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Abstract
Any square-integrable vector field f over a sphere S can be decomposed into three
unique contributions: one being the gradient of a function harmonic inside the sphere
(denoted by f+), one being the gradient of a function harmonic in the exterior of the
sphere (denoted by f−), and one being tangential and divergence-free (denoted by
fd f ). In geomagnetic applications this is of relevance because, if we consider f to be
identified with a magnetization, only the contribution f+ can generate a non-vanishing
magnetic field in the exterior of the sphere. Thus, we call f− and fd f “silent” and f+
“nonsilent”. If f is known to be spatially localized in a subregion of the sphere, then
f+ and f− are coupled due to their potential field nature. In this short paper, we derive
an approach that makes use of this coupling in order to compute the contribution f−
from knowledge of the contribution f+.

Keywords Vector field decomposition · Inverse magnetization problem · Spatial
localization · Uniqueness · Spherical harmonics

Mathematics Subject Classification 31B20 · 41A30 · 65D15 · 65R32 · 86A22

1 Introduction

The non-uniqueness of the reconstruction of a magnetization M from magnetic field
data B is well-known (e.g., Backus et al. 1996; Blakely 1995). Recently this has been
investigated in more detail in several publications: for the Euclidean setup with appli-
cations in SQUID microscopy in Baratchart et al. (2013) and Lima et al. (2013), for
spherical geometries with applications in geomagnetism and planetary magnetism in
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Baratchart and Gerhards (2017), Gerhards (2016), Gerhards (2019), Gubbins et al.
(2011), Vervelidou and Lesur (2018), Vervelidou et al. (2017) and Lesur and Verveli-
dou (2020). The studies above can be divided into those that focus on dealing withM
in spectral domain (cf. Gubbins et al. 2011; Vervelidou and Lesur 2018; Vervelidou
et al. 2017; Lesur and Vervelidou 2020) and those dealing with spatially localized
M (cf. Baratchart and Gerhards 2017; Baratchart et al. 2013; Gerhards 2016, 2019;
Lima et al. 2013). We focus on spatially localized M but use computations in spec-
tral domain. To be precise, throughout the course of the paper, we understand spatial
localization as strict spatial localization, i.e., there exists a subregion � ⊂ S such that
M(x) = 0 for x ∈ S\�.

More precisely, let a square-integrable (vectorial) magnetizationM be given on the
unit sphere S. Its so-called Hardy–Hodge decomposition takes the form

M = M+ + M− + Md f , (1.1)

where M+ can be expressed as M+ = ∇�+ (with �+ being harmonic inside the
sphere, i.e., in the ball B), M− can be expressed as M− = ∇�− (with �− being
harmonic outside the sphere, i.e., inR3\B), andMd f is tangential and divergence-free
(more details can be found, e.g., in Baratchart et al. (2018), Baratchart et al. (2013),
Gerhards (2016), and Sect. 2.2). In general, only the part M+ can be reconstructed
uniquely from knowledge of the corresponding magnetic field B in the exterior of the
sphere S. Therefore,M− andMd f are called “silent”whileM+ is called “nonsilent”. If
we assume thatM is spatially localized, then bothM+ andM− are uniquely determined
by knowledge of B in the exterior.

Inverting B subject to localization constraints onMmight be one way to obtain the
contributionsM+ andM− (as has been done, e.g., in Baratchart et al. (2013), Gerhards
(2016) and Gerhards (2019)). However, the short paper at hand more generally aims
at obtaining M− from knowledge of M+ under the assumption that (an otherwise
unknown)M is spatially localized, without considering any connection to a magnetic
fieldB. The connection to amagnetic fieldmerely serves as one possible application of
the approach:M+ could be obtained by inversion of B via spectral methods typically
used in the geomagnetic community without localization constraints (e.g., Gubbins
et al. 2011; Vervelidou and Lesur 2018; Vervelidou et al. 2017; Lesur and Vervelidou
2020). Then we use the localization constraints and the approach proposed in Sect. 3
to infer M− from this particular M+. Namely, we construct linear operators L1, L2
such that

L1[M̂+] = L2[M̂−, M̂d f ], (1.2)

where M̂+, M̂−, M̂d f denote the vectors of Fourier coefficients of M+, M−, Md f ,
respectively. Solving (1.2) for M̂− and M̂d f yields the desired result. However, while
M− is determined uniquely, the divergence-free contribution Md f is still not deter-
mined uniquely, unless one makes further assumptions (e.g.,M being of induced type
(cf. Gerhards 2019; Vervelidou and Lesur 2018; Lesur and Vervelidou 2020), mean-
ing that the magnetization takes the form M = χB0, where χ can be interpreted as a
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scalar-valued susceptibility and B0 as an ambient magnetic field, which is known or
of which at least the general structure is known. Throughout the course of the paper,
we typically use the notation f = f+ + f− + fd f for vector fields on the sphere. We
only identify f with a magnetization M when we want to highlight the connection to
applications in geomagnetism.

Some required notations on vector spherical harmonics and vector field decompo-
sitions as well as some auxiliary results on the relation between magnetization and
magnetic field are described in Sect. 2. The desired relation (1.2) between f+ and f−
is explained in Sect. 3. The main assertions are reflected in Definition 3.3 and Corol-
lary 3.4. Some numerical examples are presented in Sect. 4. In the conclusion in Sect.
5 we additionally provide some outlook for possible further studies.

