Skip to main content
Log in

Species delimitation polyphasic approach reveals Meyerella similis sp. nov.: a new species of “small green balls” within the Chlorella-clade (Trebouxiophyceae, Chlorophyta)

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The correct identification of species diversity of small single-celled green coccoid microalgae still causes difficulties, since their relatively simple morphology hides a high physiological, ecological and genetic diversity. The use of molecular genetic methods has revolutionized the study of the true biodiversity of so-called “small green balls,” allowing the discovery of numerous new taxa. This article presents the results of a study of strains recently isolated from small freshwater urbanized lakes (Vasilievsky Lakes system, Samara region, Russian Federation). Morphologically, these strains were close to the genus Meyerella: spherical cells, cup-shaped, or wide girdle-shaped parietal chloroplast without pyrenoid. Analysis of the 18S–ITS1–5.8S–ITS2 sequences also showed that the studied strains belong to this genus. Comparison of morphological characteristics, habitat and lifestyle, analysis of tree topology, genetic distances and secondary structures of the ITS1 and ITS2 spacers of the Meyerella members, as well as the delimitation results using the Automatic Barcode Gap Discovery (ABGD) method, the Poisson Tree Processes (PTP) model, the Generalized Mixed Yule The Coalescent (GMYC) method allowed us to establish that the studied strains ACSSI 346, ACSSI 362 and ACSSI 363 are representatives of a new species – M. similis sp. nov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Abbreviations

ABGD:

Automatic Barcode Gap Discovery

ACOI:

Coimbra Collection of Algae, Portugal

ACSSI:

Algal Collection of the Soil Science Institute, Russia

BI:

Bayesian inference

BP:

Bootstrap proportion

CBC:

Compensatory base change

CCALA:

The Culture Collection of Autotrophic Organisms, The Czech Republic

CCAP:

The Culture Centre Algae and Protozoa, UK

CCMP:

The Culture Collection of Marine Phytoplankton, USA

CV:

Coefficient of substitution rate variation

GMYC:

Generalized mixed yule coalescent

HPD:

Posterior density

IPPAS:

Collection of microalgae and cyanobacteria IPPAS, Russia

ITS1:

First internal transcribed spacer

ITS2:

Second internal transcribed spacer

LM:

Light microscopy

ML:

Maximum likelihood

MOTU:

Molecular operational taxonomic units

NIES:

Microbial Culture Collection at the National Institute for Environmental Studies, Japan

PP:

Posterior probability

PCR:

Polymerase chain reaction

PTP:

Poisson tree processes

SAG:

Sammlung von Algenkulturen at the University of Göttingen, Germany

TEM:

Transmission electron microscopy

UTEX:

Culture Collection at the University of Texas at Austin, USA

References

  • Beijerinck, M. W. (1890). Culturversuche mit Zoochlorellen, Lichenengonidien und anderen niederen Algen. Botanische Zeitung, 47, 725–739, 741–754, 757–768, 781–785.

  • Bock, C., Krienitz, L., & Pröschold, T. (2011). Taxonomic reassessment of the genus Chlorella (Trebouxiophyceae) using molecular signatures (barcodes), including description of seven new species. Fottea, 11(2), 293–312. https://doi.org/10.5507/FOT.2011.028

    Article  Google Scholar 

  • Bock, C., Proschold, T., & Krienitz, L. (2010). Two new Dictyosphaerium-morphotype lineages of the Chlorellaceae (Trebouxiophyceae): Heynigia gen. nov. and Hindakia gen. nov. European Journal of Phycology, 45(3), 267–277. https://doi.org/10.1080/09670262.2010.487920

  • Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., et al. (2019). BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLOS Computational Biology, 15(4), e1006650. https://doi.org/10.1371/journal.pcbi.1006650

  • Bradley, I. M., Pinto, A. J., & Guest, J. S. (2016). Design and evaluation of Illumina MiSeq compatible primers for the 18S rRNA gene for improved characterization of mixed microalgal communities. AEM, 82(19), 5878–5891. https://doi.org/10.1128/AEM.01630-16

    Article  CAS  Google Scholar 

  • Caisová, L., Marin, B., & Melkonian, M. (2013). A consensus secondary structure of ITS2 in the Chlorophyta identified by phylogenetic reconstruction. Protist, 164, 482–496. https://doi.org/10.1016/j.protis.2013.04.005

    Article  CAS  Google Scholar 

  • Chae, H., Lim, S., Kim, H., Choi, H.-G., & Kim, J. H. (2019). Morphology and phylogenetic relationships of Micractinium (Chlorellaceae, Trebouxiophyceae) taxa, including three new species from Antarctica. Algae, 34(4), 267–275. https://doi.org/10.4490/algae.2019.34.10.15

    Article  Google Scholar 

  • Coleman, A. W. (2000). The significance of a coincidence between evolutionary landmarks found in mating affinity and a DNA sequence. Protist, 151(1), 1–9. https://doi.org/10.1078/1434-4610-00002

