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Abstract
This paper aims to investigate the impact of the overdetermination (data-to-
unknowns) ratio on the global inversion of wireline logging data. In the course of 
the so-called interval inversion method, geophysical data measured in a borehole 
over a longer depth range is jointly inverted and the depth variation of the 
investigated petrophysical parameters are expanded into series using Legendre 
polynomials as basis functions resulting in a highly overdetermined inverse 
problem. A metaheuristic Particle Swarm Optimization (PSO) approach is applied 
as a first phase of inversion for decreasing the starting model dependence of the 
interval inversion procedure. In the subsequent linear inversion steps, by using the 
measurement error of logging tools and the covariance matrix of the estimated 
petrophysical parameters, we can quantify the accuracy of the model parameters. 
The dataset used in this study consists of nuclear, resistivity and sonic logs which 
are inverted to compute porosity, shale volume and water saturation along the 
investigated interval. For increasing the data-to-unknowns ratio of the inverse 
problem, shale volume is estimated separately by a PSO-based factor analysis and 
fixed as known parameter for the interval inversion process. Since the shale volume 
has been described as high degree Legendre polynomial, a significant increase of 
the overdetermination ratio considerably decreases the uncertainty of the remaining 
model parameters allowing for a more reliable calculation of hydrocarbon content.

Keywords  Factor analysis · Series expansion · Interval inversion · Particle swarm 
optimization

Mathematics Subject Classification  15A09 · 15A29 · 15A18 · 41A27 · 86A22

 *	 Armand Abordán 
	 gfaa@uni‑miskolc.hu

1	 Department of Geophysics, University of Miskolc, Miskolc‑Egyetemváros 3515, Hungary
2	 MTA‑ME Geoengineering Research Group, University of Miskolc, 

Miskolc‑Egyetemváros 3515, Hungary

http://orcid.org/0000-0002-2835-5124
http://crossmark.crossref.org/dialog/?doi=10.1007/s13137-020-0144-4&domain=pdf


	 GEM - International Journal on Geomathematics (2020) 11:11

1 3

11  Page 2 of 17

1  Introduction

Geophysics provides several methods for the quantitative evaluation of subsurface 
geological structures. The physical properties of subsurface formations can be 
studied by surveying techniques such as magnetics, gravity and seismics. By 
interpreting these physical properties, we can acquire detailed information of the 
subsurface geology, which can lead us to potential mineral resources including 
hydrocarbon-bearing formations. To properly assess the economic value of a 
hydrocarbon reservoir, wireline logging methods must be applied as well. Well 
logging is an efficient and frequently used tool for the in  situ characterization 
of rock formations (Serra 1984). Usually, electrical and sonic properties are 
measured along with nuclear and dimensional (technical, well diagnostics and 
production logging) measurements in the wellbore. Then the acquired data 
is processed through deterministic modeling or some inversion procedure to 
estimate the petrophysical properties of the investigated formations, such as 
shale volume, porosity and water saturation. Several possible solutions are 
available in the literature for the wireline logging inverse problem (Alberty and 
Hashmy 1984; Ball et  al. 1987; Jarzyna et  al. 2002; Narayan and Yadav 2006). 
Conventionally, inversion of wireline logging data is done in a local manner, 
meaning that data measured at a given depth point is jointly inverted to estimate 
the petrophysical parameters at that same depth point (Drahos 2005; Mayer 
and Sibbit 1980). This usually leads to a marginally overdetermined inverse 
problem, since we have slightly more logging tools than unknowns, including 
shale volume, porosity and water saturation in the invaded zone and in the virgin 
zone. Although this can be done very quickly and delivers adequate results, the 
low data-to-unknowns ratio has a negative effect on the estimation accuracy of 
parameters. A possible solution, interval inversion was developed for increasing 
the data-to-unknowns ratio of the well logging inverse problem (Dobróka and 
Szabó 2001). This approach provides a significant improvement in the estimation 
error of model parameters relative to local inversion (Dobróka et  al. 2016). In 
the interval inversion method, petrophysical parameters are assumed to be the 
functions of depth, therefore depth-dependent response functions are introduced 
to relate the measured data to the unknown physical properties of geological 
formations of longer intervals. Then the model parameters are discretized by 
series expansion using Legendre polynomials. This way, inversion can be carried 
out simultaneously for a longer interval rather than just in a specific depth point. 
The number of observed data does not increase, but the simultaneous processing 
of several depth points greatly increases the relative number of data compared to 
series expansion coefficients as unknowns of the inverse problem.