2 Basic notations and existing results

First, we define a specific type of vector spherical harmonics that suits the Hardy–
Hodge decomposition mentioned in the introduction. Afterwards, we recapitulate the
corresponding vector field decomposition and its implications for inverse magnetiza-
tion problems.

2.1 Spherical harmonics

Spherical harmonics are particularly suitable for considerations on the entire sphere.
They are not necessarily the best choice when dealing with subsets of the sphere
(then there exist other options such as Slepian functions (Plattner and Simons 2014;
Simons et al. 2006), spherical cap harmonics (Thébault et al. 2006), or spherical
wavelets Freeden et al. 1998; Freeden and Windheuser 1997; Holschneider et al.
2003). Although, in the paper at hand, we are actually focusing on magnetizations
localized in such subregions, we use spherical harmonics in order to comply with the
standard of typical geomagnetic field models (however, the examples later on in Sect.
4 show that even for fairly simple magnetization models quite high spherical harmonic
degrees have to be considered in order to obtain reasonable results). The subsequently
defined vector spherical harmonics allow any function f ∈ L2(S,C3) to be expanded
as

f =
∞∑

l=0

l∑

m=−l

f̂ −
l,my

−
l,m + f̂ +

l,my
+
l,m + f̂ d fl,my

d f
l,m, (2.1)

where equality is meant in L2(S,C3)-sense. Analogously, any scalar-valued function
f ∈ L2(S) can be expressed as

f =
∞∑

l=0

l∑

m=−l

f̂l,mYl,m . (2.2)
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The involved coefficients f̂ −
l,m , f̂

+
l,m , f̂

d f
l,m , f̂l,m are defined in Definition 2.2.

Definition 2.1 For degree l ∈ N0 and order m = −l, . . . , l, we define three types of
vector spherical harmonics (e.g. Freeden and Schreiner 2009; Gubbins et al. 2011):

y−
l,m(x) = y−

l,m(θ, φ) = 1√
(l + 1)(2l + 1)

∇y

(
1

|y|l+1 Yl,m(y)

) ∣∣∣∣
y=x

, (2.3)

y+
l,m(x) = y+

l,m(θ, φ) = 1√
l(2l + 1)

∇y

(
|y|lYl,m(y)

) ∣∣∣
y=x

, (2.4)

yd fl,m(x) = yd fl,m(θ, φ) = − i√
l(l + 1)

LSYl,m(x). (2.5)

For the special case l = 0, we need to define y+
0,0(x) = yd f0,0(x) = 0 in order to avoid

inconsistencies. Generally, x = x(θ, φ) = (cos(φ) sin(θ), sin(φ) sin(θ), cos(θ))T

denotes a vector on the unit sphere S = {x ∈ R
3 : |x | = 1}with longitude φ ∈ [0, 2π)

and co-latitude θ ∈ [0, π ]. Occasionally, we write t = cos(θ) ∈ [−1, 1] to denote
the polar distance. By ∇ we denote the the Euclidean gradient, while ∇S denotes the
surface gradient and LS = n̂× ∇S the surface curl gradient with respect to the sphere
S (n̂ represents the unit normal vector pointing into the exterior of S). For the involved
scalar spherical harmonics, we use the definition

Yl,m(x) =
√

2l + 1

2 − δm,0
Pm
l (cos(θ))eimφ, (2.6)

where Pm
l denote the Schmidt-nomarlized associated Legendre functions. That is, we

have
∫
S
|Yl,m(y)|2dω(y) = 4π and

∫ 1
−1 P

m
l (t)Pm

l ′ (t)dt = 2(2−δm,0)

2l+1 δl,l ′ .

Definition 2.2 For a vectorial square-integrable function f ∈ L2(S,C3), the Fourier
coefficients in (2.1) are defined via

f̂ −
l,m = 〈f, y−

l,m〉L2(S,C3) = 1

4π

∫

S

f(y) · y−
l,m(y)∗dω(y),

f̂ +
l,m = 〈f, y+

l,m〉L2(S,C3) = 1

4π

∫

S

f(y) · y+
l,m(y)∗dω(y),

f̂ d fl,m = 〈f, yd fl,m〉L2(S,C3) = 1

4π

∫

S

f(y) · yd fl,m(y)∗dω(y).

The collection of all Fourier coefficients is denoted by vectors f̂+ = ( f̂ +
0,0, f̂ +

1,−1,

f̂ +
1,0, f̂ +

1,1, f̂ +
2,−2, . . .)

T , f̂− = ( f̂ −
0,0, f̂ −

1,−1, f̂ −
1,0, f̂ −

1,1, f̂ −
2,−2, . . .)

T , f̂d f = ( f̂ d f0,0,

f̂ d f1,−1, f̂ d f1,0, f̂ d f1,1, f̂ d f2,−2, . . .)
T . The case case l = 0 is again special in the sense that

f̂ +
0,0 = f̂ d f0,0 = 0 in all cases. For scalar-valued functions f ∈ L2(S), we analogously

set

f̂l,m = 1

4π

∫

S

f (y)Yl,m(y)∗dω(y).
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The collection of Fourier coefficients is denoted by the vector f̂ = ( f0,0, f1,−1,

f1,0, f1,1, f2,−2, . . .)
T .

The vector spherical harmonics (2.3)–(2.5) correspond (up to a possibly varying sign
or normalization factor) to Ym

l,l+1, Y
m
l,l−1, Y

m
l,l in Gubbins et al. (2011), Vervelidou

and Lesur (2018) and Lesur and Vervelidou (2020) and ỹ(1)
l,m , ỹ

(2)
l,m , ỹ

(3)
l,m in Freeden

and Gerhards (2012), Freeden and Schreiner (2009), Gerhards (2016) and Gerhards
(2019).

