s3]; every
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other scale can be related back to these. We focus on the steady state solutions of the
differential equations for s2 and s3. Substituting in the other variables and neglecting
small terms, we can deduce

(ε101ν + ε2 − ε3)s2 − ε4s3 = (λ3δ5 + ε2)s1 − λ5ε4ψ(g),

−((λ4ε110 + λ20)ν + δ2)s2 + (ε106ν + δ2 − δ1)s3
= λ4δ5ε110s1ν − δ1λ5ψ(g). (2.14)

The coefficients of s2 and s3 on the left hand side of these equations form a 2×2matrix
which has a small determinant (≈ 0.0007) when ν = 1. This explains why the system
is sensitive to inaccuracies. When ν = 1, the values of the diagonals of this matrix are
ε101 + ε2 − ε3 ≈ 0.029 and ε106 + δ2 − δ1 ≈ 0.034. In order to accommodate the fact
that these numbers are very small, it is appropriate to rescale the variables. We do this
by defining rescaling parameters

[s̄2] = 1

ε101 + ε2 − ε3
,

[s̄3] = 1

(ε101 + ε2 − ε3)(ε106 + δ2 − δ1)
. (2.15)

Thus, from the original dimensionless variables, we now define s̄2 = [s̄2]ŝ2, s̄3 =
[s̄3]ŝ3, and from these we can deduce the rescaling of all the other variables other than
r , g and those in box 1, which are unaltered, just as in (2.8). The rescaled system is
now found to be (in terms of the hatted variables, but again we drop the hats)

ε28ċ1 = s1 − c1,

ε29ċ2 = ε40c1 + s2 − ε103νc2 − c2,

ε30ċ3 = s3 + ε123νc2 + ε41c2 − c3,

ε31ċ4 = (ε42 + ε124ν)c2 − (ε43 + ε126ν)c2φ(g) + s3 − ε16s3φ(g) − c4,

ε20ṡ1 = λ1 + λ2 p1 + ε1 f1 − s1,

ε23 ṗ1 = s1 − p1,

ε27 ḟ1 = s1 − f1,

ε21ṡ2 = ε44s1 + λ3 p2 + ε3 f2 + ε45νs4 − ε101νs2 − s2,

ε24 ṗ2 = s2 + ε46 p1 − ε102ν p2 − p2,

ε34 ḟ2 = s2 − f2,

ε22ṡ3 = λ4 p3 + δ1νs4 + ε47s2 + ε127νs2 − ε106νs3 − s3,

ε25 ṗ3 = s3 + ε48 p2 + ε121ν p2 − ε49c2 − ε122νc2 − p3,

ε35 ḟ3 = s3 − f3,

ṡ4 = p4 + ε6 f4 + ε107νs3 − s4ν − ε50ψ(g),

ε26 ṗ4 = (ε51 + ε120ν)c2 − (ε52 + ε125ν)c2χ(g) + s3 − ε11s3χ(g) − p4,

ε36 ḟ4 = f3 − f4,
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ε32 ġ = ν(1 − ε19g) − λ6
c4g

λ11 + g
− rg,

ε37ṙ = δ25c4

(
1 − g

λ11 + g

)
− [r − 1]+ − δ3rg. (2.16)

The new dimensionless coefficients are defined in (A.6). With ν = 1, the steady-state
solution in these rescaled variables is given by

g∗ = 0.551, c∗
1 = 1.04,

c∗
2 = 0.775, c∗

3 = 0.786,

c∗
4 = 0.777, s∗

1 = 1.04,

p∗
1 = 1.04, f ∗

1 = 1.04,

s∗
2 = 0.775, p∗

2 = 0.775,

f ∗
2 = 0.775, s∗

3 = 0.782,

p∗
3 = 0.786, f ∗

3 = 0.782,

s∗
4 = 0.908, p∗

4 = 0.785,

f ∗
4 = 0.782, r∗ = 1.14. (2.17)

As they are now all O(1), it shows that the current scaling is adequate for a poorly-
mixed ocean.

3 Model reduction

In this section,we study the dynamics of the scaled Slompmodel. It is important to note
thatwewill assume that the Slompmodel has beenwell parameterised. Specifically,we
will not allow for the possibility that their estimates of the system parameters differ
from the ‘true’ values by an order of magnitude or more. On this basis, a number
of simplifications to the model can be made, as we will see in Sects. 3.1 and 3.2.
It is also important to note that, in the analysis that follows, we will assume that
the (dimensionless) initial conditions are O(1) or equivalently that all variables are
within an order of magnitude of their equilibrium values, as given by (2.17). Through
numerical investigation, it is apparent that this is the only stable steady-state solution
associated with these parameter values. However, it is, of course, possible that there
are additional steady-state solutions at other parameter values, as similar box models
have been shown to exhibit bistable equilibria (Goldblatt et al. 2006) and sustained
oscillations (Handoh and Lenton 2003; Wallmann et al. 2019). If such dynamics were
to occur in the Slomp model, they could be traced back to one or more of the five
nonlinear equations in (2.16). Thus, our approach does not rule out the detection of
more complex dynamics, though a search is not a focal part of the analysis.
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3.1 Simplification of the carbon-phosphorusmodel

Inspecting (2.16), it is clear that on a rapid time scale (∼ εi ), s1, c1, p1, f1 → 1.
Similarly, in box 2, we rapidly have c2 ≈ s2 ≈ p2 ≈ f2, but the degeneracy between
the s2 and p2 equations leaves their value indeterminate. As is usual in this situation,
the missing information is obtained by eliminating the large terms; we add the s2 and
p2 equations, and this leads to (bearing in mind the box 1 and box 2 equalities)

(ε21 + ε24)ṡ2 = ε44 + ε46 + ε45νs4 − (ε2 − ε3 + ν(ε101 + ε102))s2, (3.1)

suggesting a slower evolution of the box2variables. Similarly, the box3 concentrations
all rapidly equilibrate, but there is degeneracy in the s3 and p3 equations, and adding
these yields

(ε22 + ε25)ṡ3 = δ1νs4 + (ε47 + ε48 − ε49 + (ε121 + ε127 − ε122)ν)s2
− (δ2 + ε106ν)s3. (3.2)