Generally, the overdetermination ratio in evaluating conventional (shaly sand) 
formations is somewhere around 1.5 in case of local inversion, this is increased 
to 6 or more depending on the length of the inverted dataset and the desired 
resolution that is controlled by the number of series expansion coefficients used. 
A further increase of the overdetermination ratio of the interval inversion method 
can be made by properly decreasing the number of unknowns. Some parameters 



1 3

GEM - International Journal on Geomathematics (2020) 11:11	 Page 3 of 17  11

are available from independent (reliable) sources which may be integrated into 
the joint inverse problem. By the improvement of the overdetermination ratio, 
one can reduce the estimation errors and maintain the vertical resolution of the 
estimated model parameters. We leave the number of series expansion coefficients 
unchanged, however, we estimate the shale volume of the investigated formation 
prior to inversion by factor analysis (Szabó 2011). Then we incorporate the 
resultant shale volume log into the interval inversion procedure, thus the number 
of known data is increased and the number of petrophysical parameters to be 
discretized by series expansion is decreased from 4 to 3. A similar approach was 
developed for direct push logging data, where factor analysis is used to derive 
the water content of the investigated shallow subsurface formations to reduce the 
number of unknowns of the inversion procedure afterwards (Abordán and Szabó 
2019a). Factor analysis and similar dimension reduction methods are widely 
applied in geosciences to support data interpretation, e.g., principal component 
analysis for analyzing multi- and hyperspectral image datasets (Benedetto et  al. 
2013), for the analysis of processes affecting the water quality of a sub-section of 
a river (Tanos et al. 2011) or as an aid for characterizing a hydrocarbon reservoir 
of Late Miocene (Grund and Geiger 2011).

In this study, we focus on studying the accuracy improvement of the interval 
inversion result. It is shown that the estimation error of model parameters can be 
decreased considerably by involving the information of factor analysis. To overcome 
the shortcomings of the conventionally applied Damped Least Squares (DLSQ) 
method (Marquardt 1959), i.e., high derivative and starting model dependence, for 
the solution of both the geophysical inverse problem and factor analysis, we utilize 
the particle swarm optimization (PSO) technique (Kennedy and Eberhart 1995). The 
algorithm of PSO utilizes swarm intelligence to solve optimization problems. This 
metaheuristic method has already been applied to solve geoscience-related problems 
numerous times, e.g., array lateral logging inversion (Zhu et al. 2019), identifying 
groundwater contaminant sources (Guneshwor et al. 2018), inversion of resistivity 
and IP sounding data (Cui et  al. 2017) and for optimizing well placement (Ding 
et al. 2014).

2 � Local inversion of wireline logging data

In the course of local inversion, petrophysical parameters are estimated in each meas-
ured depth point separately by inverting the measured well logging data recorded at 
the same depth. The wireline logging dataset inverted in this paper includes the nat-
ural gamma-ray intensity (GR), neutron porosity ( �N ), true resistivity (Rt), acous-
tic interval time ( Δt ), bulk density ( �b ) and potassium concentration (K) logs. The 
response equations used to relate the measured data to the model parameters are as 
follows (Wyllie et al. 1956; Alberty and Hashmy 1984; Baker Atlas 1996)

(1)GR = �−1
b
(VshGRsh�sh + VsdGRsd�sd),
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where the model parameters are porosity ( � ), shale volume (Vsh), sand volume (Vsd), 
water saturation in the invaded zone (Sx0) and water saturation in the virgin zone 
(Sw). All other parameters in the response equations are taken as constants during 
the inversion procedure, including the physical properties of the mud filtrate (mf), 
shale (sh), sand (sd) and hydrocarbon (hc), the textural parameters, cementation 
exponent (m), saturation exponent (n) and tortuosity factor (a). As well as the mud 
filtrate coefficients ( �0,Ccor), the compaction factor (cp) and the residual hydrocarbon 
coefficient (Shrf).