Definition 2.3 Throughout this paper, � ⊂ S denotes an open subregion of the sphere
with smooth boundary and � �= S. A function f ∈ L2(S,C3) is said to be spatially
localized in � if f(x) = 0, for almost all x ∈ S\�, i.e., supp(f) ⊂ �.

Some Sobolev spaces that are required later on are gathered in the following
definition. They essentially impose a certain smoothness on the functions under
consideration and are used for the regularization terms in Sect. 4 on the numerical
implementation.

Definition 2.4 For k ∈ N0, Sobolev spaces of scalar functions are defined as follows:

Hk =
{
f ∈ L2(S) : ‖ f ‖2Hk

=
∞∑

l=0

l∑

m=−l

(
l + 1

2

)2k ∣∣∣ f̂l,m
∣∣∣
2

< ∞
}

.

These Sobolev spaces can equivalently be defined via the corresponding spaces of
sequences of Fourier coefficients. Then they are denoted by lower case letters:

hk =
{
f̂ =

(
f̂0,0, f̂1,−1, f̂1,0, f̂1,1, f̂2,−2, . . .

)
: f̂l,m ∈ C, ‖ f̂ ‖2hk =

∞∑

l=0

l∑

m=−l

(
l + 1

2

)2k ∣∣∣ f̂l,m
∣∣∣
2

< ∞
}

.

Sobolev spaces of vector functions are defined as follows: Hk = {f ∈ L2(S,C3) :
f̂+, f̂−, f̂d f ∈ hk}. In the special case k = 0, we get H0 = L2(S), H0 = L2(S,C3),
and h0 = 
2 (the latter denoting the space of square-summable sequences).

2.2 Vector field decompositions

The crucial ingredient of this paper is the Hardy–Hodge decomposition: Any vector
field f ∈ L2(S,C3) can be decomposed uniquely in the form

f = f+ + f− + fd f , (2.7)

where fd f is a tangential and divergence-free vector field, f+ = ∇�+|S is the gradient
of a function �+ ∈ L2(B) that is harmonic in the interior of the unit ball B = {x ∈
R
3 : |x | < 1} and f− = ∇�−|S is the gradient of a function �− ∈ L2(R3\B) that is

harmonic in the exterior of the unit ball R3\B. We note that throughout this paper, a
vector field f on the sphere is said to be “divergence-free” if ∇S · Ptan[f] = 0 (with
Ptan denoting the orthogonal projection onto the tangential contribution of f).With the
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vector spherical harmonics from Sect. 2.1 and the definition of Fourier coefficients in
Definition 2.2, it becomes clear that the contributions f+, f−, and fd f of a vector-valued
function f can be represented by

f− =
∞∑

l=0

l∑

m=−l

f̂ −
l,my

−
l,m, (2.8)

f+ =
∞∑

l=0

l∑

m=−l

f̂ +
l,my

+
l,m, (2.9)

fd f =
∞∑

l=0

l∑

m=−l

f̂ d fl,my
d f
l,m . (2.10)

This leads us to the definition of the following function spaces:

H+ = span{y+
l,m, l ∈ N0,m = −l, . . . , l}‖·‖L2(S,C3) (2.11)

H− = span{y−
l,m, l ∈ N0,m = −l, . . . , l}‖·‖L2(S,C3) (2.12)

Hd f = span{yd fl,m, l ∈ N0,m = −l, . . . , l}
‖·‖L2(S,C3)

(2.13)

They allow an orthogonal decomposition L2(S,C3) = H+ ⊕H− ⊕Hd f . We want to
mention that so far there exists no common notation for the Hardy–Hodge decomposi-
tion in the literature. Instead of the notation (2.7), the same decomposition is denoted
as f = E + I + T in Gubbins et al. (2011), Vervelidou and Lesur (2018), Lesur and
Vervelidou (2020) and Vervelidou et al. (2017) or as f = f̃ (1) + f̃ (2) + f̃ (3) in Gerhards
(2016) and Gerhards (2019). More details on this decomposition and its connection to
magnetizations can be found in Baratchart et al. (2018) and Baratchart et al. (2013) for
the Euclidean case and in Gerhards (2016) for the spherical case. Also in these papers
can be found the following characterizations for the inverse magnetization problem.

Theorem 2.5 Let the magnetic field B = −∇� with the magnetic potential

�(x) = μ0

4π

∫

S

M(y) · x − y

|x − y|3 dω(y)

be known for all x ∈ R
3\B. Furthermore, beM = M++M−+Md f theHardy–Hodge

decomposition of the magnetization M ∈ L2(S,C3).

(a) The contribution M+ is determined uniquely by the knowledge of B, while
M−,Md f ∈ L2(S,C3) can be chosen arbitrarily.

(b) Let it be known in advance that the magnetization M ∈ L2(S,C3) is spatially
localized in � ⊂ S. ThenM+ andM− are determined uniquely by the knowledge
of B, while Md f ∈ L2(S,C3) can be chosen arbitrarily as long as it satisfies the
localization constraint.
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Since the paper at hand aims at avoiding a detour via the magnetic field B in order
to determine the contributionM− of the magnetizationM, the following corollary of
the theorem above is more relevant.

