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Abstract
The trend analysis of meteorological time series has gained prominence in recent 
decades, the most common method being the so-called ‘linear analytical trend 
analysis’. Until the mid-1990s, trend analysis was commonly performed on non-
homogenized data sets, which frequently led to erroneous conclusions. Nowadays, 
only homogenized data sets are examined, so it really is possible to detect climate 
change in long meteorological data sets. In this paper, the methodology of linear 
trend analysis is summarized, the way in which the model can be validated is dem-
onstrated, and there is a discussion of the results obtained if unjustified discontinui-
ties caused by changing measurement conditions, such as the relocation of stations, 
changes in measurement time, or instrument change occur. On the basis of an exam-
ination of records for the preceding 118 years, it is possible to state that both annual 
and seasonal mean temperature trends display a significant warming trend. In the 
case of homogenized data series, the change is significant over the entire territory 
of Hungary; in the case of raw data series, however, the change is not significant 
everywhere. The validity of the linear model is tested using the F-test, a task as yet 
carried out on the entire Hungarian data series, series comprising records for over 
100 years. Furthermore, neither has a comparison been made of the trend data for 
raw data series and the homogenized data series with the help of information on sta-
tion history to explore the causes of inhomogeneity.
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1 Introduction

The global average temperature has increased at an unprecedented pace over 
the past century. It has been shown (e.g., Bloomfield 1992; Gao and Hawthorne 
2006; Keller 2009) that this increase is statistically significant (IPCC 2013; Fos-
ter and Rahmstorf 2011). Increases in temperature have become apparent in many 
places, both on local and regional scales. The problem is that the data on regional 
and local temperatures obtain a greater degree of noise than the global average, 
due to the higher level of averaging in the case of global figures. It is therefore 
not always clear whether a regional or local warming signal, although apparent, 
can be considered statistically significant.

Long term instrumental climate observations are available to study the warm-
ing signal. The value of these datasets, however, strongly depends on their homo-
geneity. Results from the homogenization of instrumental climate records indicate 
that the typical size of inhomogeneities is often of the same order as the climate 
change signal itself during the twentieth century (Auer et al. 2007; Menne et al. 
2009; Brunetti et al. 2006; Caussinus and Mestre 2004; Della-Marta et al. 2004).

Although homogenization began in the 1980s (Alexandersson 1986), the first 
homogenization seminar was held, in Budapest, in 1996 (Szalai 1996). Since 
then, homogenized datasets have been produced in many countries and numer-
ous software programs have been published in meteorology (Aguilar 2003; Sze-
ntimrey 1998). In recent decades, not only has the need for homogenization been 
accepted, but it is generally considered that only via these climate time series is it 
worth studying climate, and especially climate change (Yosef et al. 2019; Mamara 
et al. 2016; Caussinus and Lyazrhi 1997; Trewin 2013; Zhang et al. 2000).

The purpose of this study is to show the difference between the results of trend 
analysis performed on raw and homogenized data sets and to uncover station his-
tory information (META data) that may be responsible for any inconsistencies 
found during homogenization (Delvaux et  al. 2019; Jones et  al. 2004). A fur-
ther aim in the present work is to determine which kinds of data series the linear 
model can accept. This type of analysis has previously been conducted on only a 
small number of raw data series in Hungary (Szentimrey 1989), but in this study 
statistical tests are performed for annual and seasonal mean temperature values 
from 25 Hungarian meteorological stations, and not only are they performed on 
raw, but also on homogenized data sets.

2  Materials and methods

2.1  Data

For the purposes of this study, daily average temperature data for 25 Hungar-
ian stations (Fig.  1) were used covering the period 01.01.1901 to 31.12.2018. 
As a first step, representative time series had to be generated from the raw 
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measurements. Homogenization removes inhomogeneities from the stations’ data 
series, acts as a form of quality control, and fills the gaps. In order to calculate a 
national average, the station data series are interpolated to a relatively dense reg-
ular grid. The annual and seasonal averages calculated from the gridpoints thus 
obtained can rightly be called a national average. In the course of gridding, these 
raw and homogenized station values are interpolated to a regular grid at a resolu-
tion of 0.1 degree.

2.2  Homogenization, data completion, quality control in MASHv3.03

Climate studies, in particular those related to climate change, require long, high-
quality, controlled, data sets which are both spatially and temporally representative. 
Changing the context in which the measurements were taken, for example relocat-
ing the station, or a change in the frequency of measurements, or in the instruments 
used may result in an unduly fractured time series (Klein Tank et al. 2002; Xu et al. 
2013). Data errors and inhomogeneities are eliminated and data gaps are filled in 
using the MASH (Multiple Analysis of Series for Homogenization; Szentimrey 
2013) homogenization procedure.

What kind of software is employed for homogenization is of great importance, 
because if not just inhomogeneities are removed from the data series, but also the 
process unintentionally alters the signal of climate change, the result will be mis-
leading. Thanks to the mathematical model, using the MASH software, it is possible 
to detect climate change in the homogenized data set (Venema et al. 2012; Szentim-
rey 2006a; Peterson et al. 1998).