Then both the measured(m) and calculated(c) well logs are collected into column 
vectors

where superscript T means transpose. Model parameters are estimated by 
minimizing the deviation between the vectors defined in Eqs.  (7), (8). This is 
conventionally solved by some linearized method (Menke 1984). In this study, we 
utilize the metaheuristic method of PSO to minimize the squared difference between 
the observed and calculated data vectors as defined in Eq. (9)

where S is the number of applied logging tools. This metaheuristic method is more 
and more frequently used to solve complex geophysical inverse problems (Shaw 
and Srivastava 2007). It is inspired by the movement of animals like birds or fish in 
search of food. PSO utilizes a swarm of particles randomly generated in the search 
space to find the optimal solution. In an n-dimensional search space, the position of 

(2)

�N =

{
�N,mf − (1 − Sx0)Ccor − 2�(1 − Sx0)Shrf (1 − 2.2�hc)

⋅

[
1 − (1 − Sx0)(1 − 2.2�hc)

]
}

+ Vsh�N,sh + Vsd�N,sd,

(3)Rt =

[
�mSn

w

aRw(1 − Vsh)
+

VshSw

Rsh

]−1
,

(4)Δt = �
[
Δtmf Sx0 + (1 − Sx0)Δthc

]
cp + VshΔtsh + VsdΔtsd,

(5)�b = �
[
�mf − 1.07(1 − Sx0)(�0�mf − 1.24�hc)

]
+ Vsh�sh + Vsd�sd,

(6)K = �−1
b

(
�Sx0Kmf �mf + VshKsh�sh + VsdKsd�sd
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the ith particle can be written as xi = (xi1, xi2, …,xin)T and similarly the velocity of 
the ith particle is vi = (vi1, vi2,…,vin)T, which defines both the direction and distance 
of movement of the particle in each iteration step.

The particles, as solution candidates, move around in the search space looking 
for the best solution defined by the objective function according to Eqs. (10), (11)

where i = 1, 2,…, L and L is the size of the swarm, iteration steps are denoted by t 
and t = 1,…,tmax where the last iteration step is tmax. During the iteration steps the best 
position of each particle is stored and continuously updated in pi = (pi1,pi2,…,pin)T 
and the very best position of the whole swarm is stored in vector g. Control param-
eters c1 and c2 are set during initialization, c1 controls to what extent the personal 
best position pi affects the movement of the ith particle and c2 defines the movement 
of particles in the direction of the best position found by the whole swarm. Here, 
both c1 and c2 are set to 2 as recommended in the literature (Kennedy and Eberhart 
1995). As an alternative approach, an inversion method can be used to refine the 
above control parameters in an automated way (Abordán and Szabó 2019b). The 
so-called inertia weight w was introduced to better control the algorithm through the 
velocity of particles (Shi and Eberhart 1998). It is set in each iteration step accord-
ing to wnew = wold ∙ wdamp, where w is set at the start of the algorithm to 1 and wdamp 
is a damping factor set to 0.99. For randomizing the search to some extent, uni-
formly distributed random numbers r1 and r2 from the range of 0 to 1 are introduced 
to Eq. (11). In the local inversion procedure, each particle of the swarm represents 
a solution for the model parameters and the particle with the best cost after the last 
iteration step is accepted as the solution of the optimization problem.