Corollary 2.6 Let the function f ∈ L2(S,C3) be spatially localized in � ⊂ S. Then f−
is uniquely determined by the knowledge of f+.

3 Relating the fourier coefficients of f+ and f−

This very brief section contains the main assertion of the paper. The goal is to connect
the vectors of Fourier coefficients f̂+, f̂−, and f̂d f via linear operators L1, L2 (this
is achieved by Definition 3.3 and Corollary 3.4). Therefore, let us assume that the
function f ∈ L2(S,C3) is spatially localized in �. We observe that

∫

S\�
f(y) · y−

l,m(y)∗ dω(y) = 0,
∫

S\�
f(y) · y+

l,m(y)∗ dω(y) = 0, (3.1)

for all l ∈ N0, m = −l, . . . , l. The conditions (3.1) can be equivalently expressed in
the form

P+[χS\� f] = 0, P−[χS\� f] = 0, (3.2)

where P+ denotes the orthogonal projection ontoH+ and P− the orthogonal projection
onto H−, and χS\� denotes the characteristic function with χS\�(x) = 1, if x ∈ S\�,
and χS\�(x) = 0, if x ∈ �. While it is immediately clear that any function f ∈
L2(S,C3) that is spatially localized in � ⊂ S satisfies (3.2), the other way around
is not necessarily true. But, if a function f ∈ L2(S,C3) satisfies (3.2), it follows that
χS\� f is divergence-free and, obviously, f − χS\� f is spatially localized in �. This
implies the following theorem.

Theorem 3.1 If f ∈ L2(S,C3) satisfies (3.2), then the knowledge of f+ uniquely deter-
mines f−.

Proof Corollary 2.6 implies that the contribution (f −χS\� f)+ of f −χS\� f uniquely
determines the contribution (f−χS\� f)−. Since (3.2) yields that χS\� f is divergence-
free, we obtain that f+ and (f − χS\� f)+ coincide as well as f− and (f − χS\� f)−,
which already proves the assertion of the theorem. ��
Remark 3.2 To be more precise on the implication that (3.2) renders χS\� f to be
divergence-free, we remind the reader that in Sect. 2.2 it has been stated that any
square-integrable vector field f can be expressed in the form f = f+ + f− + fd f . The
conditions P+[f] = 0 and P−[f] = 0 imply that f+ = f− = 0, so that f = fd f . The
latter is divergence-free by definition. Thus, (3.2) yields that χS\� f is divergence-free.
Furthermore, if f is spatially localized in some � ⊂ S, the property (3.2) clearly holds
true. We can now add any tangential and divergence-free vector field g that is spatially
localized in S\� to obtain some f̄ = f + g that still satisfies P+[χS\� f̄] = 0 and
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P−[χS\� f̄] = 0. However, f̄ is obviously not spatially localized in � anymore, which
is why (3.2) does not necessarily imply spatial localization of f in �.

If f ∈ H2, then (3.1) and (3.2) are just alternative notations for the equation
L1[f̂+] = L2[f̂−, f̂d f ]with operators L1, L2 defined as below. Latter equation, though
less intuitive than (3.1) and (3.2), is more explicit in terms of its numerical implemen-
tation in Sect. 4.

Definition 3.3 Linear operators L1 : h2 → 
2 and L2 : h2 ⊗ h2 → 
2 are defined as
follows

L1[ f̂ ] =
⎛

⎝
−∑∞

l ′=0
∑l ′

m′=−l ′ f̂l ′,m′ 〈y+
l ′,m′ , y+

l,m〉S\�

−∑∞
l ′=0

∑l ′
m′=−l ′ f̂l ′,m′ 〈y+

l ′,m′ , y−
l,m〉S\�

⎞

⎠

l∈N0,m=−l,...,l

,

L2[ĝ, ĥ] =
⎛

⎝
∑∞

l ′=0
∑l ′

m′=−l ′ ĝl ′,m′ 〈y−
l ′,m′ , y+

l,m〉S\� + ĥl ′,m′ 〈yd fl ′,m′ , y+
l,m〉S\�

∑∞
l ′=0

∑l ′
m′=−l ′ ĝl ′,m′ 〈y−

l ′,m′ , y−
lm〉S\� + ĥl ′,m′ 〈yd fl ′,m′ , y−

l,m〉S\�

⎞

⎠

l∈N0,m=−l,...,l

.

It is to note that we always need to assume f̂0,0 = ĥ0,0 = 0 in order to avoid problems
due to the circumstance that we have defined y+

0,0 = yd f0,0 = 0.

The next corollary is a direct consequence of the previous setup and Theorem 3.1.

Corollary 3.4 If f ∈ H2 satisfies L1[f̂+] = L2[f̂−, f̂d f ], then the knowledge of f+
uniquely determines f−. Furthermore, if f ∈ H2 is spatially localized in �, then
L1[f̂+] = L2[f̂−, f̂d f ] is satisfied.

4 Numerical implementation and examples

The assertion of Corollary 3.4 justifies the computation of f− from knowledge of
f+ by solving L1[f̂+] = L2[f̂−, f̂d f ] for f̂− and f̂d f . The contribution fd f cannot
be determined uniquely but has to be included as an auxiliary quantity. In order to
avoid instabilities due to a possibly unbounded inverse of L2, we actually consider the
following regularized minimization problem: Find f̂−, f̂d f ∈ hk , k ≥ 2, such that

(f̂−, f̂d f ) = argmin
ĝ,ĥ∈h2

‖L1[f̂+] − L2[ĥ, ĝ]‖2
2 + λ‖(ĝ, ĥ)‖2hk , (4.1)

for some fixed regularization parameter λ > 0. The numerical setup for solving (4.1)
is described in the next section.