Finally, the box 4 variables f4, c4, p4 → s3 rapidly, and thus the slow s4 equation is

ṡ4 ≈ (λ9 + ε107ν)s3 − νs4, (3.3)

where
λ9 = 1 + ε6 ≈ 1.073. (3.4)

Thus, we can write the s2 and s3 equations in the form

ε55ṡ2 = δ6 + νs4 − (λ13 + λ14ν)s2,

ε56ṡ3 = νs4 + (δ7 + δ8ν)s2 − (λ15 + δ9ν)s3, (3.5)

where

ε55 = ε21 + ε24

ε45
≈ 0.02, ε56 = ε22 + ε25

δ1
≈ 0.68 × 10−2,

δ6 = ε44 + ε46

ε45
≈ 0.197, δ7 = ε47 + ε48 − ε49

δ1
≈ 0.061,

δ8 = ε121 + ε127 − ε122

δ1
≈ 0.062, δ9 = ε106

δ1
≈ 0.097,

λ13 = ε2 − ε3

ε45
≈ 0.818, λ14 = ε101 + ε102

ε45
≈ 0.619,

λ15 = δ2

δ1
≈ 1.185. (3.6)

We have broken our rule about the size of δs and εs, but it is necessary to retain the
apparently small terms in δ7, δ8 and δ9. Evidently the s2 and s3 equations are still
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relatively fast, and clearly both of them relax to an equilibrium approximately given
by

s2 ≈ δ6 + s4ν

λ13 + λ14ν
, s3 ≈ ((δ8 + λ14)ν + δ7 + λ13)νs4 + δ6(δ7 + δ8ν)

(λ15 + δ9ν)(λ13 + λ14ν)
, (3.7)

following which s4 relaxes to its equilibrium

s4 ≈ (ε107ν + λ9)δ6(δ8ν + δ7)

(δ9λ14 − (δ8 + λ14)ε107)ν3 + ε57ν2 + (λ13(λ15 − λ9) − λ9δ7)ν
≈ 0.943

(3.8)
with

ε57 = (λ15 − λ9)λ14 − ε107(δ7 + λ13) − δ8λ9 + δ9λ13 ≈ 4.04 × 10−3. (3.9)

This relaxation occurs on a time scale

t ∼ (δ9ν + λ15)(λ13 + λ14ν)

(δ9λ14 − (δ8 + λ14)ε107)ν3 + ε57ν2 + (λ13(λ15 − λ9) − λ9δ7)ν
≈ 61.6,

(3.10)
corresponding to 180,000 y, much longer than our original time scale. Numerical
verification of these analytical estimates is given in Fig. 2 where the four SRP variables
are used as exemplars.

3.2 Oxygen dynamics

Although the equations for p4, s4 and c4 are coupled to g in (2.16), the coupling is
weak and can be ignored, so that the carbon-phosphorus part of the model operates
independently from oxygen and reduced substances in the deep ocean. The model
equations for r and g are given by the last pair in (2.16), and depend on the carbon
and phosphorus equations only through c4 ≈ s3, which is given by (3.7), and varies
on a slow time scale. Thus

ε32 ġ = ν(1 − ε19g) − λ6
s3g

λ11 + g
− rg,

ε37ṙ = δ25s3

(
1 − g

λ11 + g

)
− [r − 1]+ − δ3rg. (3.11)

Now ε32 ∼ 10−4 whereas ε37 ∼ 10−2 and therefore the g equation relaxes first to an
equilibrium in which

r + ε19ν = ν

g
− λ6s3

λ11 + g
. (3.12)

This defines g as a decreasing function G(r), with G(0) being finite or very large (as
ε19 ∼ 10−4) depending on whether λ6s3 > ν or < ν respectively; Fig. 3 shows two
typical examples, one with s3 = 0.782 (corresponding to the steady state in (2.17))
and one using a much smaller value of s3.
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Fig. 2 Equilibration of soluble reactive phosphorus concentrations in each oceanic box. All variables are
presented in dimensional form and time has been logarithmically transformed in order to clearly illustrate
the various time scales of interest. We have set the mixing parameter ν = 1 to represent a poorly-mixed
ocean. The initial value of each of the eighteen system variables was set to be 1 and (2.16) was solved
numerically

Fig. 3 The approximate slow manifold g = G(r), or g nullcline, (3.12), using parameter values from the
Slomp model and ν set to 1 to represent a poorly-mixed ocean. In the lower curve, s3 = 0.782 whereas in
the upper curve, s3 = 0.1. The variables g and r are dimensionless
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Fig. 4 ε37ṙ as a function of r given by (3.13) using parameter values from the Slomp model and ν set to 1
to represent a poorly-mixed ocean. In the upper curve, s3 = 0.782 whereas in the lower curve, s3 = 0.1.
The quantities ε37ṙ and r are dimensionless

Following the relaxation of g to its quasi-equilibriumG(r), r evolves (still relatively
rapidly) via the ε37ṙ equation, which can be written, using (3.12), in the approximate
form

ε37ṙ = δ25(λ6s3 − ν + ε19νg)

λ6
+

(
δ25

λ6
− δ3

)
rg − [r − 1]+. (3.13)

Figure4 plots ε37ṙ as a function of r for the two values of s3 used in Fig. 3. We see
that for the normal value s3 = 0.782, there is a stable steady state in which r and thus
g are O(1), and because of our choice of scales the deep ocean is anoxic. However,

for s3 <
ν

λ6
≈ 0.33, r collapses to zero, and the oxygen level increases dramatically.