3 � Interval inversion of wireline logging data

In the course of interval inversion, the petrophysical parameters are assumed 
to be the functions of depth, which are estimated for a longer interval in one 
inversion procedure using all data recorded in that interval. Therefore, the local 
probe response functions are modified to be depth-dependent

where gs denotes the response function of the sth logging tool (s = 1,2 ,…, S, where 
S is the number of logging instruments) and mi is the ith petrophysical property 
(there is M number of petrophysical parameters). The model parameters in Eq. (12) 
can be discretized by series expansion (Dobróka et al. 2016)

(10)�i(t + 1) = �i(t) + �i(t + 1),

(11)�
i
(t + 1) = w�

i
(t) + r1c1(�i(t)) − �

i
(t)) + r2c2(�(t) − �

i
(t)),

(12)�(c)
s
(z) = gs(m1(z),… ,mi(z),… ,mM(z)),
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where Bq is the qth series expansion coefficient and the lth degree Legendre 
polynomial can be written using

the value of the ith model parameter along the inverted interval is described by Q(i) 
number of series expansion coefficients. The coordinates of the well logging meas-
urements are scaled in the interval − 1 to 1 where the Legendre polynomials form 
an orthogonal set of functions. The main advantage of the described series expan-
sion-based inversion is that the required number of expansion coefficients to describe 
the model parameters is reasonably smaller than the number of inverted data, which 
leads to a well-overdetermined procedure. The optimal values of the expansion coef-
ficients are found by the minimization of the relative data distance of measured and 
calculated data as in Eq. (15). Calculated data is obtained by using Eqs. (12), (13)

where N denotes the number of measured depth points along the investigated 
interval and S is the number of applied logging tools. Equation (15) serves as the 
objective function to be minimized. In the optimization problem, the normalized 
overall deviation between the measured and calculated data is reduced by the 
iterative algorithm of the Damped Least Squares (DLSQ) method (Marquardt 1959). 
When input data accuracies are not known, weights can be calculated automatically 
(Drahos et al. 2011) which could be adopted for interval inversion as well.

To overcome the starting model dependence of the procedure, the optimal 
values of expansion coefficients describing the petrophysical parameters are first 
approximated by PSO, once the solution is adequately close to the optimum, the 
inversion procedure is switched to a linearized optimization phase, where the 
final values of expansion coefficients are found by the DLSQ method and then are 
substituted into Eq.  (13) to calculate the model parameters for the whole inverted 
interval. This greatly reduces the runtime of the procedure and allows for the 
calculation of estimation errors, since the covariance matrix of the model parameters 
estimated by the DLSQ method relates to the data covariance matrix that also 
includes the variances of measured data (Menke 1984). For the series expansion 
coefficients the covariance matrix is

where d(m) is the vector of measured data and G−g is the general inverse matrix of 
the linearized inversion. To calculate the uncertainty of estimated petrophysical 

(13)mi(z) =

Q(i)∑
q=1

B(i)
q
Pq−1(z),

(14)Pq−1(z) = Pl(z) = (2ll!)−1
dl

dzl
(z2 − 1)l,

(15)D =
1

N

N�
n=1

⎛⎜⎜⎜⎝

�����1

S

S�
s=1

�
d
(m)
s − d

(c)
s

d
(m)
s

�2⎞⎟⎟⎟⎠
⋅100 [%],

(16)cov� = �−gcov�(m)(�−g)T ,
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parameters, we have to introduce the depth-dependent model covariance matrix of 
the model parameters (Dobróka et al. 2016)

where B is the vector of series expansion coefficients, indices are (i =  1, 2, …, M; 
j =  1, 2, …,M; h = n+Q1 + Q2 + ,…, + Qi−1; h’ = m+Q1 + Q2 + ,…, + Qj−1). Using 
Eq. (17) one can derive the estimation error of model parameters as

4 � Factor analysis

This multivariate statistical tool is used to reduce the number of variables in a 
dataset to a smaller number of uncorrelated variables to help the data interpretation 
and to reveal hidden information (Lawley and Maxwell 1962). In wireline logging 
applications, these new variables are called factor logs, which can be related to 
petrophysical parameters such as shale volume or permeability through regression 
analysis (Szabó and Dobróka 2018). Other applications include lithological 
classification (Asfahani 2014) or the recognition of potential shale gas deposits 
(Puskarczyk et al. 2019).