INDEX Name fi la 
1 Sopron Kuruc-domb 16.6000 47.6750
2 Szombathely 16.6478 47.1983
3 Zalaegerszeg Nagykutas 16.8128 46.9258
4 Nagykanizsa 16.9706 46.4561
5 Mosonmagyaróvár 17.2667 47.8917
6 Keszthely Tanyakereszt 17.2417 46.7333
7 Kaposvár 17.8739 46.3628
8 Tata Új Út 18.3075 47.6503
9 Budapest Széchenyi -hegy 18.9833 47.4917
10 Siófok 18.0417 46.9083
11 Pécs Pogány 18.2350 45.9950
12 Budapest belterület 19.0250 47.5083
13 Aszód/Gödöllő 19.4750 47.6583
14 Jászberény 19.9167 47.5000
15 Kecskemét repülőtér (dél) 19.7597 46.9122
16 Öregcsertő-Csornapuszta 19.1456 46.5789
17 Baja Csávoly 19.0167 46.1833
18 Miskolc Diósgyőr 20.7267 48.0947
19 Eger 20.3889 47.9039
20 Túrkeve 20.7417 47.1083
21 Szarvas 20.5278 46.8694
22 Orosháza 20.6667 46.5667
23 Szeged külterület 20.0903 46.2561
24 Nyíregyháza Napkor 21.8833 47.9583
25 Debrecen 21.6083 47.4917

Fig. 1  Location of the stations: name, geographical coordinates where la is the latitude and fi is the lon-
gitude (EPSG:4326:WGS 84)
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2.2.1  Additive model of monthly mean temperature series in MASH

If the data series are normally distributed (e.g. temperature), then the additive 
model can be used (Szentimrey 2006b). In the case of relative methods, a gen-
eral form of additive model for additional monthly series belonging to the same 
month in a small climate region can be expressed as follows,

where �(t) is the common and unknown climate change signal, Ej represents the 
spatial expected value, IHj(t) the inhomogeneity signals and �j(t) normal white 
noise series. The type of inhomogeneity IH(t) is in general a ‘step-like func-
tion’ with unknown break points T  and shifts IH(T) − IH(T + 1) ≠ 0 , and it is 
generally assumed that IH(n) = 0 . The normally distributed vector variables 
�(t) =

[
�1(t),… , �N(t)

]T
∈ N(0,C)(t = 1,… , n) are totally independent in time. The 

spatial covariance matrix C describes the spatial structure of the series (Szentimrey 
2014).

2.2.2  The main features of MASHv3.03

Advantages of MASHv3.03 in the homogenization of monthly series:

• It is a relative homogeneity test procedure.
• It is a step-by-step iteration procedure: the role of series (candidate, reference)
  changes step by step in the course of the procedure (Supplementary 

Sects. 1, 2, 3).
• An additive or multiplicative model can be used depending on the distribu-

tion.
• It includes quality control and missing data completion.
• It provides the homogeneity of the seasonal and annual series as well.
• Metadata (probable dates of break points) can be used automatically.
• The homogenization results and the metadata can be verified.

In the homogenization of daily series:

• The procedure is based on the detected monthly inhomogeneities.
• It includes quality control and the completion of missing data in daily data.

2.3  MISH v1.03 software

2.3.1  Linear meteorological model for expected values

In the statistical modeling of the meteorological elements it is necessary to 
assume that the expected values of the variables will change in space and in time 
alike. The spatial change means that the climate is different in different regions. 

(1)Xj(t) = �(t) + Ej + IHj(t) + �j(t) (j = 1, 2,… ,N;t = 1, 2,… , n),
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The temporal change is the result of any changes in global climate. Consequently, 
in the case of the linear modeling of expected values it is assumed that

where the location vectors s represent the elements of the given space domain D and 
t is the time, �(t) is the temporal trend, that is, the climate change signal and E(s) is 
the spatial trend (Szentimrey and Bihari 2014).

2.3.2  Additive (linear) interpolation formula

Assuming a linear model, the appropriate additive meteorological interpolation 
formula is as follows,

where 
∑M

i=1
�i = 1 because of unknown �(t).

The quality of interpolation can be characterized by the root-mean-square 
error,

and by the representativity value: REP(s0) = 1 −
RMSE(s0)

D(s0)
.

The optimal interpolation parameters �0, �i (i = 1,… ,M) minimize the root-
mean-square error and these are known functions of the local statistical parameters 
(expectations, standard deviations) and the stochastic connections (correlations), 
which are climate statistical parameters in meteorology.

The vector of optimal weighting factors �T =
[
�1,… , �M

]
 written in covariance 

form,

and it is a known function of the parameters: D
(
�0

)/
D
(
�i

)
(i = 1,… ,M), �, �.