This sharp transition is due to the apparent parametric accident that
δ25

λ6
− δ3 = 0,

according to the values in (A.4) and (A.6). It seems unlikely such a coincidence would
occur, but in fact, working our way through the definitions of the parameters in the
Appendix, we do find that

δ3λ6

δ25
= 1. (3.14)

Ultimately, this is due to the equal coefficients b1 in the rates of aerobic and anaer-
obic respiration in (2.1). The model thus takes the very simple form in the anoxic case
λ6s3 > ν:

ε37ṙ = δ25

(
s3 − ν

λ6
+ ε19νg

λ6

)
− [r − 1]+. (3.15)

Anoxic equilibrium is obtained in a time scale t ∼ ε37 ∼ 10−2, corresponding to
about 30 y.
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Fig. 5 Steady-state values of r and g as a function of the dimensionless oceanic mixing parameter ν.
Solutions of (2.16) were obtained numerically before variables were converted to their dimensional forms

3.2.1 The oxic deep ocean

What if λ6s3 < ν? It is then necessary to rescale the variables as

r ∼ ε19, g ∼ 1

ε19
, (3.16)

and (3.11) now takes the approximate form (since ε19 � 1)

ε32

ε19
ġ = ν − λ6s3 − νg − rg,

ε37ε19ṙ = −δ3rg; (3.17)

thus r → 0 (approximately) very rapidly, and then on a time scale of t ∼ ε32/ε19 ∼ 1,

corresponding to 3000 y, g → 1 − λ6s3
ν

, and in dimensional terms, 0.33

(
1 − λ6s3

ν

)

mM.

3.2.2 Numerical verification

We have provided a description of the dynamical behaviour of the oxygen subsystem
in oxic and anoxic conditions as well as characterising the transition between the
oxic and anoxic states. We will now assess the accuracy of these predictions through
numerical solutions of (2.16). Slomp and van Capellen (2007) showed that the mixing
parameter could be varied to induce switches between oxic and anoxic conditions.
Thus, in Fig. 5, we plot steady-state values of g and r as a function of the mixing
parameter ν. Note that here, and in the remainder of this section, we have reverted to
dimensional variables for ease of interpretation. Examining the numerical solutions,
we note that at a critical value of ν ≈ 4.14, r falls abruptly from 0.03 mM to near zero
while g begins to increase rapidly. Thus, the sudden shift in (equilibrium) redox state
predicted once a critical parameter value has been exceeded (see Sect. 3.2) appears to
be borne out by the numerical solutions.
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Fig. 6 ṙ as a function of r plotted at ν = 4.1457 (upper curve) and ν = 4.1496 (lower curve). Plotted
variables are in dimensional form. The marked points correspond to steady-state values of r and all other
system variables are at their numerically obtained steady-state values

In view of the preceding discussion, one might expect to see a jump in g at the
same critical value of ν ≈ 4.14 in Fig. 5. This is masked by the fact that the jump in
g corresponding to the jump in r is on the anoxic oxygen scale ∼ 3× 10−5 mM, and
thus not visible in Fig. 5. Further, we can see from (3.15) that the jump in r occurs

when λ6s3 ≈ ν, and that from (3.12), the anoxic oxygen is g ≈ λ11ν

λ6s3 − ν
when r ≈ 0.

So when r jumps down, the anoxic-scaled g increases rapidly, and this is indicated by
the rapid rise in g (on the oxic scale) in Fig. 5, which is proportional to ν − λ6s3, as
can be seen from (3.17).

To verify that we have successfully captured the mechanism behind this abrupt
change, we use our numerical output to plot ṙ as a function of r . We carry out this
exercise on both sides of the apparent discontinuity with the results shown in Fig. 6.
A small change in ν brings about a drastic shift in the position of the ṙ curve and
hence a large change in the equilibrium value of r . It is instructive to compare these
curves with the dimensionless equivalents in Fig. 4 which have assumed ν = 1. It
appears that the mixing parameter is sufficiently high in Fig. 6 that the ε19νg term
in (3.13) is no longer negligible. This has the effect of converting the flat piece of ṙ
to a monotonically decreasing function of r . Nonetheless, the relationship between r
and ṙ at low r values is relatively insensitive, facilitating the large shift in steady-state
concentration as the mixing parameter moves through a critical threshold.

Finally, using ν = 1 and ν = 4.5 to represent anoxic and oxic oceans respectively,
we examine the dynamics of the oxygen sub-system. We recall that, in Sect. 3.2, we
predicted that anoxic equilibrium would be obtained in a time scale of approximately
30 y. Meanwhile, in Sect. 3.2.1, we predicted that a well-mixed deep ocean would
recover its oxygen levels in a time scale of approximately 3000 y. In order to assess the
validity of these estimates, we set all other variables to steady-state and plot numerical
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Fig. 7 Equilibration of oxygen (g) and reduced substances (r ) concentrations at two different mixing rates
(ν). In both cases, a steady state for the overall system of differential equations is first found numerically
with the associated concentrations of oxygen and reduced substances then perturbed to 80% of their steady-
state values. In (i), ν = 1 and the ocean is poorly mixed whereas in (ii), ν = 4.5 and the ocean more closely
resembles the present-day configuration. In both cases, we solve (2.16) numerically and then convert all
variables to their dimensional forms

solutions for g and r with ν = 1 (see Fig. 7(i)) and ν = 4.5 (see Fig. 7(ii)). In both
cases, we observe strong agreement between the numerical output and our analytical
predictions.

4 Discussion of transition to anoxia

The analysis in Sect. 3.1 suggests that the chemical components in the different oceanic
boxes rapidly (here meaning � 3000 y) come to an approximate equilibrium, where
the values are determined in terms of the deep ocean reactive phosphorus s4, which
however evolves over a much longer time scale ∼ 180,000 y to an eventual equilib-
rium given by (3.8). The surface ocean reactive phosphorus s3 follows the same slow
evolution, being determined by (3.7). During this slow evolution of s3, the deep ocean
will rapidly (30 y) become anoxic if λ6s3 > ν, whereas if λ6s3 < ν it becomes oxic,
slightly less rapidly (3000 y).

In Sect. 3.2, we analysed the mechanisms responsible for shifts between anoxic
and oxic deep oceans in the model. Starting with a poorly-mixed ocean, we observed
that the processes of reoxidation of reduced substances and aerobic respiration appear
in both the differential equation for oxygen and the differential equation for reduced
substances. Equilibrium of the oxygen equation implies that the losses of oxygen to
these two processes are effectively cancelled out by the net supply of oxygen from
the surface ocean. This, in turn, means that the remaining two terms in the reduced-
substances equation must balance at equilibrium. One of these terms is a constant (or
weakly decreasing) input of reduced substances. The other term corresponds to the
removal of reduced substances via precipitation (assumed to be followed by burial
in sediment). However, this precipitation, modelled by kprecθ(r) in the dimensional
system, is activated only when the concentration of reduced substances exceeds a
prescribed threshold value. This non-smooth feature of the model produces a kink in
the relationship between ṙ and r (see Figs. 4, 6). The presence of this kink means that
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Fig. 8 Anoxia-onset metrics as a function of the mixing parameter ν. The quantity λ6s3 − ν is presented
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in the original Slomp paper, is shown as a reference.