    Article  CAS  Google Scholar 

  • Coleman, A. W. (2007). Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. NAR, 35, 3322–3329. https://doi.org/10.1093/nar/gkm233

    Article  CAS  Google Scholar 

  • Coleman, A. W. (2009). Is there a molecular key to the level of ‘biological species’ in eukaryotes? A DNA guide. Molecular Phylogenetics and Evolution, 50, 197–203. https://doi.org/10.1016/j.ympev.2008.10.008

    Article  CAS  Google Scholar 

  • Coleman, A. W. (2015). Nuclear rRNA transcript processing versus internal transcribed spacer secondary structure. Trends in Genetics, 31(3), 157–163. https://doi.org/10.1016/j.tig.2015.01.002

    Article  CAS  Google Scholar 

  • Decelle, J., Romac, S., Sasaki, E., Not, F., Mahé, F., & Lovejoy, C. (2014). Intracellular diversity of the V4 and V9 regions of the 18S rRNA in marine protists (Radiolarians) assessed by high-throughput sequencing. PLoS ONE, 9(8), e104297. https://doi.org/10.1371/journal.pone.0104297

    Article  CAS  Google Scholar 

  • Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7(1), 214. https://doi.org/10.1186/1471-2148-7-214

    Article  CAS  Google Scholar 

  • Egorova, I. N., Mincheva, E. V., & Boldina, O. N. (2018). Ataktogamous green microalgae of the genus Chlorosarcinopsis Herndon (Chlorophyceae, Chlorophyta) from Zabaikalskiy region (Russia). Phytotaxa, 343(1), 1–19. https://doi.org/10.11646/phytotaxa.343.1.1

  • Esteban, G. F., Fenchel, T., & Finlay, B. J. (2010). Mixotrophy in ciliates. Protist, 161, 621–641. https://doi.org/10.1016/j.protis.2010.08.002

    Article  CAS  Google Scholar 

  • Fawley, M. W., Fawley, K. P., & Owen, H. A. (2005). Diversity and ecology of small coccoid green algae from Lake Itasca, Minnesota, USA, including Meyerella planktonica, gen. et sp. nov. Phycologia, 44, 35–48. https://doi.org/10.2216/0031-8884(2005)44[35:DAEOSC]2.0.CO;2

    Article  Google Scholar 

  • Foissner, W. (2019). A detailed description of a Brazilian Holophrya teres (Ehrenberg, 1834) and nomenclatural revision of the genus Holophrya (Ciliophora, Prostomatida). European Journal of Protistology. https://doi.org/10.1016/j.ejop.2019.125662

    Article  Google Scholar 

  • Frolova, L. L., & Sverdrup, A. E. (2019). Diversity of Verhniy Kaban lake by 18S rRNA of hydrobionts on next-generation sequecing method. Bioscience Biotechnology Research Communications, 12(5), 329–335.

    Google Scholar 

  • Fučíková, K., Lewis, P. O., & Lewis, L. A. (2014). Widespread desert affiliation of trebouxiophycean algae (Trebouxiophyceae, Chlorophyta) including discovery of three new desert genera. Phycological Research, 62(4), 294–305. https://doi.org/10.1111/pre.12062

    Article  Google Scholar 

  • Fujisawa, T., & Barraclough, T. G. (2013). Delimiting species using single-locus data and the generalized mixed Yule coalescent approach: A revised method and evaluation on simulated data sets. Systematic Biology, 62(5), 707–724. https://doi.org/10.1093/sysbio/syt033

    Article  Google Scholar 

  • Gaonkar, C. C., Piredda, R., Minucci, C., et al. (2018). Annotated 18S and 28S rDNA reference sequences of taxa in the planktonic diatom family Chaetocerotaceae. PLoS ONE, 13(12), e0208929. https://doi.org/10.1371/journal.pone.0208929

    Article  Google Scholar 

  • Garrido-Benavent, I., Pérez-Ortega, S., & de Los Ríos, A. (2017). From Alaska to Antarctica: Species boundaries and genetic diversity of Prasiola (Trebouxiophyceae), a foliose chlorophyte associated with the bipolar lichen-forming fungus Mastodia tessellate. Molecular Phylogenetics and Evolution, 107, 117–131. https://doi.org/10.1371/10.1016/u.ympev.2016.10.013

    Article  Google Scholar 

  • Guiry, M. D., & Guiry, G. M. (2021). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Retrieved December 8, 2021, from http://www.algaebase.org

  • Heeg, J. S., & Wolf, M. (2015). ITS2 and 18S rDNA sequence-structure phylogeny of Chlorella and allies (Chlorophyta, Trebouxiophyceae, Chlorellaceae). Plant Gene, 4, 20–28. https://doi.org/10.1016/j.plgene.2015.08.001