To start the statistical procedure, first we have to standardize the S number of 
measured well logs and put them into the matrix D, where each column contains the 
data measured by a different logging tool and there is N number of rows representing 
the measured depth points along the borehole. Then D is decomposed as

where F denotes the N-by-R matrix of factor scores and R is the number of extracted 
factors. L is the S-by-R matrix of factor loadings and E denotes the N-by-S error 
matrix. Based on Eq. (19), the measured well logs are derived as the linear combina-
tion of the extracted factors. The factor loadings quantify the correlation relationship 
between the measured data and the computed factors. Most of the data variance is 
represented by the first-factor log, which is the first column of the matrix F. The fac-
tor loadings are estimated by a non-iterative estimation method (Jöreskog 2007)

where � is the diagonal matrix of the first R number of sorted eigenvalues of the 
sample covariance matrix Σ, and the first R number of eigenvectors are in matrix 
� and U denotes an arbitrarily chosen R-by-R orthogonal matrix. In this paper, for 
finding the optimal values of factor scores, the previously presented algorithm of 
PSO is used (Abordán and Szabó 2018). Therefore Eq. (17) is rearranged to

(17)[cov�(z)]ij =

Q(i)∑
n=1

Q(j)∑
m=1

Pn−1(z)(cov�)hh�Pm−1(z),

(18)�
[
mi(z)

]
=
[
cov�ii(z)

] 1∕2
.

(19)� = ��T + �,

(20)� = (diag�−1)−1∕2�(� − ��)1∕2�,
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where d denotes the SN length vector of measured well logging (standardized) data, 
�̃ is the NS-by-NR matrix of factor loadings, f is the RN length vector of factor 
scores and e is the SN length vector of errors. Starting the procedure, �̃ is estimated 
by Eq. (20) and then rotated with the varimax algorithm (Kaiser 1958) for getting 
more meaningful factors. Then PSO is applied to find the optimal values of factor 
scores f. For this optimization problem, we choose the objective function based on 
the square of the L2 norm as

where �(m) and �(c) denote the measured and calculated (standardized) well-logging 
data vectors, respectively. Once Eq. (22) is minimized, the first extracted factor F1 
can be related to the shale volume of the investigated formation using regression 
analysis.

5 � Field example

5.1 � Interval inversion procedure

The wireline logging dataset used in this study was recorded in a hydrocarbon 
exploratory well drilled in the Pannonian Basin in Hungary. The processed interval 
is 19.2 m long and is built up of gas-bearing unconsolidated shaly sand layers of Pli-
ocene age. In the interval inversion procedure the natural gamma-ray intensity (GR), 
neutron porosity ( �N ), true resistivity (Rt), acoustic interval time ( Δt ), potassium 
concentration (K) and bulk density ( �b ) logs are processed to estimate porosity (Φ or 
POR), shale volume (Vsh), water saturation in the flushed zone (Sx0) and water satura-
tion in the virgin zone (Sw). Using the material balance equation � + Vsh + Vsd = 1 , 
we can calculate sand volume without increasing the number of unknowns. We 
use only the potassium concentration log from spectral gamma-ray measurements, 
because of the type of the clay minerals present in the studied formation. Logging 
was done with a sampling rate of 0.1 m, thus the inverted dataset including 6 types 
of logs contains 1158 data points. By discretizing the 4 model parameters according 
to Eq.  (13) with Legendre polynomials of degree 44, the number of unknowns is 
180, because the required number of series expansion coefficients for each petro-
physical parameter is the maximum degree of Legendre polynomials plus one. Thus 
the data-to-unknowns ratio is 6.4. The optimal values of expansion coefficients are 
found by minimizing Eq. (15) with the algorithm of PSO. At the start of the inver-
sion procedure, 45 particles are initialized within PSO, each representing a possi-
ble solution for the expansion coefficients describing the petrophysical parameters. 
The only constraint is that the 0th degree Legendre polynomials are initialized from 
the ranges of 0 ≤ B�

0
≤ 0.4, 0 ≤ B

Vsh

0
≤ 1, 0 ≤ B

Sw
0

≤ 1, 0 ≤ B
Sx0
0

≤ 1 , however these 

(21)� = �̃� + �,

(22)E =

√√√√ 1

NS

NS∑
i=1

(d
(m)

i
− d

(c)

i
)2 ⋅ 100 [%],
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values cover the full possible range of estimated petrophysical parameters. All the 
rest expansion coefficients are randomly generated from the range of − 0.2 and 0.2. 
Thus, the initialized set of particles have an average data distance of 2.72 × 107%, a 
standard deviation of data distance of 1.61 × 108% and the maximum data distance 
of all particles is 1.08 × 109%. Then the set of particles move in the search space 
according to Eqs.  (10), (11) to find the optimal solution where the squared data 
distance between the measured and calculated data is minimal. PSO is run for 100 
iteration steps where it reaches a data distance of 23.51%, then the procedure is fol-
lowed with a linearized inversion phase using the DLSQ method for 15 more steps, 

Fig. 1   Convergence of data distance to the optimum having 4 unknown petrophysical properties

Fig. 2   The measured well logs in the first 6 tracks with their assumed uncertainties (shaded area) and the 
resultant petrophysical parameters and their estimation errors (shaded area) in the last 4 track
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the final data distance is 4.87% (Fig. 1). The whole iteration process takes 30 s on a 
quad core workstation.

For checking the quality of the inversion estimates, 
first, measured data standard deviations are assumed to be 
�GR = 0.08, ��N

= 0.09, �Rt
= 0.06, �Δt = 0.06, ��b = 0.05, �K = 0.07 . Then by 

Eq. (18), we can calculate the estimation error of the resultant petrophysical param-
eters by using the uncertainties of the input well logs (Fig. 2).

The average estimation error of the resultant petrophysical parameters are 
� = 0.026v∕v, Sw = 0.112v∕v, Sx0 = 0.245v∕v,Vsh = 0.024v∕v.

5.2 � PSO‑based factor analysis

To assess how the overdetermination ratio affects the suggested PSO-based interval 
inversion method, first, we have to derive one of the petrophysical parameters from 
some other source and then incorporate it into the inversion procedure. In this study, 
we choose factor analysis to estimate shale volume of the investigated formation 
(Szabó and Dobróka 2017). First, well logging data including the natural gamma-
ray intensity, neutron porosity, true resistivity, potassium concentration and bulk 
density logs of the investigated interval is standardized and put into the data vector 
d defined in Eq.  (21). Factor loadings representing the correlation relationship 
between the extracted factor and measured logs are calculated according to Eq. (20). 
We extract only one factor from the dataset, the calculated factor loadings are 
L(GR)=0.99, L(�N ) = 0.96 , L(Rt) = −0.88 , L(�b) = 0.98 and L(K) = 0.94, which are fixed 
for the next phase of the procedure to save CPU time. Then PSO finds the optimal 
values of the factor scores by minimizing Eq. (22) utilizing 90 particles as solution 
candidates in 1000 iteration steps in 20 s on a quad core workstation (Fig. 3a). Based 