4.1 Bandlimited numerical setup

Wechoose a bandlimit N and restrict ourselves to findingminimizers of (4.1) among all
functions which satisfy that bandlimit. In other words, we are looking for f̂−, f̂d f ∈ h2
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with f̂ −
l,m = f̂ d fl,m = 0 for all l ≥ N + 1, m = −l, . . . , l. We abbreviate these

solutions by (finite) vectors f̂N− , f̂Nd f ∈ C
(N+1)2 that contain all Fourier coefficients

f̂ −
l,m , f̂

d f
l,m with l = 0, . . . , N , m = −l, . . . , l. Furthermore, we define matrices L1 ∈

C
2(N+1)2×(N+1)2 , L2 ∈ C

2(N+1)2×2(N+1)2 by

L1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−〈y+
0,0, y

+
0,0〉S\� −〈y+

1,−1, y
+
0,0〉S\� −〈y+

1,0, y
+
0,0〉S\� · · · −〈y+

N ,N , y+
0,0〉S\�

−〈y+
0,0, y

−
0,0〉S\� −〈y+

1,−1, y
−
0,0〉S\� −〈y+

1,0, y
−
0,0〉S\� · · · −〈y+

N ,N , y−
0,0〉S\�

−〈y+
0,0, y

+
1,−1〉S\� −〈y+

1,−1, y
+
1,−1〉S\� −〈y+

1,0, y
+
1,−1〉S\� · · · −〈y+

N ,N , y+
1,−1〉S\�

−〈y+
0,0, y

−
1,−1〉S\� −〈y+

1,−1, y
−
1,−1〉S\� −〈y+

1,0, y
−
1,−1〉S\� · · · −〈y+

N ,N , y−
1,−1〉S\�

.

.

.
.
.
.

.

.

.
. . .

.

.

.

−〈y+
0,0, y

+
N ,N 〉S\� −〈y+

1,−1, y
+
N ,N 〉S\� −〈y+

1,0, y
+
N ,N 〉S\� · · · −〈y+

N ,N , y+
N ,N 〉S\�

−〈y+
0,0, y

−
N ,N 〉S\� −〈y+

1,−1, y
−
N ,N 〉S\� −〈y+

1,0, y
−
N ,N 〉S\� · · · −〈y+

N ,N , y−
N ,N 〉S\�

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(4.2)

L2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈y−
0,0, y

+
0,0〉S\� · · · 〈y−

N ,N , y+
0,0〉S\� 〈yd f0,0, y+

0,0〉S\� · · · 〈yd fN ,N , y+
0,0〉S\�

〈y−
0,0, y

−
0,0〉S\� · · · 〈y−

N ,N , y−
0,0〉S\� 〈yd f0,0, y−

0,0〉S\� · · · 〈yd fN ,N , y−
0,0〉S\�

〈y−
0,0, y

+
1,−1〉S\� · · · 〈y−

N ,N , y+
1,−1〉S\� 〈yd f0,0, y+

1,−1〉S\� · · · 〈yd fN ,N , y+
1,−1〉S\�

〈y−
0,0, y

−
1,−1〉S\� · · · 〈y−

N ,N , y−
1,−1〉S\� 〈yd f0,0, y−

1,−1〉S\� · · · 〈yd fN ,N , y−
1,−1〉S\�

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

〈y−
0,0, y

+
N ,N 〉S\� · · · 〈y−

N ,N , y+
N ,N 〉S\� 〈yd f0,0, y+

N ,N 〉S\� · · · 〈yd fN ,N , y+
N ,N 〉S\�

〈y−
0,0, y

−
N ,N 〉S\� · · · 〈y−

N ,N , y−
N ,N 〉S\� 〈yd f0,0, y−

N ,N 〉S\� · · · 〈yd fN ,N , y−
N ,N 〉S\�

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.3)

Within this bandlimited setup, the minimzers f̂N− , f̂Nd f of (4.1) are obtained as solutions
to the normal equations

(
LT

2 L2 + λRTR
) (

f̂N−
f̂Nd f

)
= LT

2 L1 f̂N+ , (4.4)

where the (finite) vector f̂N+ ∈ C
(N+1)2 on the right hand side contains all Fourier

coefficients f̂ +
l,m , with l = 0, . . . , N , m = −l, . . . , l, of the known function f+. Since

we chose the regularization term in (4.1) to penalize the ‖ · ‖hk -norm, the matrix

R ∈ R
2(N+1)2×2(N+1)2 is a diagonal matrix with diagonal entries Ri,i = (l + 1

2 )
k , for

i = l2+m+ l+1 or i = (N +1)2+ l2+m+ l+1 and l = 0, . . . , N ,m = −l, . . . , l.
For the sake of further simplicity, we focus on the case that the subset � ⊂ S, in

which we assume f to be spatially localized, is a spherical cap with the North Pole
e3 = (0, 0, 1)T as center and with (angular) radius �0 ∈ (0, π), i.e., � = {x =
x(θ, φ) ∈ S : φ ∈ [0, 2π), θ ∈ [0,�0)} = {x ∈ S : x · e3 > cos(�0)}. This is
not a very severe restriction for general applications since typical open subregions
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of the sphere can be embedded in a spherical cap, and by rotation of the coordinate
system this spherical cap can be centered in the North Pole. Such spherical caps have
the advantage that most entries of the matrices L1 and L2 become zero. The precise
computation of the entries is performed in “Appendix A”.

