Skip to main content
Log in

Application of deep learning technique to the sea surface height prediction in the South China Sea

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

A deep-learning-based method, called ConvLSTMP3, is developed to predict the sea surface heights (SSHs). ConvLSTMP3 is data-driven by treating the SSH prediction problem as the one of extracting the spatial-temporal features of SSHs, in which the spatial features are “learned” by convolutional operations while the temporal features are tracked by long short term memory (LSTM). Trained by a reanalysis dataset of the South China Sea (SCS), ConvLSTMP3 is applied to the SSH prediction in a region of the SCS east off Vietnam coast featured with eddied and offshore currents in summer. Experimental results show that ConvLSTMP3 achieves a good prediction skill with a mean RMSE of 0.057 m and accuracy of 93.4% averaged over a 15-d prediction period. In particular, ConvLSTMP3 shows a better performance in predicting the temporal evolution of mesoscale eddies in the region than a full-dynamics ocean model. Given the much less computation in the prediction required by ConvLSTMP3, our study suggests that the deep learning technique is very useful and effective in the SSH prediction, and could be an alternative way in the operational prediction for ocean environments in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Braakmann-Folgmann A, Roscher R, Wenzel S, et al. 2017. Sea level anomaly prediction using recurrent neural networks. arXiv preprint arXiv: 1710.07099

  • Cho K, Van Merriënboer B, Gulcehre C, et al. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv: 1406.1078v1, 1724–1734

  • De Bézenac E, Pajot A, Gallinari P. 2019. Deep learning for physical processes: Incorporating prior scientific knowledge. Journal of Statistical Mechanics: Theory and Experiment, 2019(12): 124009, doi: https://doi.org/10.1088/1742-5468/ab3195

    Article  Google Scholar 

  • Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Computation, 9(8): 1735–1780, doi: https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  • Huang X J, Shan J J, Vaidya V. 2017. Lung nodule detection in CT using 3d convolutional neural networks. In: 2017 IEEE 14th International Symposium on Biomedical Imaging. Melbourne, VIC, Australia: IEEE, 379–383

    Chapter  Google Scholar 

  • Iudicone D, Santoleri R, Marullo S, et al. 1998. Sea level variability and surface eddy statistics in the Mediterranean Sea from TOPEX/POSEIDON data. Journal of Geophysical Research: Oceans, 103(C2): 2995–3011, doi: https://doi.org/10.1029/97JC01577

    Article  Google Scholar 

  • Jacobs G A, Hogan P J, Whitmer K R. 1999. Effects of eddy variability on the circulation of the Japan/East Sea. Journal of Oceanography, 55(2): 247–256, doi: https://doi.org/10.1023/A:1007898131004

    Article  Google Scholar 

  • Ji Shuiwang, Xu Wei, Yang Ming, et al. 2013. 3D Convolutional neural networks for human action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1): 221–231, doi: https://doi.org/10.1109/TPAMI.2012.59

    Article  Google Scholar 

  • Kumar N K, Savitha R, Al Mamun A. 2017. Regional ocean wave height prediction using sequential learning neural networks. Ocean Engineering, 129: 605–612, doi: https://doi.org/10.1016/j.oceaneng.2016.10.033

    Article  Google Scholar 

  • Ma Xiaolei, Tao Zhimin, Wang Yinhai, et al. 2015. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transportation Research Part C: Emerging Technologies, 54: 187–197, doi: https://doi.org/10.1016/j.trc.2015.03.014

    Article  Google Scholar 

  • Mason E, Pascual A, McWilliams J C. 2014. A new sea surface height-based code for oceanic mesoscale eddy tracking. Journal of Atmospheric and Oceanic Technology, 31(5): 1181–1188, doi: https://doi.org/10.1175/JTECH-D-14-00019.1

    Article  Google Scholar 

  • McWilliams J C. 1985. Submesoscale, coherent vortices in the ocean. Reviews of Geophysics, 23(2): 165–182, doi: https://doi.org/10.1029/RG023i002p00165

    Article  Google Scholar 

  • Morrow R, Coleman R, Church J, et al. 1994. Surface eddy momentum flux and velocity variances in the Southern Ocean from Geosat altimetry. Journal of Physical Oceanography, 24(10): 2050–2071, doi: https://doi.org/10.1175/1520-0485(1994)024<2050:SEMFAV>2.0.CO;2

    Article  Google Scholar 

  • Reckinger S, Fox-Kemper B, Bachman S, et al. 2014. Anisotropic mesoscale eddy transport in ocean general circulation models. In: 67th Annual Meeting of the Aps Division of Fluid Dynamics. San Francisco, California: Bulletin of the American Physical Society, 59 (20): 23–25

  • Seki M P, Bidigare R R, Lumpkin R, et al. 2001. Mesoscale cyclonic eddies and pelagic fisheries in Hawaiian waters. In: MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings. Honolulu, HI, USA: IEEE