Consequently the unknown statistical parameters are the spatial trend 
differences E

(
�0

)
− E

(
�i

)
( i = 1,… ,M ) , the standard deviation ratios 

D
(
�0

)/
D
(
�i

)
( i = 1,… ,M ) and the correlation system �, � . In essence these 

parameters are climate parameters which in fact means we could interpolate opti-
mally if we knew the climate (Szentimrey et al. 2011; Szentimrey et al. 2014).

(2)E
(
Z
(
si, t

))
= �(t) + E

(
si

)
(i = 0,… ,M)

∧

Z
(
s0, t

)
= �0 +

M∑
i=1

�i ⋅ Z
(
si, t

)

RMSE(s0) =

√√√√E

((
Z
(
s0, t

)
−

∧

Z
(
s0, t

))2
)
,

The optimal constant term is: �0 =

M∑
i=1

�i
(
E
(
�0

)
− E

(
�i

))

�
T =

(
�
T + �

T

(
1 − �T�−1�

)
�T�−1�

)
�

−1,
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2.3.3  The main features of MISHv1.03

The software version MISHv1.03 (Meteorological Interpolation based on Surface 
Homogenized Data Basis; Szentimrey and Bihari 2014) consists of two units, the mod-
eling and the interpolation systems. The interpolation system can be applied to the 
results of the modeling system (Supplementary Sect. 4). Below, there is a summary of 
these two units of the software developed.

The modeling subsystem for climate statistical (local and stochastic) parameters:

• This is based on long homogenized data series and supplementary deterministic 
model variables. The model variables may include such elements as height, topog-
raphy, distance from the sea etc. There is neighbourhood modeling, correlation 
model for each grid point.

• It is also a benchmark study, a cross-validation test for interpolation error or repre-
sentativity.

• It should be noted that the modeling procedure must be executed only once before 
the interpolation applications.

The interpolation subsystem:

• Additive (e.g. temperature) or multiplicative (e.g. precipitation) model and interpo-
lation formula can also be used, depending on the climate elements.

• Daily or monthly values and the means from a number of years can be interpolated.
• Just a few predictors are sufficient for the interpolation, and no problem arises if the 

greater part of daily precipitation predictors is equal to 0.
• Representativity is also modelled.
• Supplementary background information (stochastic variables) e.g. satellite, radar, 

forecast data can also be used.
• Data series completion, that is, missing value interpolation, completion for monthly 

or daily station data series is possible.
• Interpolation, the gridding of monthly or daily station data series for given pre-

dictand locations is made possible. In case of gridding the predictand locations are 
the nodes of a relatively dense grid.

2.4  Availability of MASHv3.03 and MISHv1.03 software

Both pieces of software can be downloaded from the website of the Hungarian Meteor-
ological Service. www.met.hu/en/omsz/rende zveny ek/homog eniza tion_and_inter polat 
ion/softw are/.

2.5  Linear trend estimation

In this chapter the linear model will be described. The use of the α-confidence level 
estimation in preference to the usual trend coefficient is explained in relation to its 
use in the description of the change over the total period.

http://www.met.hu/en/omsz/rendezvenyek/homogenization_and_interpolation/software/
http://www.met.hu/en/omsz/rendezvenyek/homogenization_and_interpolation/software/
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2.5.1  General case

In a discrete case, the following general model for the meteorological time series 
may be described as:

where the trend function of the temporal changes of the measurements x(t) is 
denoted by m(t) and is accompanied by the noise ε(t); in situations where each ele-
ment is identically distributed, their expected value is 0, their standard deviation 
is σ, and they are totally independent. For the investigation of meteorological time 
series, a more specialized model than (3) is employed, namely the linear model 
(Szentimrey 1989).

2.5.2  Linear model

In the linear model, measurements are approximated as the following function of 
time (Dévényi and Gulyás 1988; Mudelsee 2019; Sneyers 1990):

where the elements of series ε(t) are identically distributed and they are totally inde-
pendent, E(ε(t)) = 0 and D(ε(t)) = σ (t = 1,2,…,n).

Estimation: 

where

Estimation of change over the total period: ĉ2⋅ (n − 1).
A couple of texts on mathematical statistics provide the linear trend estimation 

and its properties described below (Móri and Székely 1986; Wooldridge 2013).
Properties:

• Generally: best linear unbiased estimator (BLUE)
• In the case of normal distribution ( ε(t) ∈ N(0;σ2) ): 

 and ĉ and S are independent. 

(3)x(t) = m(t) + ε(t) t = 1, 2,… , n

(4)x(t) = c1 + c2 ⋅ t + ε(t) t = 1, 2,… , n

ĉ1 = x − ĉ2t̄ ĉ2 =

∑n

t=1
(x(t) − x̄(t))

�
t − t̄

�
∑n

t=1

�
t − t̄

�2

x̄ =

∑n

t=1
x(t)

n
and t̄ =

∑n

t=1
t

n
.