Note that oxygen levels, though extremely small at low values of the mixing parameter, remain nonzero
and therefore, the DOA never equals one

large changes in equilibrium concentrations can be brought about by small changes
in system parameters.

In simple biogeochemical terms, our analysis suggests that when surface ocean
reactive phosphorus s3 is too large, the deep ocean will become anoxic. Assuming
the ocean is generally near steady-state conditions, we have a statement involving the
equilibriumvalue of s3.We compute this equilibriumvalue both numerically and using
our analytical approximation (given by (3.7)) and plot λ6s3 − ν as a function of ν in
Fig. 8. We note that the upper-limit value of ν = 10 corresponds to the modern, well-
mixed ocean. By comparison with the Slomp article’s ‘degree of anoxicity’ measure,
we observe that this quantity successfully captures the deep ocean’s transition from
an oxic to an anoxic state at ν ≈ 4. This model therefore has the capacity to explain
ocean anoxia events, depending on the assumed parameters of the problem. It is thus
important to unravelwhat all these complicated parameter combinationsmean in terms
of the dimensional parameters of the physical system. While λ6 is independent of the
mixing parameter ν, the value of s3 depends on ν as well as other system parameters.
This functional dependence is not known exactly. However, by using the approximate
form of the s3 steady-state value, we can express λ6s3 − ν as an explicit function of
the model’s dimensional parameter set.

Unfortunately, although the analysis is simple, the dependence of the critical param-
eter on the physical inputs is non-trivial in the extreme, to the extent that in the
Appendix we give an algorithm to compute λ6s

approx

3 − ν, and in the electronic supple-
mentary material provide a code which does this (see Online Resource 1). The fully
expanded expression for λ6s

approx

3 −ν depends on 48 dimensional parameters. Here, we
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Fig. 9 Anoxia onset metric as a function of the riverine input parameter a53 where we have set ν = 5.
Positive values of λ6s3 − ν correspond to anoxic conditions and negative values to oxic

focus on the influence of a53, the riverine input of SRP. Slomp and Van Cappellen’s
(2007) numerical exploration revealed that anoxia would occur if the present ocean’s
circulation rate was reduced by 50% (ν = 5 in our notation) while the supply of
reactive phosphorus from the continents was simultaneously boosted by 20%. They
suggested that such an increase could be caused by coastal erosion linked to sea level
rise.

Setting ν = 5 and leaving all other parameters at their previously assigned values,
we plot λ6s

approx

3 −ν as a function of a53. Figure9 demonstrates that λ6s
approx

3 −ν switches
from negative to positive as a53 is increased with the crossover occurring when a53
is 6% higher than its baseline value. Numerical study (not shown) reveals that the
threshold actually lies at a value of a53 that is 12% higher than the baseline value (i.e.,
between our prediction and the value used by Slomp and Van Cappellen). Thus, the
quantity λ6s

approx

3 − ν appears to be able to predict changes in ocean oxygen status,
whether they be linked to circulation or other factors.

It is important to emphasise that we focused on changes in ν and a53 only because
Slomp and Van Cappellen’s (2007) numerical exploration examined these two factors.
The purpose of producing an algebraic expression for λ6s

approx

3 − ν was to under-
stand how the transition to anoxia depends on system parameters, more broadly. This
‘All-At-A-Time’ approach to sensitivity analysis (Pianosi et al. 2016) allows us to
assess the robustness of the model output to the modelling assumptions while avoid-
ing the need to produce a high volume of model runs and then visually compare model
predictions.
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5 Conclusions

In this article, we have systematically analysed the model of the phosphorus cycle
in the ocean given by Slomp and van Capellen (2007). Through careful scaling of
the Slomp model, we identified a large number of negligible steady-state fluxes. We
also isolated distinct time scales associated with system equilibration. By exploiting
these two factors, we were able to effectively decouple the subsystem of oxygen and
reduced substances from the carbon-phosphorus cycle.

While soluble reactive phosphorus acts as an (effectively static) input to the oxygen
subsystem, the contribution of oxygen to the cycling of carbon and phosphorus can be
safely ignored. In particular, thismeans that a range of nonlinear, non-smooth functions
used to model redox dependence in the burial of sorbed P, particulate organic P and
particulate organic carbon can be excised without affecting our qualitative findings.
From a starting point of eighteen nonlinear equations, we separately analysed a set
of sixteen (approximately) linear equations which govern carbon and phosphorus
dynamics and a pair of equations which explain the chemistry of the oxic deep ocean,
the chemistry of the anoxic deep ocean and the nature of the transition between the
two.

Having partitioned the system into two parts, we can elucidate the nature of the tran-
sition between oxic and anoxic oceans. A small change in system parameters produces
abrupt, almost discontinuous, switches in the equilibrium concentrations of oxygen
and reduced substances. We link this sensitivity in the model to the functional form
prescribed for the removal of reduced substances as solid phases and the functional
form for microbial respiration. Allison and Martiny (2008) refer to this kind of micro-
bial model as a “black box” with “microorganisms buried within equation structure as
kinetic constants and response functions”. Our analysis highlights the need to com-
pare the predictions of such studies with those of models that explicitly incorporate
microbial biomass, in order to enhance understanding of how anoxia occurs.