Remark 4.1 The bandlimited approach for the numerical solution above somehow
contradicts the initial assumption that f is spatially localized (since no function can
be simultaneously (strictly) spatially localized and bandlimited). However, some sort
of discretization has to be done for the numerical evaluation of (4.1) and we chose
bandlimitedness for convenience. The precise error due to the bandlimitedness is
difficult to quantify analytically. However, the numerical examples in Sect. 4.2 suggest
that the error is minor if the Fourier coefficients f̂+l,m decay sufficiently fast while it
can be quite significant if such a decay is not given.

4.2 Examples

We apply the approach (4.4) to two exemplary functions f , both localized in the
northern hemisphere, but the second one being localized in a smaller subregion.

4.2.1 Example 1

First we choose f to be localized in the entire northern hemisphere, i.e., a spherical
cap with angular radius �0 = π

2 and the North Pole e3 = (0, 0, 1)T as center. It is of
the form

f(x) = Q(x) (3(x · d)x − d) ,

Q(x) = Q(θ, φ) =
{

(cos(θ) − 0.1)3 (cos(θ) − 1)2 (φ − 2π)3 φ3 sin(2φ), if cos(θ) > 0.1,
0, else,

(4.5)

and thus could be considered as a magnetization of induced type, where the ambi-
ent inducing field is that of a magnetic dipole with known dipole direction d =
(0, 0.6, 0.8)T . The radial part of the function f and its contributions f+ and f− are
indicated in Fig. 1. In fact, one can see that although f is spatially localized in the
northern hemisphere, this does not need to hold true for its contributions f+ and f−.
Reconstructions fN− based on knowledge of the Fourier coefficients of f+ up to degree
N = 100 and for smoothness parameter k = 2 are shown in Fig. 2. For the choice
λ = 0.5 · 10−15 we obtained the best reconstruction of the actual contribution f−
among the tested regularization parameters. Sightly overregularized and underregu-
larized results are shown for λ = 10−12 and λ = 0.5 · 10−17.

Figure 3 shows the results for the same setup as before, but with noisy input data
f̂N ,ε
+ = f̂N+ + ε̂

N . By ε̂
N ∈ C

(N+1)2 we denote a random vector where each component
is normally distributed with mean zero and and variance one, scaled to an overall noise
level ‖ε̂N‖/‖f̂N+ ‖ = 2.5 × 10−3. Although the overall noise level is quite small, Fig.
5 shows that the relative error for each spherical harmonic degree l and order m can
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Fig. 1 Radial component of the (unknown) function f from (4.5) (left), of its (known) contribution f+
(center), and of its (unknown) contribution f− (right)

Fig. 2 Radial component of the (unknown) contribution f− of f from (4.5) (bottom) and the reconstructed
contribution fN− for N = 100 and regularization parameters λ = 10−12 (top left), λ = 0.5 · 10−15 (top

center), and λ = 0.5 · 10−17 (top right)

Fig. 3 Radial component of the (unknown) contribution f− of f from (4.5) (bottom) and the reconstructed

contribution fN ,ε
− for N = 100, smoothness parameter k = 2 and regularization parameters λ = 10−11

(top left), k = 2 and λ = 10−12 (top center), and k = 4 and λ = 10−15 (top right)

be very significant, in particular for the higher degrees. This is also reflected in the
reconstructed f̂N ,ε

− in Fig. 3: For smoothness parameter k = 2, the general features
of f− could be reconstructed, but their amplitude is generally underestimated (for
λ = 10−11) or the reconstruction is underregularized and noisy features are introduced
(forλ = 10−12).Better results havebeenobtained for smoothness parameter k = 4, but
especially in the northern polar region the reconstruction still reveals some undesired
contributions.

Additionally, we varied the truncation degree N for the bandlimitation. The results
are indicated in Fig. 4. It can be seen that the truncation at a lower degree N = 50 for
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Fig. 4 Radial component of the (unknown) contribution f− of f from (4.5) (bottom) and the best recon-
structed contribution fN− for N = 50 without noise (top left), for N = 100 without noise (top center), and
for N = 100 with noise (top right)

Fig. 5 Fourier spectrum representation of the undisturbed f̂N+ from Example 1 (left), of the disturbed input

data f̂N ,ε
+ (center), and of the relative quotient of the noise εN and the undisturbed f̂N+ (right)

noise-free data has a similar effect on the reconstruction (in particular in the northern
polar region) as the truncation at a higher degree N = 100 for noisy data. Yet, the
effect of the decrease of the bandlimit N is not particularly severe. However, Fig. 6
indicates that the chosen function f in this example has a rapidly decreasing power
spectrum. Thus, one would not expect a major effect in the first place.

4.2.2 Example 2

We choose the following function that reveals a stronger spatial localization than the
first example:

f(x) = f(θ, φ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜⎜⎝

(t − 0.3)3 (1 − t)3 sin(2(φ − π
2 )) sin(3(φ − 3π

2 ))

(t − 0.3)3 (1 − t)3 sin(2π t) sin(φ − π
2 ) sin(2(φ − 3π

2 ))

(t − 0.3)3 (1 − t)3 sin(2π t) sin(φ − π
2 ) sin(2(φ − 3π

2 )) e−2|φ−π |

⎞

⎟⎟⎠ ,

if t = cos(θ) > 0.3, |φ − π | < π
2 ,

0, else.