ĉ2 ∈ N

�
c2;

σ2∑n

t=1

�
t − t̄

�2
�
;

S2 =
1

n − 2

n�
t=1

�
x(t) −

�
ĉ1 + ĉ2 ⋅ t

��2
∈

σ2

n − 2
χ2
n−2
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If a series of data is investigated for which the noise component is not normally 
distributed and/or the temporal independence is violated, other procedures should 
be considered, as described in Mudelsee (2019). However, in the present case this 
is not an issue, since the assumptions (Dévényi and Gulyás 1988; Spinoni et  al. 
2015; Jones et al. 2004) are acceptable for annual, seasonal, and monthly average 
temperature series as well, both in terms of normality and independence. The entire 
data set is not examined together in the case of trend estimation, but the appropri-
ate seasons or months are taken separately, as is the case in the homogenization and 
interpolation.

2.5.3  Significance, definition of the α‑confidence level estimation

In this study it is assumed that the noise is normally distributed, which is acceptable 
in the case of annual, seasonal and monthly average temperatures. The hypothesis 
test can be used to verify whether any change is significant. On the basis of prop-
erty (5) an α-confidence level confidence interval ( ̂c2α1 , ĉ2α2 ) can be given for c2 . The 
proposition can be accepted that c2 ≠ 0 , that is, a trend can be detected from the data 
series if the confidence interval does not include 0. So in this case the null hypothe-
sis is rejected, and there is a change. If the confidence interval contains only positive 
values, then a significant increase has taken place, if only negative, a decrease. If the 
extent and direction of climate change over a larger area (in this case the whole of 
Hungary) is to be investigated, it is useful to calculate the α-confidence level esti-
mate and present these values numerically.

1. Definition Let the α-confidence level estimation ( ̂c2α ) be:

• ĉ2α = 0 if 0 ∈ (ĉ2α1 , ĉ2α2);
• ĉ2α = ̂c2α1 if 0 < ̂c2α1;
• ĉ2α = ̂c2α2 if ĉ2α2 < 0.

The estimation of significant change over the total period may then be calculated: 
ĉ2α(n − 1). If the trend coefficient is not displayed but the α-confidence level estima-
tion is, then at the given confidence level it is possible to be certain that throughout 
the given period this amount of change occurred.

2.6  Spatial interpolation of the temporal trend

After calculating the change over the total period (Fig.  2), the resulting values 
are interpolated into a dense, regular grid to provide an accurate nationwide map 
of the trend values in space. For this purpose, the MISH program system is used 

(5)
ĉ2 − c2

S

���� n�
t=1

�
t − t̄

�2
∈ Studentn−2 where

�
S =

√
S2
�
.
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(Szentimrey and Bihari 2014), a program developed specifically for the interpola-
tion of meteorological elements. In this case, the trend values are interpolated, since 
it clearly observable that the same result is obtained by interpolating station series 
and then calculating the trend as would be if the station trends were interpolated. Of 
course, this is only true if the interpolation is based on an adequate mathematical 
formula, e.g. MISH (Szentimrey et al. 2011). In other cases, of necessity only the 
station values would be displayed on the map (Vincent et al. 2012).

Because MISH software was specifically developed to interpolate meteorological 
elements, its use is internationally accepted. The CARPATCLIM database has been 
developed in collaboration between 9 European countries, and is a database in which 
homogenization was performed by MASHv3.03 and interpolation by MISHv1.03 
software (Szalai et al. 2013). Trend analyses were also conducted on this database, 
representative both in space and in time (Spinoni et al. 2015).

In this work the seasonal, annual average mean temperature trends were cal-
culated for 25 Hungarian stations over the period of 1901–2018. In order to dis-
play trend values on maps, interpolation is not performed with MISH software to a 
0.1 × 0.1 degree grid point, but at a much denser resolution, namely 0.5′ × 0.5′, tak-
ing advantage of the modeling element of MISH. Because of this dense resolution 
it is possible to interpolate to more than 200,000 Hungarian gridpoints. In order to 
show how the statistics are misrepresented by the inhomogeneous data set, the same 
statistics as for the homogenized data set were calculated a number of times. The 
raw data sets were only filled in by the MASH program and the data sets were not 
homogenized and quality controlled. For both raw and homogenized data series the 
change over the total period was calculated using the trend coefficient estimate. In 
this study, the confidence level (α) is 0.9 for all statistics.

2.7  Trend estimation in general cases

Approaching the trend function with a linear function, the change over the total 
period is the sum of small decreases or increases of equal magnitude each year. 
However, it is clear that the situation is not so simple, and that the climate is highly 

Fig. 2  A general overview of the main elements of the applied statistical data analysis processes and 
results
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unlikely to be changing to an identical extent every year. However, if the aim is to 
determine the change over the total period, the linear model is simple and readily 
applicable. In order to be able to use the results, i.e. to determine whether the linear 
model is acceptable, the validity of the assumption must be checked (4). The ques-
tion arises of how linear model estimation can be interpreted in the general case (3), 
and in this case, how the results obtained should be interpreted. Szentimrey showed 
that linear analytical trend analysis can be applied to the more general case (3), but 
in this case the vector �̂ is used to estimate the coefficient vector of the projection of 
the trend function onto a linearly independent function system (Szentimrey 1989). A 
special case is shown in Fig. 3. The grey dots represent the observations, the theoret-
ical trend function is shown by the blue line, the projection of the theoretical trend 
function by the black line. The estimation based on the linear model is represented 
by the red dashed line.