    Google Scholar 

  • Shi Xinglian, Chen Zhourong, Wang Hao, et al. 2015. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In: Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 802–810

    Google Scholar 

  • Shin H C, Roth H R, Gao Mingchen, et al. 2016. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Transactions on Medical Imaging, 35(5): 1285–1298, doi: https://doi.org/10.1109/TMI.2016.2528162

    Article  Google Scholar 

  • Song Tao, Wang Zihe, Xie Pengfei, et al. 2020. A novel dual path gated recurrent unit model for sea surface salinity prediction. Journal of Atmospheric and Oceanic Technology, 37(2): 317–325, doi: https://doi.org/10.1175/JTECH-D-19-0168.1

    Article  Google Scholar 

  • Soong Y S, Hu J H, Ho C R, et al. 1995. Cold-core eddy detected in South China Sea. Eos, Transactions American Geophysical Union, 76(35): 345–347

    Article  Google Scholar 

  • Szegedy C, Vanhoucke V, Ioffe S, et al. 2016. Rethinking the Inception Architecture for Computer Vision. Las Vegas, NV, USA: IEEE, 2818–2826

    Google Scholar 

  • Szegedy C, Liu Wei, Jia Yangqing, et al. 2015. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 1–9

    Google Scholar 

  • Wang Liping, Koblinsky C J, Howden S. 2000. Mesoscale variability in the South China Sea from the TOPEX/Poseidon altimetry data. Deep Sea Research Part I: Oceanographic Research Papers, 47(4): 681–708, doi: https://doi.org/10.1016/S0967-0637(99)00068-0

    Article  Google Scholar 

  • Weiss J B, Grooms I. 2017. Assimilation of ocean sea-surface height observations of mesoscale eddies. Chaos, 27(12): 126803, doi:https://doi.org/10.1063/1.4986088

    Article  Google Scholar 

  • Yang Fengyu, Feng Tao, Xu Ganyang, et al. 2020. Applied method for water-body segmentation based on mask R-CNN. Journal of Applied Remote Sensing, 14(1): 014502

    Article  Google Scholar 

  • Zeng Xiangming, Li Yizhen, He Ruoying. 2015. Predictability of the loop current variation and eddy shedding process in the Gulf of Mexico using an artificial neural network approach. Journal of Atmospheric and Oceanic Technology, 32(5): 1098–1111, doi: https://doi.org/10.1175/JTECH-D-14-00176.1

    Article  Google Scholar 

  • Zeng Xuezhi, Peng Shiqiu, Li Zhijin, et al. 2014. A reanalysis dataset of the South China Sea. Scientific Data, 1: 140052, doi: https://doi.org/10.1038/sdata.2014.52

    Article  Google Scholar 

  • Zhang Qin, Wang Hui, Dong Junyu, et al. 2017. Prediction of sea surface temperature using long short-term memory. IEEE Geoscience and Remote Sensing Letters, 14(10): 1745–1749, doi: https://doi.org/10.1109/LGRS.2017.2733548

    Article  Google Scholar 

  • Zhang Zhengguang, Wang Wei, Qiu Bo. 2014a. Oceanic mass transport by mesoscale eddies. Science, 34(6194): 322–324

    Article  Google Scholar 

  • Zhang Chunhua, Xi Xiaoliang, Liu Songtao, et al. 2014b. A mesoscale eddy detection method of specific intensity and scale from SSH image in the South China Sea and the Northwest Pacific. Science China Earth Sciences, 57(8): 1897–1906, doi: https://doi.org/10.1007/s11430-014-4839-y

    Article  Google Scholar 

  • Zhang Yuanyuan, Zhao Dong, Sun Jiande, et al. 2016. Adaptive convolutional neural network and its application in face recognition. Neural Processing Letters, 43(2): 389–399, doi: https://doi.org/10.1007/s11063-015-9420-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiqiu Peng.

Additional information

Foundation item

The National Key Research and Development Program under contract Nos 2018YFC1406204 and 2018YFC1406201; the Guangdong Special Support Program under contract No. 2019BT2H594; the Taishan Scholar Foundation under contract No. tsqn201812029; the National Natural Science Foundation of China under contract Nos U1811464, 61572522, 61572523, 61672033, 61672248, 61873280, 41676016 and 41776028; the Natural Science Foundation of Shandong Province under contract Nos ZR2019MF012 and 2019GGX101067; the Fundamental Research Funds of Central Universities under contract Nos 18CX02152A and 19CX05003A-6; the fund of the Shandong Province Innovation Researching Group under contract No. 2019KJN014; the Key Special Project for Introduced Talents Team of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) under contract No. GML2019ZD0303.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, T., Han, N., Zhu, Y. et al. Application of deep learning technique to the sea surface height prediction in the South China Sea. Acta Oceanol. Sin. 40, 68–76 (2021). https://doi.org/10.1007/s13131-021-1735-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-021-1735-0

Key words

Navigation