(4.6)

The function f and its contributions f+ and f− are illustrated in Fig. 7. Reconstruc-
tions fN− for N = 100 and various choices of smoothing parameters k = 2, 3, 4 are
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Fig. 6 Scaled logarithmic power spectrum of the function f+ from Example 1 (blue line) and from Example
2 (red line)

Fig. 7 Radial component of the (unknown) function f from (4.6) (left), of its (known) contribution f+
(center), and of its (unknown) contribution f− (right)

provided in Fig. 8 (for each smoothing parameter k, the best result among the tested
regularization parameters λ is shown). Overall, it can be said that the results provide a
reasonable approximation of the actual contribution f−. However, similar to the noisy
setup of the first example, the amplitude of the reconstructions either underestimate
the true amplitude of the signal (for k = 2) or some undesirable artifacts in the north-
ern polar regions are introduced (for k = 3, 4). The latter might be explained by
the stronger damping of Fourier coefficients at high spherical harmonic degrees as k
increases, reducing the ability to approximate more localized features. Overall, the
reconstruction of f− seems worse than in Example 1, which is most likely due to the
slower decay of the power spectrum towards higher degrees (compare Fig. 6).

In Fig. 9, we have indicated the influence of a varying bandlimit N . Each recon-
struction shows the best result for that particular bandlimit among all tested parameters
λ and k. It can be seen that the increase in bandlimit reduces artifacts in particular
in the northern polar region and that it sharpens the reconstructed features. However,
considering the power spectrum indicated in Fig. 6, the bandlimit that is required for a
precise reconstruction seems significantly higher than the range of spherical harmonic
degrees that cover the major contributions of the input signal.

5 Conclusion

In this paper, we have derived a method on how to numerically connect the contri-
butions f+ and f− of a general vector field f under the a priori assumption that f is
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Fig. 8 Radial component of the (unknown) contribution f− of f from (4.6) (bottom) and the reconstructed
contribution fN− for N = 100, smoothness parameter k = 2 and regularization parameter λ = 10−14 (top

left), k = 3 and λ = 0.5 × 10−17 (top center), and k = 4 and λ = 10−18 (top right)

Fig. 9 Radial component of the (unknown) contribution f− of f from (4.6) (bottom) and the best recon-
structed contribution fN− for N = 100 (top left), for N = 140 (top center), and for N = 200 (top right)

spatially localized in a subdomain of the sphere. The examples in Sect. 4 illustrate
the capability of the proposed approach but they also indicate the inherent problem
of combining localization assumptions and spectral approximation. Other methods
have been introduced, e.g., in Lesur and Vervelidou (2020) and Vervelidou and Lesur
(2018), that connect f+ and f− via purely spectral arguments and that have been applied
to planetary magnetic fields. However, these spectral arguments typically rely on an
assumption such as f being of induced type, with knowledge of the general structure of
the ambient inducing field (e.g., a constant field). Such an assumption is not necessary
if we argue via spatial localization, as discussed in the paper at hand. The assumption
of spatial localization substitutes the assumption of f being of induced type. It remains
to investigate whether the localization assumption can be reasonably applied to certain
setups of planetary magnetic fields. For the numerics, this might require the use of
more suitable basis functions, such as Slepians that reflect spatial localization better
than spherical harmonics.
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Appendix A: Computation of matrix entries

In order to obtain the entries of the matrices L1, L2 when � is a spherical cap with
center e3 = (0, 0, 1)T and angular radius �0 ∈ (0, π), we exemplarily perform the
explicit computations for the terms 〈y+

l ′,m′ , y−
l,m〉S\� , 〈yd fl ′,m′ , y−

l,m〉S\� . All other terms
can be obtained similarly. It is helpful to consider the following alternative representa-
tion of the vector spherical harmonics (2.8)–(2.10) (e.g., Freeden and Gerhards 2012;
Freeden and Schreiner 2009):

y−
l,m = − 1√

(l + 1)(2l + 1)

(
n̂(l + 1)Yl,m − ∇SYl,m

)
,

y+
l,m = 1√

l(2l + 1)

(
n̂ l Yl,m + ∇SYl,m

)
,

yd fl,m = − i√
l(l + 1)

LSYl,m .

Using Green’s formula, and denoting the Laplace-Beltrami operator by �S = ∇S · ∇S

and the normal derivative with respect to the boundary ∂� by ∂
∂ν
, we obtain

〈y+
l ′,m′ , y−

l,m〉S\�

= − 1

4π
√

(l + 1)(2l + 1)l ′(2l ′ + 1)

∫

S\�
l ′(l + 1)Yl ′,m′(y)Yl,m(y)∗

− ∇SYl ′,m′(y) · ∇SY
∗
l,m(y) dω(y)

= − 1

4π
√

(l + 1)(2l + 1)l ′(2l ′ + 1)

∫

S\�
l ′(l + 1)Yl ′,m′(y)Yl,m(y)∗

+ Yl ′,m′(y)�SY
∗
l,m(y) dω(y)

+ 1

4π
√

(l + 1)(2l + 1)l ′(2l ′ + 1)

∫

∂�

Yl ′,m′(y)
∂

∂ν
Yl,m(y)∗ dσ(y)

= (l − l ′)(l + 1)

4π
√

(l + 1)(2l + 1)l ′(2l ′ + 1)