Those properties of the estimation which are good are also true of the general 
case, in which statements do not refer to the trend function, but to its projection. In 
this general case, it is possible to apply the tests given for the linear model and con-
struct a confidence interval for the trend coefficient.

2.8  F‑test

The difference between the trend function and the projection can be checked with an 
F-test. Assuming that noise is normally distributed, which is acceptable for annual, 
seasonal and monthly average temperatures, the test can be given as follows (Szen-
timrey 1989):

The null hypothesis:

Fig. 3  Observation  (xt), trend function  (mt), the projection of the trend function  (c1 + c2t) and the estima-
tion ( ̂�1 + �̂2t)
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In this case, the test statistics (PS) can be written as follows:

where 
[
n∕2

]
 is the integer part of n/2, δ(t) = x(2t) − x(2t − 1) where t = 1,…,

[
n∕2

]
 , 

δ̄ =
∑[n∕2]

t=1
δ(t)

[n∕2]
.

It can be proven that if the null hypothesis is true, then the PS statistics follow an 
F distribution with parameters n − [n/2] − 1, [n/2] − 1 (Szentimrey 1989).

3  Results and discussion

3.1  Annual trend

In the following section the results are presented, rather representatively than 
exhaustively. Figure 4a, b shows the change in the mean annual temperature over 
the total period, the values are in °C, and the trend coefficient was interpolated using 
MISH for the whole territory of Hungary. Comparing the two maps, a completely 
different picture is obtained. Once the endpoints of the confidence interval are calcu-
lated, the question of whether the change is significant on the given confidence level 
is addressed (1. Definition). If it is not, no trend is given, whereas in the case of a 
significant change, the lower absolute value of the endpoints of the confidence inter-
val will be the α-confidence level estimate ( ̂c2α ). If the change over the total period 
is calculated with the α-confidence level estimate, it is possible to say that with a 
probability α in the last 118 years, such-and-such an amount of change happened 
(Fig. 4c, d). While the change is significant in the case of homogenized data sets at 
the 0.9 confidence level, almost a quarter of the raw data series does not show any 
significant change at the 0.9 confidence level. The detailed results of trend estima-
tion can be seen in “Appendix”. The average difference between the homogenized 
and raw trend (estimation of change over the total period) is generally 0.3 °C.

To understand why such different results are obtained, it is necessary to look at 
station trends (Fig. 5). It can be clearly seen that in the case of homogenized data 
series there is a significant increase of temperature for each series at the 0.9 confi-
dence level, while in the case of a quarter of the raw data series no change can be 
detected, or if so, then there are significant differences at the 0.9 confidence level.

The greatest differences can be seen in the cities, where homogenization with 
MASH gave the highest value of inhomogeneities. There is no significant change 
at the 0.9 confidence level in the raw data series at stations 6, 11, 16, 21 and 23, 
whereas the homogenized data series do show a change over the entire period of 
about 0.8  °C at the 0.9 confidence level. Which corrections were made during 
homogenization and the available station history data are shown. It was already 

H0 ∶ ∃� = (c1, c2), m(t) ≡ c1 + c2 ⋅ t t = 1,… , n

(6)PS =

�
n∕2

�
− 1

n −
�
n∕2

�
− 1

⎛
⎜⎜⎝

∑n

t=1
(x(t) − (ĉ1 + ĉ2 ⋅ t))

2

1

2

∑[n∕2]
t=1

(δ(t) − δ̄)2
− 1

⎞
⎟⎟⎠
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Fig. 4  Annual mean temperature: Estimation of change over the total period ( (n - 1) ĉ2 ), 1901–2018 (°C) 
homogenized series (a) and raw series (b); change over the total period, α = 0.9 confidence level estima-
tion ĉ2α (n − 1), 1901–2018 (°C), homogenized series (c) and raw series (d)

Fig. 5  Station data of annual mean temperature, homogenized series and raw series Change over the total 
period, α = 0.9 confidence level estimation �̂2α (n − 1), 1901–2018 (°C)
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clear that META data alone do not justify breakpoints, and that records are often 
incomplete (Peterson et  al. 1998). The best known inhomogeneity is the urban 
heat island effect. On the other hand, with the advent of aviation, meteorological 
stations have often been relocated from cities to nearby, typically cooler, airports 
(Vincent et  al. 2012; Trewin 2010). In this study, however, an example of pre-
cisely the opposite effect is present: at one of the Hungarian stations, the airport 
is located in a warmer micro-climate than that of its previous site. Other non-
climatic changes can also be caused by changes in measurement methods: change 
in measurement time, or instrument change (Begert et al. 2005).