With the nature of transition to anoxia established, we sought to determine the
system parameters responsible for driving such a transition. Unfortunately, due to
the scope of the original model (containing 69 parameters), the critical controlling
parameter defies succinct characterisation. However, by focusing on a small subset
of the system parameters (i.e., mixing rate and riverine input), we demonstrated that
one can accurately predict the outcome of changes in the the rate of a given process.
While our focus here was on providing this kind of proof-of-concept, future work
could entail analytic study of the expression (A.7) in the Appendix. In particular, one
can explicitly determine whether the ocean’s oxygen status is affected by variation (or
covariation) in a few parameters of interest.More generally, we suggest that this article
demonstrates the viability of adopting a systematic, mathematical approach in study-
ing the behaviour of large biogeochemical models. The deduction of parameterised
steady-state concentrations and equilibration time scales, as we have presented here,
is generally beyond the reach of a purely computational approach to biogeochemistry.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s13137-023-00221-0.
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Appendix

Non-dimensionalisation

We non-dimensionalise the model as described before (2.9). In the model as presented
by Slomp and van Capellen (2007) the chemical quantities are measured in Tmol and
the reservoir volumes in Tm3. We have written the model equations (2.1) in terms of
concentrations, which thus have the units mol m−3 = mM (millimolar). The set of
scales is given by (in units of mM)

[r ] = CRP ≈ 3 × 10−2, [s1] = a53
d16

≈ 2.59 × 10−4,

[c1] = b3
b4

[s1] ≈ 1.21 × 10−1, [c2] = b6
b7

[s2] ≈ 4.30 × 10−3,

[s3] = d18[s2] ≈ 5.98 × 10−7, [s2] = d17[s1] ≈ 8.51 × 10−5,

[c3] = b8
b10

[s3] ≈ 4.79 × 10−5, [c4] = b12
b13

[s3] ≈ 2.72 × 10−5,

[p1] = m72

a18
[s1] ≈ 1.14 × 10−3, [ f1] = m73

a20
[s1] ≈ 2.00 × 10−4,

[p2] = m75

a27
[s2] ≈ 4.06 × 10−5, [ f2] = m76

a29
[s2] ≈ 1.80 × 10−6,

[p3] = m77

a36
[s3] ≈ 4.52 × 10−7, [ f3] = m78

a38
[s3] ≈ 8.60 × 10−9,

[s4] = a39
m58va

[p4] ≈ 7.03 × 10−6, [p4] = b42
RCPa43

[s3] ≈ 2.56 × 10−7,

[ f4] = a44
a45

[ f3] ≈ 3.30 × 10−10, [g] = 106m0vags
kredox[r ] ≈ 3.47 × 10−5. (A.1)

where

d16 = m71− a14m72

a18
, d17 = a21a27

m74a27 − a22m75
, d18 = a31a36

b32a36 − a30m77
. (A.2)
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The dimensionless parameters of the resulting model (2.9) are given by the following
three sets. First the O(1) parameters λi :

λ1 = a53
m71[s1] ≈ 0.238, λ2 = a14[p1]

m71[s1] ≈ 0.762, λ3 = a22[p2]
m74[s2] ≈ 0.971,

λ4 = a30[p3]
b32[s3] ≈ 0.853, λ5 = a59

[s4]m58va
≈ 2.31, λ11 = Km

[g] ≈ 2.88,

λ20 = a82va[s2]
b32[s3] ≈ 0.15. (A.3)

Next, the small, but not very small, parameters δi :

δ1 = m56va[s4]
b32[s3] ≈ 0.124, δ2 = a31[s2]

b32[s3] ≈ 0.147, δ3 = kredox[r4][g4]
106kprec

≈ 0.104,

δ4 = b5[c1]
b7[c2] ≈ 0.13δ5 = a26[p1]

a27[p2] ≈ 0.132. (A.4)

Finally, the very small parameters εi :

ε1 = a15[ f1]
[s1]m71

≈ 9.52 × 10−3, ε2 = a21[s1]
m74[s2] ≈ 2.92 × 10−2,

ε3 = a23[ f2]
m74[s2] ≈ 9.89 × 10−3, ε4 = m54va[s4]

m74[s2] ≈ 8.11 × 10−4,

ε6 = a40[ f4]
[s4]m58va

≈ 7.33 × 10−2, ε8 = a34[p2]
[p3]a36 ≈ 8.22 × 10−2,

ε9 = b35[c2]
[p3]a36 ≈ 1.12 × 10−2, ε10 = b85b41[c2]

(C/P)oxic[p4]a43 ≈ 1.01 × 10−4,

ε11 = b85b42[s3]
(C/P)oxic[p4]a43 ≈ 1.44 × 10−3, ε13 = b9[c2]

[c3]b10 ≈ 7.01 × 10−2,

ε14 = b11[c2]
[c4]b13 ≈ 7.01 × 10−2, ε15 = b11[c2]b85

[c4]b13 ≈ 2.26 × 10−4,

ε16 = b12b85[s3]
[c4]b13 ≈ 3.22 × 10−3, ε19 = [g4]

gs
≈ 1.07 × 10−4,

ε20 = m58va

m71
≈ 7.89 × 10−6, ε21 = m58va

m74
≈ 2.99 × 10−4,

ε22 = m58va

b32
≈ 4.46 × 10−4, ε23 = m58va

a18
≈ 3.79 × 10−5,

ε24 = m58va

a27
≈ 1.46 × 10−4, ε25 = m58va

a36
≈ 3.95 × 10−4,

ε26 = m58va

a43
≈ 3.63 × 10−2, ε27 = m58va

a20
≈ 6.41 × 10−4,

ε28 = m58va

b4
≈ 4.02 × 10−5, ε29 = m58va

b7
≈ 1.45 × 10−4,

ε30 = m58va

b10
≈ 3.90 × 10−4, ε31 = m58va

b13
≈ 3.64 × 10−2,
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ε32 = m58[g]va
m0gs

≈ 1.07 × 10−4, ε33 = b41[c2]
[p4]a43RCP

≈ 7.01 × 10−2,

ε34 = m58va

a29
≈ 6.41 × 10−4 ε35 = m58va

a38
≈ 6.41 × 10−4

ε36 = m58va

a45
≈ 6.41 × 10−4 ε37 = m58va[r ]

kprec
≈ 9.61 × 10−3

ε38 = b1[c4]
kprec

≈ 3.12 × 10−4, ε39 = b1[c4]
m0vags

≈ 2.99 × 10−3,

ε99 = b86va[c2]
[p4]a43RCP

≈ 7.2 × 10−2, ε101 = a74va
m74

≈ 9.81 × 10−3,

ε102 = a81va
a27

≈ 4.79 × 10−3, ε103 = b81va
b7

≈ 4.75 × 10−3,

ε104 = b85b86[c2]va
(C/P)oxic[p4]a43 ≈ 1.03 × 10−4, ε105 = b83[c2]b85va

[c4]b13 ≈ 2.31 × 10−4,

ε106 = m32va

b32
≈ 1.2 × 10−2, ε107 = [s3]

[s4] ≈ 8.5 × 10−2,

ε110 = a83va[p2]
[p3]a36 ≈ 8.4 × 10−2, ε111 = b84va[c2]

[p3]a36 ≈ 1.2 × 10−2,

ε112 = b82va[c2]
[c3]b10 ≈ 7.2 × 10−2, ε113 = b83va[c2]

[c4]b13 ≈ 7.2 × 10−2.