∫

S\�
Yl ′,m′(y)Yl,m(y)∗ dω(y)

+ 1

4π
√

(l + 1)(2l + 1)l ′(2l ′ + 1)

∫

∂�

Yl ′,m′(y)
∂

∂ν
Yl,m(y)∗ dσ(y),
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〈yd fl ′,m′ , y−
l,m〉S\�

= − i

4π
√

(l + 1)(2l + 1)l ′(l ′ + 1)

∫

S\�
LSYl ′,m′(y) · ∇SY

∗
l,m(y) dω(y)

= i

4π
√

(l + 1)(2l + 1)l ′(l ′ + 1)

∫

S\�
Yl ′,m′(y)LS · ∇SY

∗
l,m(y) dω(y)

− i

4π
√

(l + 1)(2l + 1)l ′(l ′ + 1)

∫

∂�

Yl ′,m′(y)τ (y) · ∇SYl,m(y)∗ dσ(y)

= − i

4π
√

(l + 1)(2l + 1)l ′(l ′ + 1)

∫

∂�

Yl ′,m′(y)τ (y) · ∇SYl,m(y)∗ dσ(y).

The appearing integrals over S\� can be simplified to

γl ′,m′,l,m

=
∫

S\�
Yl ′,m′(y)Yl,m(y)∗ dω(y)

=
∫ 2π

0

∫ π

�0

√
2l + 1

2 − δm,0
Pm
l (cos(θ))e−imφ

√
2l ′ + 1

2 − δm′,0
Pm′
l ′ (cos(θ))eim

′φ sin(θ) dθ dφ

=
{
0, if m �= m′,
2π

√
(2l+1)(2l ′+1)
2−δm,0

∫ cos(�0)

−1 Pm
l (t)Pm

l ′ (t) dt, else.

For the remaining boundary integrals over ∂�, we first observe that ∂
∂ν

= ν · ∇S

and that the unit normal vector ν (pointing into the exterior of S\�) takes the form
ν(y) = e3−(e3·y)y

sin(�0)
if � is a spherical cap with center e3 = (0, 0, 1)T and angular

radius �0 ∈ (0, π). The unit tangential vector τ takes the form τ(y) = − y×e3
sin(�0)

. By
use of recursion relations for the associated Legendre polynomials (e.g., Freeden and
Schreiner 2009), we obtain that

κl ′,m′,l,m =
∫

∂�

Yl ′,m′ (y)
∂

∂ν
Yl,m(y)∗ dσ(y)

=
∫ 2π

0

√
2l ′ + 1

2 − δm′,0
eim

′φ Pm′
l ′ (cos(�0))

1 − t2

sin(�0)

∂

∂t

√
2l + 1

2 − δm,0
e−imφ Pm

l (t)

∣∣∣∣
t=cos(�0)

dφ

=
{
0, if m �= m′,
2π

√
(2l+1)(2l ′+1)

(2−δm,0) sin(�0)
Pm
l ′ (cos(�0))(1 − t2) ∂

∂t P
m
l (t)

∣∣∣
t=cos(�0)

, else,

=

⎧
⎪⎪⎨

⎪⎪⎩

0, if m �= m′,
2π

√
(2l+1)(2l ′+1)

(2−δm,0) sin(�0)
Pm
l ′ (cos(�0))

(
(l + 1) cos(�0)Pm

l (cos(�0))

−√
(l − m + 1)(l + m + 1)Pm

l+1(cos(�0))
)
, else,

μl ′,m′,l,m =
∫

∂�

Yl ′,m′ (y)τ (y) · ∇SYl,m(y)∗ dσ(y)

=
∫ 2π

0

√
2l ′ + 1

2 − δm′,0
eim

′φ Pm′
l ′ (cos(�0))

1

sin(�0)

∂

∂φ

√
2l + 1

2 − δm,0
e−imφ Pm

l (cos(�0))dφ
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=
{
0, if m �= m′,
− 2imπ

√
(2l+1)(2l ′+1)

(2−δm,0) sin(�0)
Pm
l ′ (cos(�0))Pm

l (cos(�0)), else.

Summarizing, the entries of the matrices L1 and L2 look as follows:

〈y+
l ′,m′ , y−

l,m〉S\� = (l − l ′)(l + 1)γl ′,m′,l,m + κl ′,m′,l,m
4π

√
(l + 1)(2l + 1)l ′(2l ′ + 1)

,

〈y−
l ′,m′ , y+

l,m〉S\� = (l − l ′) l γl ′,m′,l,m + κl ′,m′,l,m
4π

√
(l ′ + 1)(2l ′ + 1)l(2l + 1)

,

〈y+
l ′,m′ , y+

l,m〉S\� = (l + l ′ + 1) l γl ′,m′,l,m + κl ′,m′,l,m
4π

√
l(2l + 1)l ′(2l ′ + 1)

,

〈y−
l ′,m′ , y−

l,m〉S\� = (l + l ′ + 1)(l + 1)γl ′,m′,l,m + κl ′,m′,l,m
4π

√
(l + 1)(2l + 1)(l ′ + 1)(2l ′ + 1)

,

〈yd fl ′,m′ , y−
l,m〉S\� = − i μl ′,m′,l,m

4π
√

(l + 1)(2l + 1)l ′(l ′ + 1)
,

〈yd fl ′,m′ , y+
l,m〉S\� = − i μl ′,m′,l,m

4π
√
l(2l + 1)l ′(l ′ + 1)

.
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