As became apparent in the course of this investigation, one of the most com-
mon causes of inhomogeneity is that the station has been moved from indoors 
to outdoors or vice versa and thus the measurement conditions have changed 
significantly. The second most common cause is that a methodological change 
has taken place, namely, the daily average temperature has been calculated from 
other data because K3 stations (K3 = "limatological station” with 3 measure-
ments/day) became K4 (K4 = "climatological station” with 4 measurements/day), 
K8 (K8 = "climatological station” with 8 measurements/day), S1 (S1 = "synoptic 
station” 144 measurements/day) or S2 (S2 = "synoptic station with observer” 24 
measurements/day) stations. In this case the extra night time measurement or the 
hourly or 10 min measurement were significantly different from the average tem-
perature calculated from the 3 measurements/day previously used.

Nagykanizsa (station 4): The raw data series show no significant change 
(Fig. 6a), whereas the homogenized series show a significant increase of 0.8 °C 
at the 0.9 confidence level. This was mainly due to the relocation to the outskirts 
in 1951 and the change from K3 to K8 status. The station was subsequently relo-
cated in 1957, 1958, 1959, 1960 and 1979 but these relocations did not cause as 
much disruption as the 1951 change in methodology and relocation.

Keszthely (station 6): The homogenized data sets show a warming of 0.93 °C 
at the 0.9 confidence level (Fig. 6b), while the raw data sets show no significant 
change at the 0.9 confidence level. The station was moved in 1962, 1966, 1995, 
2000 and 2001. The biggest discontinuity was caused by the relocation to the out-
skirts in 1995, whereas prior to that it was at the garden of the Academy and Col-
lege of Agriculture, while since 1995 it has been operating at Tanyakereszt. In the 
meanwhile, measurements were carried out at FlyBalaton Airport for 1 year, and 
when this ceased it returned to Tanyakereszt. Because homogenization adjusts to 
the present, MASH automatically downgraded the city centre homogenized data 
series.

Pécs (station 11): In Pécs, the migration to Pécs Pogány caused the high-
est detected inhomogeneity. Before that, measurements were made at the College 
of Education, the Erzsébet University, and then in the garden of a nunnery called 
Notre Dame in downtown Pécs. In 1956, the measurements were moved to Pogány 
because an airport was built there. The transition from K3 to K8 status in 1956 was 
also a key turning point. From 1969 onwards it was an S2 station. It can be seen that 
while the raw data series show no change at the 0.9 confidence level in the homog-
enized data series, the total change over the entire period is estimated at 0.77 °C at 
the 0.9 confidence level (Fig. 6c).
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Öregcsertő-Csornapuszta (station 16): Measurements were taken within the town 
of Kalocsa until 1961, then in 1961–1992 the station moved to the state economy 
at a considerable distance from the town center. In 1966 the status of the station 
was changed from K3 to K4. After that the station moved to Öregcsertő and then to 
Csornapuszta in 2006, both of which are in the outskirts. 0.74 °C is an estimate of 
the change over the total period for homogenized series at the 0.9 confidence level 
(Fig. 6d). The significant difference between homogenized and raw data sets is due 
to those changes that took place in the 1960s.

Szarvas (station 21): From 1901 the measurements were made at the garden 
of the local High School until 1928. At that time it was moved to an Economics 
School, and in 1936 to another location in the outskirts. The Hungarian Meteoro-
logical Service’s research station from 1968, this location saw a change in status 
to K4. There was another move in 1975, and again in 1998 its status became an S1 
station. It appears that in the course of homogenization, the raw measurements were 
shifted towards lower values before 1968 and higher ones thereafter. At this station, 
not only the relocations but also the methodological changes contributed to the fact 
that the two trend values are very different (Fig.  6e): in the case of homogenized 
data series it is 0.81 °C at the 0.9 confidence level, while in the case of raw data 
series it is 0 °C at the 0.9 confidence level.

Szeged (station 23): In common with other stations, where there is no significant 
change in temperature for the raw data series at the 0.9 confidence level, the Szeged 
station has moved several times. Until 1926, the measurements were made in the 

Fig. 6  Station data of annual mean temperature, homogenized series and raw series and the fitted trend-
lines at Nagykanizsa (a), Keszthely (b), Pécs (c), Öregcsertő (d), Szarvas (e), Szeged (f), 1901–2018
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garden of the Piarist High School, and then until 1951 they were made at the Uni-
versity. A significant degree of inhomogeneity was caused by the relocation from 
location within the city to the outskirt in 1951. In this case, too, the station moved 
to an airport and at the same time switched from K3 to K8 status. The station also 
moved within the airport, but the measurement program changed significantly with 
the change from K8 to S1 status in 2004. The homogenized data series displayed a 
change of 0.87 °C over the total period at the 0.9 confidence level (Fig. 6f), while 
the raw data series do not show any trend due to a less extreme diurnal pattern of 
temperature variation.