Fig. 3   The convergence of the PSO-based factor analysis procedure (a). The functional relation of the 
first extracted factor and shale volume (b): exponential regression model (red line) and shale volume esti-
mated by local inversion (dots) (color figure online)
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on the calculated loadings, all logs included in factor analysis correlate well with 
the first extracted factor. First, we have to scale it into the range of 0 to 1 so that it is 
comparable to shale volume. Then by regression analysis, the relation can be found 
between the extracted factor and shale volume of the investigated formation. In this 
study, we choose the local inversion derived shale volume for regression analysis 
that is detailed in chapter 2. Other options would be a deterministic approach based 
on the natural gamma-ray intensity log (Larionov 1969) or core analysis. The 
relationship between the first factor and shale volume typically takes the form of

where the regression coefficients in this case with 95% confidence bounds are found 
to be a = 0.197 [amin = 0.1598, amax = 0.2344], b = 1.434 [bmin = 1.291, bmax = 1.577] 
and c = − 0.139 [cmin = − 0.1826, cmax = − 0.0949] (Fig. 3b).

5.3 � Interval inversion improved by factor analysis

Interval inversion is run again with the same parameters and constraints as detailed 
in chapter  5.1, however, shale volume is now considered as a known parameter 
along the inverted interval derived from factor analysis. Thus the number of inverted 
data is increased to 1351 (7 × 193) and the number of unknowns is decreased to 135 
because only 3 model parameters need to be discretized this time by series expan-
sion using Legendre polynomials of degree 44. This results in an overdetermination 
ratio of 10, which is a 56.3% increase compared to the case detailed in chapter 5.1 
where 4 model parameters were estimated by interval inversion. The convergence of 
data distance both in the global and linearized phases of the inversion procedure is 
quite steady (Fig. 4).

(23)Vsh = aebF1 + c,

Fig. 4   Convergence of data distance for the hybrid interval inversion procedure
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After 100 iteration steps, PSO reaches a data distance of 14.69% by minimizing 
Eq.  (15). Then the DLSQ method further decreases data distance to 5.22% in 15 
iteration steps. Including the runtime of factor analysis, this takes 40  s on a quad 
core workstation. Due to the increased data-to-unknowns ratio, the estimation error 
of the resultant petrophysical parameters is decreased (Fig.  5), the shale volume 
derived by factor analysis based on Eq. (23) can be seen in the last track.

The average estimation errors of the resultant petrophysical parameters calcu-
lated by Eq.  (18) are decreased to � = 0.024v∕v, Sw = 0.074v∕v, Sx0 = 0.170v∕v 

Fig. 5   The measured well logs in the first 6 tracks with their assumed uncertainties (shaded area) and the 
resultant petrophysical parameters and their estimation errors (shaded area) in tracks 7–9 and the shale 
volume derived from factor analysis in the last track

Fig. 6   The decrease in average estimation errors due to the increased data-to-unknowns ratio of the inter-
val inversion method (a). The improvement of estimation in percent (b)
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(Fig. 6a), which is quite an improvement as indicated in percentage (Fig. 6b). How-
ever, the estimation errors in the impermeable sections (high shale volume) are still 
fairly high compared to those in permeable intervals, especially in case of water 
saturations. This is due to the strong correlation between the two model parameters, 
which could be possibly resolved by the redefinition of the probe response functions 
of the forward problem.

The accurate estimation of these parameters is especially important since the irre-
ducible and movable hydrocarbon volumes can be calculated as Vhc,irr = �(1 − Sx0) 
and Vhc,mov = �(Sx0 − Sw) , respectively. The increased overdetermination ratio would 
also allow for the estimation of additional parameters within the inversion procedure, 
such as zone parameters or other constants found in the response equations of logging 
tools in Eqs. (1)–(6).