(A.5)

When the rescaling introduced before (2.16) is done, the new dimensionless param-
eters are given by

λ6 = ε39[s̄3] ≈ 2.988, δ25 = ε38[s̄3] ≈ 0.311,

ε40 = δ4

[s̄2] ≈ 3.8 × 10−3, ε41 = ε13
[s̄2]
[s̄3] ≈ 2.4 × 10−3,

ε42 = ε14
[s̄2]
[s̄3] ≈ 2.4 × 10−3, ε43 = ε15

[s̄2]
[s̄3] ≈ 7.77 × 10−6,

ε44 = ε2

[s̄2] ≈ 8.51 × 10−4, ε45 = ε4
[s̄3]
[s̄2] ≈ 2.36 × 10−2,

ε46 = δ5

[s̄2] ≈ 3.8 × 10−3, ε47 = δ2
[s̄2]
[s̄3] ≈ 5.1 × 10−3,

ε48 = ε8
[s̄2]
[s̄3] ≈ 2.8 × 10−3, ε49 = ε9

[s̄2]
[s̄3] ≈ 3.87 × 10−4,

ε50 = λ5

[s̄3] ≈ 2.3 × 10−3, ε51 = ε33
[s̄2]
[s̄3] ≈ 2.4 × 10−3,

ε52 = ε10
[s̄2]
[s̄3] ≈ 3.48 × 10−6, ε120 = ε99[s̄2]

[s̄3] ≈ 2.5 × 10−3,

ε121 = ε110[s̄2]
[s̄3] ≈ 2.9 × 10−3, ε122 = ε111[s̄2]

[s̄3] ≈ 3.95 × 10−4,
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ε123 = ε112[s̄2]
[s̄3] ≈ 2.5 × 10−3, ε124 = ε113[s̄2]

[s̄3] ≈ 2.5 × 10−3,

ε125 = ε104[s̄2]
[s̄3] ≈ 3.55 × 10−6, ε126 = ε105[s̄2]

[s̄3] ≈ 7.94 × 10−6,

ε127 = λ20[s̄2]
[s̄3] ≈ 5.2 × 10−3. (A.6)

Dimensional parameters

In this section, we present the definitions and values of all dimensional constants asso-
ciated with the model (2.1). Before we do so, we must first document the parameters
of the original Slomp model. The values assigned to the parameters of the Slomp
model, as well as their units and physical interpretations, are listed in Table 2. These
parameters combine to produce the dimensional constants used in (A.1) and the model
(2.1). The definitions of these dimensional constants are given in Table 3.

Anoxia parameter computation

Although our analysis of the model provided us with an extremely simple result (the
oxygen status of the deep ocean depending on the sign of λ6s3 −ν), the determination
of the critical parameters involved in the transition to anoxia is convoluted in the
extreme. Therefore here we provide a path to compute them, and in the supplementary
material we provide a Matlab code to compute them directly (see Online Resource 1),
given the original input parameters of the Slomp model (those listed in Table 2).

From these, Table 3 provides definitions of all dimensional parameters. From these,
(A.1) provides sequential definitions for all the scales [r ], [s1], etc., where additionally
(2.11) and (2.12) have been used; d16, d17 and d18 are defined in (A.2). From these,
(A.3) defines λ1,…λ5, λ11 and λ20, (A.4) defines δ1,…δ5, (A.5) defines ε1,…ε4, ε6,
ε8,…ε11, ε13,…ε16, ε19,…ε39, ε99, ε101 . . . ε107 and ε110 . . . ε113. We then use (2.15)
to define s̄2 and s̄3, after which (A.6) defines λ6, δ25, ε40,…ε52 and ε120,…ε127.
Finally, we recover λ9 from (3.4), ε57 from (3.9) and (3.6) gives ε55, ε56, δ6, . . . δ9
and λ13, . . . λ15.

The net result of these transformations is that, in dimensional terms, λ6s
approx

3 − ν

can be expressed as
B5 + B1B2

B3B4
, (A.7)

where we have introduced the quantities

B1 = a36a53a38a27m72b1a45b12m58m74a26RCPa29a43
vam0gsm75b13

,

B2 = ν(b84b32b6 − a82b7m77)va − a31b7m77 + b32b35b6
vam0gsm75b13

,

B3 = X3a27 + (m58a30m
2
77a38a43a45(a81m74νva − a22m75)RCP + X4a36)b7a29,

B4 = m71a18 − a14m72,
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Table 2 Definition of the parameters of the Slomp model

Parameter Value Units Description

W1 3.6 × 1013 m3 Proximal coastal reservoir size

W2 3.6 × 1015 m3 Distal coastal reservoir size

W3 4.98 × 1016 m3 Surface ocean reservoir size

W4 1.30 × 1018 m3 Deep ocean reservoir size

Wk1 3.70 × 1013 m3/y River input flux

Wk5 3.78 × 1015 m3/y Ocean upwelling flux

Wk6 3.78 × 1014 m3/y Coastal upwelling flux

vo v Mixing parameter

vc v Mixing parameter

Ck1 3.87 × 101 y−1 Primary production rate in W1

Ck2 6.94 y−1 POC mineralisation rate in W1

Ck3 9.06 × 10−2 POC burial parameter in W1

Ck4 1 POC export parameter (W1 to W2)

Ck5 1.06 y−1 Primary production rate in W2

Ck6 2.20 y−1 POC mineralisation rate in W2

Ck7 2.7/(560.25 + 4.66) POC burial parameter in W2

Ck8 1 POC export parameter (W2 to W3)