The results of three stations showed that the rate of warming up is significantly 
higher for the raw data series than for the homogenized series: those at Budapest, 
Siófok and Debrecen. In the case of the center of Budapest (station 12) the effect of 
the urban heat island effect can be clearly detected in the raw data series (Fig. 7a), 
while at Siófok (10) the relocation of the station from the city center to the water-
front causes a break in the data series (Fig.  7b). In the case of Debrecen (station 
25), moving to the outskirts did not result in cooling, and in fact higher values were 
measured. The data from the period between 1901–1950 was collected mainly in 
Debrecen-Pallag (Fig.  7c), which is in the northern part of the city, in a location 
surrounded by forests, though the station was then moved to the airport, which is 
the south part of the city, where there is extensive pasture land around the airport. It 
is widely known that the climate in a forest is cooler than in such open, flat terrain.

3.2  Seasonal trend

Figure S1 shows the seasonal trends for cases in which it can be clearly seen that the 
warming is stronger in spring and summer than in autumn and winter. In the case of 
raw data series, the change is not significant in several cases at the 0.9 confidence 
level. Figure S2 shows the amount of change in spring over 118 years, on the basis 
of an α-confidence level estimate. As in Hungary the average spring temperature 
in the homogenized data series increases the most, there is a striking contradiction 
in the case of raw data series. In this case, no significant trend is obtained in more 
than one third of the area. As with spring, the summers also display strong warming, 
with the trend for raw and homogenized data series shown in Fig. S3. Autumn (Fig. 
S4) and winter (Fig. S5) show less warming in the homogenized data sets, as the 
raw data sets do not show significant changes at the 0.9 confidence level in as many 
places as the homogenized data sets.

3.3  Cooling down detected when checking raw monthly values

An examination of the trend of monthly average temperatures shows that they dis-
play a greater degree of variability; for example, in December there is no significant 
change in the homogenized data series at the 0.9 confidence level, but the raw data 
series display a significant negative trend at the 0.9 confidence level, and this is also 
true when a station was moved to the outskirts. That station was the one at Pécs (11), 
whose raw and homogenized December data are shown in Fig. 8. It is clear to what 
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Fig. 7  Station data of annual mean temperature, homogenized series and raw series and the fitted trend-
lines at Siófok (a), Budapest (b), Debrecen (c), 1901–2018
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extent inhomogeneity was caused by moving the station from the city in 1956. If this 
inhomogeneity were not removed from the raw data series, we would falsely draw 
the conclusion that climate change at Pécs is in the opposite direction of the national 
or global trend. Of course, this is not the case, which is why homogenization has to 
be performed before climate studies are carried out and the statistics determined.

3.4  F‑test

While the PS test statistics provided by Formula (6) fall below the critical value of 
1.53 for a significance level of 0.1 in the 118-year homogenized time series of mean 
annual temperatures for 25 national stations, the same is not true for the raw data 
series. In this case, data errors and inhomogeneities make it impossible to examine 
only climate change. The test statistical values are shown in Fig. 9.

After applying the F-test to seasonal temperature values it was found that the 
summer values show a very different pattern. The PS values of seasonal mean tem-
peratures for homogenized and raw series are shown in Fig. 10. Autumn and winter 
test statistics show that the linear model is acceptable with the raw and the homoge-
nized data series as well. However, in the case of spring there are two stations where 
the linear model is not acceptable. In the case of summer values, most of the test 
statistics seem to be higher than the critical value.

Figure S6 displays the homogenized seasonal mean temperature values. The 
scattering of summer averages is typically below and above the trend line fitted 
to the homogenized data series, and the summer standard deviation is the small-
est of any of the seasons, so the difference between the trend function and its 
projection can be relatively large in any case. Here the reader is referred back 
to Sects.  2.7 and 2.8: according to the F-test, the linear model is unacceptable 
for summer average temperatures. A higher order, linearly independent function 
system might be more appropriate, as it would allow the differences between the 

Fig. 8  December mean temperature of Pécs station, homogenized series and raw series and the fitted 
trendlines, 1901–2018 (°C)
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trend function and its projections to the function system to be kept to a minimum. 
Returning, however, to the general case, it is still possible to use the estimate for 
change over the total period, in which case the statements made here do not refer 
to the trend function, but to its projection.

Fig. 9  Station data of PS values, homogenized series and raw series, annual mean temperature, The criti-
cal value of 1.53 for a significance level of 0.1

Fig. 10  Station data of PS values, homogenized series and raw series, seasonal mean temperature Winter 
(a), Spring (b), Summer (c), Autumn (d)
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4  Conclusion

On the basis of the results obtained, it is possible to say that only homogenized and 
quality controlled data sets should be used for climate change studies. It is also rea-
sonable to state that the linear model is acceptable at a significance level of 0.1 for 
the Hungarian homogenized annual data series. This is also true for spring, win-
ter and autumn trends, but it has been found that this type of estimation of change 
is unacceptable for summer data. Finding an applicable higher order function sys-
tem to estimate the summer trend would be an interesting topic to be investigated 
in a future study. The way in which inhomogeneities can misrepresent statistics has 
also been demonstrated, even to the extent that the opposite result is obtained after 
removing discontinuities. It is important to note that the standard deviation of the 
trend coefficient estimation in the present work depends on the variance of the given 
meteorological element and on the sample size, i.e. the length of the period. So the 
longer data series at researchers’ disposal, the better the chances of correctly charac-
terizing the direction and degree of climate change. Changes in Hungary have been 
shown on maps, including only those values where a significant trend was obtained 
as a result of the hypothesis test. In this way, it is possible to show actual changes in 
space, and it is also very important to know in which months and seasons and which 
part of the country the temperature is rising or falling (Rebetez and Reinhard 2008).