6 � Discussion

To extract more information from a geophysical dataset, data acquisition is often 
followed by some sort of inverse modeling to get a detailed picture of the physical 
properties of the investigated structures. Inverse problems are conventionally solved 
by linearized (known as gradient-based) methods (Tarantola 2005). These methods 
have several drawbacks, e.g., the result of the inversion procedure is greatly sen-
sitive to the chosen starting model. During the search in the parameter space, the 
inversion algorithm often gets stuck in a local minimum of the objective function 
near the defined starting model and a global optimum is impossible to be found. 
However, if adequate a priori information (initial model) is available about the 
investigated structure, these linear optimization techniques can provide good solu-
tions effectively and fast. To overcome such problems of the linearized inversion 
methods, optimization techniques utilizing random search have been developed in 
the past decades. Some of the most commonly used global optimization methods in 
geophysics are simulated annealing and the genetic algorithm (Sen and Stoffa 2013; 
Wilkosz and Wawrzyniak-Guz 2019). Particle swarm optimization used in this study 
can also eliminate the starting model dependence of the inverse problem. It is capa-
ble to search through a greater extent of the possible solutions than the linearized 
inversion methods without trapping in a local minimum (Fernández-Martínez et al. 
2008). To check the stability of the proposed PSO-based inversion method, 10 inde-
pendent runs are performed for the case where the results of factor analysis are used 
to further increase the overdetermination-ratio of the procedure. First, 45 parti-
cles are initialized in the search space, each representing a possible solution of the 
135 series expansion coefficients. The initial solutions generated by PSO are very 
diverse (Fig. 7a–c).

Then each solution candidate is refined according to Eqs. (10), (11) in 100 itera-
tion steps and then the algorithm is switched to a linearized optimization phase to 
find the solution of the inverse problem in 15 more iteration steps. The data distance 
converges to the optimal value in all 10 independent runs (Fig. 8), which concurs 
with the findings that metaheuristic methods can be effectively applied to eliminate 
the starting model dependence of inverse problems (Pace et al. 2019).
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It is our experience that once the data distance is adequately small (~ 15%), the 
optimization can be continued by a faster linearized algorithm to find the final 
solution of the series expansion coefficients without trapping in a local minimum. 
Here the average data distance reached at the end of the procedure is 5.22% 
with a standard deviation of only 0.0027%. This proves the applicability and the 
effectiveness of the suggested hybrid method for solving the wireline logging 
inverse problem. However, since PSO is a metaheuristic, the presented method 
could be applied to a wide range of optimization problems where setting an initial 
model is problematic, e.g., a similar two-step process was effectively applied for 
full-waveform inversion, where very fast simulated annealing was combined with 
a conventional gradient-based method (Datta and Sen 2016).

Fig. 7   Statistical distribution of the randomly generated starting models by PSO. The average data dis-
tance (a), the standard deviation (b) and the minimum data distance (c) of the solution candidates at 
initialization

Fig. 8   Convergence plots of the PSO-initialized interval inversion procedure for 10 independent program 
runs



1 3

GEM - International Journal on Geomathematics (2020) 11:11	 Page 15 of 17  11

7 � Conclusions

The suggested PSO-based metaheuristic approach for solving the series 
expansion-based interval inversion of well log data proves to be quick and 
effective. The starting model dependence of the procedure is virtually eliminated 
by PSO and the switch to the linearized DLSQ method near the optimum 
greatly reduces the runtime of the inversion and allows for the calculation of 
estimation errors. It is shown that the factor analysis derived shale volume can be 
successfully incorporated into the interval inversion method to increase its data-
to-unknowns ratio, and thus improving the estimation accuracy of the estimated 
petrophysical parameters. Factor analysis was also improved by the use of the 
highly adaptive PSO method. A 56.3% increase in the overdetermination ratio 
results in a 9.2% improvement in the estimation accuracy of porosity, 33.9% 
improvement of water saturation in the virgin zone and 30.6% improvement of the 
water saturation in the flushed zone. These parameters are the basis for calculating 
movable hydrocarbons, therefore their most reliable estimation is of crucial 
importance. The increased overdetermination ratio also gives the possibility to 
automatically estimate the value of some zone parameters within inversion, while 
still maintaining a good level of resolution of the estimated model parameters. 
The suggested procedure to increase the overdetermination of the well logging 
inverse problem might be very effectively used for unconventional reservoirs 
where multi-mineral models need to be built and therefore the number of 
unknowns is considerably higher than in case of conventional reservoirs.
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