Ck9 07.19 × 10−1 y−1 Primary production rate in W3

Ck10 8.21 × 10−1 y−1 POC mineralisation rate in W3

Ck11 (496.6/(3600 + 28.0125)) POC export parameter (W3 to W4)

Ck12 8.81 × 10−3 y−1 POC respiration rate in W4

RCP 1.06 × 102 Redfield ratio of Carbon and Phosphorus

RCO2 106/138 Redfield ratio of Carbon and Oxygen

(C/P)oxic 237 C/P ratio of SOM (oxic conditions)

(C/P)anoxic 1100 C/P ratio of SOM (anoxic conditions)

[RS]0 0.03 Threshold RS concentration for precipitation

Pk1 9 × 1010 mol/y1 SRP river input flux to W1

Pk2 9.25 × 10−1 y−1 FeP burial rate in W1

Pk3 5.66 × 10−2 CaP burial parameter in W1

Pk4 1 SRP export parameter (W1 to W2)

Pk5a 1 × 10−2 Fish production parameter in W1

Pk5b 5 × 10−1 y−1 Fish dissolution rate in W1

Pk5c 0 mol/y1 Fish burial flux in W1

Pk6 7.43 y−1 POP mineralisation rate in W1

Pk7 1 POP burial parameter in W1

Pk8 1 POP export parameter (W1 to W2)
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Table 2 continued

Parameter Value Units Description

Pk9 1.35 × 10−3 y−1 FeP burial rate in W2

Pk10 2.70 × 10−3 CaP burial parameter in W2

Pk11 1 SRP export parameter (W2 to W3)

Pk12a 1 × 10−2 Fish production parameter in W2

Pk12b 5 × 10−1 y−1 Fish dissolution rate in W2

Pk12c 0 mol/y1 Fish burial flux in W2

Pk13 2.18 y−1 POP mineralisation rate in W2

Pk14 0.00675/(0.044 + 5.28538) POP burial parameter in W2

Pk15 1 POP export parameter (W2 to W3)

Pk19 8.11 × 10−1 y−1 POP mineralisation rate in W3

Pk20 1 × 10−2 Fish production parameter in W3

Pk21 0 mol/y Fish dissolution flux in W3

Pk23 5 × 10−1 y−1 Fish sinking rate from W3 to W4

Pk24 8.83 × 10−3 y−1 POP mineralisation rate in W4

Pk25 5 × 10−1 y−1 Fish dissolution rate in W4

Pk26 6.75 × 109 mol/y Maximum/oxic FeP burial flux in W4

Pk27 2.89 × 10−3 CaP burial parameter in W4

Pk28 1.6/496.6 POP burial parameter in W4

Pk29 0 Fish burial parameter in W4

B5 = b7a29X2m2
75 + X1m75

vam0gsm75b13
,

which depend on

X1 = −a36(m77((−m54a82 + a74(m32 − m56))a27 + m74a81(m32 − m56))b7

+ b84m54a27b32b6)b13a38ν
3a45(a14m72 − m71a18)gsm58RCPm0a29a43v

3
a

− b13ν
2R1(a14m72 − m71a18)gsm0v

2
a − νR2va

− a36((m74b32a34m72a26 + a27a31a18a21m77)b7

− a27b32b35a18a21b6)a53a38b1a45b12m58RCPa29a43,

X2 = ν3a83m54m58b32m0b13a36a38a43a45RCPgs(a14m72 − m71a18)v
3
a

+ a36b13ν
2(a14m72 − m71a18)gs(((a22(m32 − m56)m77 + a34b32m54)a45m58a38

+ a44a40m78b32m54a83)a43RCP + a83m54b32a38a39b42a45)m0v
2
a

− ν((−(a14m72 − m71a18)gsm0((m58b32a22m77a45a38

+m78a40a44(m54b32a34 − m56a22m77))a43RCP

+ a38a39b42a45(m54b32a34 − m56a22m77))b13

+ a83m58b32b12a18a21a38b1a43a45a53RCP )a36

+m58m0b13a22a30m
2
77a38a43a45RCPgs(a14m72 − m71a18))va
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Table 3 Definition of constants. In the right hand column, Wi is the volume of box i and Wki , Cki and
Pki are rate constants in the water, carbon and phosphorus cycles respectively

Constant Value Units Definition

a14 7.01 y−1 (1 − Pk3)Pk6

a15 5 × 10−1 y−1 Pk5b

a18 8.46 y−1 (Pk6W1 + Pk8Wk1)/W1

a20 5 × 10−1 y−1 Pk5b

a21 1.03 × 10−2 y−1 (Pk4Wk1)/W2

a22 2.18 y−1 (1 − Pk10)Pk13

a23 5 × 10−1 y−1 Pk12b

a26 1.03 × 10−2 y−1 Pk8Wk1(1 − Pk14)/W2

a27 2.19 y−1 Pk13 + Pk15Wk1/W2

a29 5 × 10−1 y−1 Pk12b

a30 8.11 × 10−1 y−1 Pk19

a31 7.43 × 10−4 y−1 Pk11Wk1/W3

a34 7.43 × 10−4 y−1 Pk15Wk1/W3

a36 8.11 × 10−1 y−1 Pk19

a38 5 × 10−1 y−1 Pk23

a39 8.80 × 10−3 y−1 Pk24(1 − Pk27)

a40 5 × 10−1 y−1 Pk25

a43 8.23 × 10−3 y−1 Pk24

a44 1.92 × 10−2 y−1 (
Pk23(1 − Pk29)W3

)
/W4

a45 5 × 10−1 y−1 Pk25

a53 2.5 × 10−3 mM y−1 Pk1/W1

a59 5.20 × 10−9 mM y−1 Pk26/W4

a74 1.05 × 10−1 y−1 Pk11Wk6/W2

a81 1.05 × 10−1 y−1 Pk15Wk6/W2

a82 7.56 × 10−3 y−1 Pk11Wk6/W3

a83 7.56 × 10−3 y−1 Pk15Wk6/W3

b1 1.15 × 10−2 y−1 Ck12/RCO2

b3 3.73 × 103 y−1 (1 − Ck3) × Ck1 × RCP

b4 7.97 y−1 (Ck2W1 + Ck4Wk1)/W1

b5 1.02 × 10−2 y−1 (
(1 − Ck7)Ck4Wk1

)
/W2

b6 1.12 × 102 y−1 (1 − Ck7)Ck5RCP

b7 2.21 y−1 (Ck6 + Ck8Wk1)/W2

b8 6.58 × 101 y−1 (1 − Ck11)Ck9RCP

b9 6.41 × 10−4 y−1 −Ck8Ck11Wk1/W3 + Ck8Wk1/W3

b10 8.21 × 10−1 y−1 Ck10

b11 3.9 × 10−6 y−1 Ck11Ck8Wk1/W4
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Table 3 continued