In the present study, it has been demonstrated that the detection of climate change 
strongly depends on the choice of statistical methods. New, more adequate meth-
ods can therefore improve our knowledge and understanding of the climate. This, in 
turn, requires a knowledge and understanding of mathematical statistics.
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2. The lower endpoint of the confidence interval,change over the total period:ĉ2α1 ⋅ 
(n − 1)

3. The upper endpoint of the confidence interval, change over the total period:ĉ2α2 ⋅ 
(n − 1)

4. The α confidence level estimation of change over the total period: ĉ2α (n − 1)

Station number ĉ
2
⋅ (n − 1) ĉ

2𝛼1
⋅ (n − 1) ĉ

2𝛼2
⋅ (n − 1) ĉ

2𝛼
⋅ (n − 1)

1 1.4184 1.0395 1.7973 1.0395
2 1.3454 0.9737 1.7171 0.9737
3 1.3327 0.9573 1.7082 0.9573
4 1.1590 0.7957 1.5224 0.7957
5 1.3734 0.9954 1.7515 0.9954
6 1.2968 0.9292 1.6644 0.9292
7 1.0231 0.6518 1.3944 0.6518
8 1.2544 0.8814 1.6275 0.8814
9 1.2918 0.9215 1.6621 0.9215
10 1.3427 0.9798 1.7056 0.9798
11 1.1491 0.7696 1.5285 0.7696
12 1.3523 0.9945 1.7102 0.9945
13 1.2680 0.9001 1.6360 0.9001
14 1.2160 0.8428 1.5891 0.8428
15 1.0840 0.7003 1.4677 0.7003
16 1.1237 0.7420 1.5054 0.7420
17 1.2721 0.8943 1.6499 0.8943
18 1.2307 0.8411 1.6204 0.8411
19 1.2154 0.8460 1.5848 0.8460
20 1.1296 0.7366 1.5226 0.7366
21 1.1971 0.8073 1.5868 0.8073
22 1.1653 0.7717 1.5589 0.7717
23 1.2553 0.8710 1.6397 0.8710
24 1.3166 0.9212 1.7120 0.9212
25 1.1026 0.7301 1.4750 0.7301
Average 1.2366 0.8598 1.6135 0.8598

Annual mean temperature, trend estimation for homogenized data series (n = 118, α = 0.9)

Table 2

1. Estimation of change over the total period: ĉ2⋅ (n − 1)
2. The lower endpoint of the confidence interval, change over the total period:ĉ2α1 ⋅ 

(n − 1)
3. The upper endpoint of the confidence interval, change over the total period:ĉ2α2 ⋅ 

(n − 1)
4. The α confidence level estimation of change over the total period: ĉ2α (n − 1)
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Station number ĉ
2
⋅ (n − 1) ĉ

2𝛼1
⋅ (n − 1) ĉ

2𝛼2
⋅ (n − 1) ĉ

2𝛼
⋅ (n − 1)

1 1.7666 1.3764 2.1567 1.3764
2 1.2718 0.8800 1.6636 0.8800
3 0.5579 0.1514 0.9645 0.1514
4 0.1362 − 0.2593 0.5318 0.0000
5 1.1712 0.7769 1.5655 0.7769
6 0.2146 − 0.1465 0.5758 0.0000
7 0.7242 0.3381 1.1103 0.3381
8 1.1968 0.8021 1.5915 0.8021
9 1.5605 1.1827 1.9382 1.1827
10 1.8860 1.5152 2.2568 1.5152
11 0.3694 − 0.0568 0.7956 0.0000
12 1.7865 1.4222 2.1509 1.4222
13 1.4521 1.0688 1.8355 1.0688
14 1.0982 0.7142 1.4822 0.7142
15 1.0986 0.7090 1.4882 0.7090
16 0.1262 − 0.2725 0.5250 0.0000
17 0.4997 0.1279 0.8714 0.1279
18 0.5170 0.0665 0.9675 0.0665
19 1.3436 0.9783 1.7089 0.9783
20 1.4567 1.0666 1.8467 1.0666
21 0.3567 − 0.0678 0.7813 0.0000
22 0.5959 0.1937 0.9980 0.1937
23 0.1643 − 0.2731 0.6018 0.0000
24 1.1110 0.6994 1.5225 0.6994
25 1.7010 1.3246 2.0773 1.3246
Average 0.9665 0.5727 1.3603 0.6158
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