Constant Value Units Definition

b12 4.01 × 10−1 y−1 (Ck11Ck9RCPW3)/W4

b13 8.81 × 10−3 y−1 Ck12

b32 7.2 × 10−1 y−1 Ck9

b35 9.59 × 10−7 y−1 (Ck11Ck8Wk1)/(RCPW3))

b41 3.9 × 10−6 y−1 Ck11Ck8Wk1/W4

b42 4.01 × 10−1 y−1 (Ck11Ck9W3RCP )/W4

b81 1.05 × 10−1 y−1 Wk6Ck8/W2

b82 6.55 × 10−3 y−1 (1 − Ck11)Wk6Ck8/W3

b83 3.99 × 10−5 y−1 Ck11Wk6Ck8/W4

b84 9.8 × 10−6 y−1 (Ck11Ck8Wk6)/(RCPW3))

b85 3.2 × 10−3 Ck13

b86 3.99 × 10−5 y−1 Ck11Wk6Ck8/W4

m0 3.2 × 10−3 y−1 (Wk5 + Wk6)/W4

m32 8.34 × 10−2 y−1 (Wk5 + Wk6)/W3

m54 1.05 × 10−1 y−1 Wk6/W2

m56 7.59 × 10−2 y−1 Wk5/W3

m58 3.2 × 10−3 y−1 (Wk5 + Wk6)/W4

m71 4.06 × 101 y−1 (
(Ck1 + Pk2)W1 + Pk4Wk1

)
/W1

m72 3.73 × 101 y−1 Ck1
(
1 − Pk5a − (RCP Pk7Ck3/400)

)
m73 3.87 × 10−1 y−1 Pk5aCk1

m74 1.07 y−1 Ck5 + Pk9 + Pk11Wk1/W2

m75 1.05 y−1 Ck5(1 − Pk14 − Pk12a)

m76 1.06 × 10−2 y−1 Pk12aCk5

m77 6.13 × 10−1 y−1 Ck9(1 − Pk20 − Ck11)

m78 7.19 × 10−3 y−1 Pk20Ck9

kredox 1.00 × 108 mM y−1

kprec 1 × 10−3 mM y−1

CRP 0.03 [RS]0
g0 0.17 mM [O2]t=0

gs 0.325 mM kO2−surf

RCP 106

Km 1 × 10−4 mM

va 0.1 –
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−m58b32a34RCPb1b12a18a21a36a38a43a45a53,

X3 = −a43(((m54b32νvab6(b84νva + b35)a29

+ (ν(m56 − m32)va − b32)a23m76b7m77)a36

− a30b7m
2
77((a74νva + m74)a29 − a23m76))m58a45a38

+ a44a36(m54b32b6(b84νva + b35)a29

+m56a23m76m77b7)m78a40)RCP

− a36(m54b32b6(b84νva + b35)a29 + m56a23m76m77b7)a39b42a45a38,

X4 = a43(((ν
2((m54a82 + a74(m56 − m32))a27 + m74a81(m56 − m32))v

2
a

+ ν((a31m54 − a74b32 + m74(m56 − m32))a27

−m74b32a81 − a22m75(m56 − m32))va

− b32(m74a27 − a22m75))m77 + νm54b32m75va(a83νva + a34))m58a45a38

+ a40((ν((a74m56 + a82m54)a27 + m56m74a81)va

+ (m54a31 + m56m74)a27 − m56a22m75)m77

+m54b32m75(a83νva + a34))a44m78)RCP

+ ((ν((a74m56 + a82m54)a27 + m56m74a81)va

+ (m54a31 + m56m74)a27 − m56a22m75)m77

+m54b32m75(a83νva + a34))a38a39b42a45.

Finally, X1 in turn depends on

R1 = ((m77((a45m58((a74b32 − a31m54 + m74(m32 − m56))a27 + m74b32a81)a38

− a44((a74m56 + a82m54)a27 + m56m74a81)m78a40)a43RCP

− a38a39b42a45((a74m56 + a82m54)a27 + m56m74a81))b7

+ b6a27b32m54(a43(b84m78a40a44 + m58b35a38a45)RCP + b84a38a39b42a45))a29

−m58a27b7RCPa23m76m77a38a43a45(m32 − m56))a36

−m58b7a29a30m
2
77a38a43a45RCP (a74a27 + a81m74),

R2 = (−a27((((−m58m74b32a45a38 + m78a40a44(m54a31 + m56m74))a43RCP

+ a38a39b42a45(m54a31 + m56m74))m77b7

− b6b35b32m54(RCPm78a40a43a44 + a38a39b42a45))a29

− a23(a43(m56m78a40a44 − m58b32a38a45)RCP

+m56a38a39b42a45)m76b7m77)(a14m72 − m71a18)gsm0b13

+ a53a38b1a45b12m58RCP ((a82a27a18a21m77 + a83m74b32m72a26)b7

− b84a27b32a18a21b6)a29a43)a36

−m0m58a27b7RCPb13a30m
2
77a38a43a45gs(a14m72

−m71a18)(m74a29 − a23m76).

Thus, our efforts to write an explicit formula for λ6s
approx

3 − ν lead to extremely com-
plicated formulae having no apparent simplification; it thus appears that the simple
controlling parameters of the solution depend in a very complicated way on many

123



GEM - International Journal on Geomathematics (2023) 14 :12 Page 31 of 32 12

of the physically prescribed parameters, and this dependence needs to be elucidated
computationally (see Online Resource 1).
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