    Article  CAS  Google Scholar 

  • Henley, W. J., Hironaka, J. L., Guillou, L., Buchheim, M. A., Buchheim, J. A., Fawley, M. W., & Fawley, K. P. (2004). Picochlorum oklahomensis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta). Phycologia, 43, 641–652. https://doi.org/10.2216/i0031-8884-43-6-641.1

    Article  Google Scholar 

  • Hines, H. N., McCarthy, P. J., & Esteban, G. F. (2022). A Case Building Ciliate in the Genus Pseudoblepharisma Found in Subtropical Fresh Water. Diversity, 14, 174. https://doi.org/10.3390/d14030174

    Article  CAS  Google Scholar 

  • Hoshina R., & Fujiwara,Y. (2013). Molecular characterization of Chlorella cultures of the National Institute for Environment Studies culture collection with description of Micractinium inermum sp. nov., Didymogenes sphaerica sp. nov. and Didymogenes soliella sp. nov. (Chlorellaceae, Trebouxiophyceae). Phycological Research, 61(2), 124–132. https://doi.org/10.1111/pre.12010

  • Hoshina, R., Iwataki, M., & Imamura, N. (2010). Chlorella variabilis and Micractinium reisseri sp. nov. (Chlorellaceae, Trebouxiophyceae): Redescription of the endosymbiotic green algae of Paramecium bursaria (Peniculia, Oligohymenophorea) in the 120th year. Phycological Research, 58(3), 188–210. https://doi.org/10.1111/j.1440-1835.2010.00579.x

  • Hoshina, R., Kobayashi, M., Suzaki, T., & Kusuoka, Y. (2017). Brandtia ciliaticola gen. et sp. nov. (Chorellaceae, Trebouxiophyceae) a commom symbiotic green coccoid of various ciliate species. Phycological Research, 66(1), 76–81. https://doi.org/10.1111/pre.12194

  • Hoshina, R., & Nakada, T. (2018). Carolibrandtia nom. nov. as a replacement name for Brandtia Hoshina (Chlorellaceae, Trebouxiophyceae). Phycological Research, 66(1), 82–83. https://doi.org/10.1111/pre.12208

  • Hoshina, R., Tsukii, Y., Harumoto, T., & Suzaki, T. (2021). Characterization of a green Stentor with symbiotic algae growing in an extremely oligotrophic environment and storing large amounts of starch granules in its cytoplasm. Scientific Reports, 11, 2865. https://doi.org/10.1038/s41598-021-82416-9

    Article  CAS  Google Scholar 

  • Johnson, J. L., Fawley, M. W., & Fawley, K. P. (2007). The diversity of Scenedesmus and Desmodesmus (Chlorophyceae) in Itasa State Park, Minnesota, USA. Phycologia, 46, 214–229. https://doi.org/10.2216/05-69.1

    Article  Google Scholar 

  • Karpagam, R., Preeti, R., Jawahar, R.K., Saranya, S., Ashokkumar, B., & Varalakshmi, P. (2015). Fatty acid biosynthesis from a new isolate Meyerella sp. N4: molecular characterization, nutrient starvation, and fatty acid profiling for lipid enhancement. Energy & Fuels, 29(1), 143–149. https://doi.org/10.1021/ef501969a

  • Katana, A., Kwiatowski, J., Spalik, K., Zakryś, B., Szalacha, E., & Szymańska, H. (2001). Phylogenetic position of Koliella (Chlorophyta) as inferred from nuclear and chloroplast small subunit rDNA. Journal of Phycology, 37(3), 443–451. https://doi.org/10.1046/j.1529-8817.2001.037003443.x

    Article  CAS  Google Scholar 

  • Krasovec, M., Vancaester, E., Rombauts, S., et al. (2018). Genome analyses of the microalga Pichochlorum provide insights into the evolution of thermotolerance in the green lieage. Genome Biology and Evolution, 10(9), 2347–2365. https://doi.org/10.1093/gbe/evy167

    Article  CAS  Google Scholar 

  • Krienitz, L., Bock, C., Dadheech, P. K., & Proeschold, T. (2011). Taxonomic reassessment of the genus Mychonastes (Chlorophyceae, Chlorophyta) including the description of eight new species. Phycologia, 50(1), 89–106. https://doi.org/10.2216/10-15.1

    Article  CAS  Google Scholar 

  • Krienitz, L., Hegewald, E. H., Hepperle, D., Huss, V. A. R., Rohr, T., & Wolf, M. (2004). Phylogenetic relationship of Chlorella and Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae). Phycologia, 43, 529–542. https://doi.org/10.2216/i0031-8884-43-5-529.1

    Article  Google Scholar 

  • Krivina, E., & Temraleeva, A. (2020). The difficulty identifying and the cryptic diversity of Chlorella-clada microalgae (Chlorophyta). Microbiology, 89(6), 714–727. https://doi.org/10.1134/S0026261720060107

    Article  Google Scholar 

  • Krivina, E., Temraleeva, A., & Bukin, Y. S. (2021a). Species delimitation and cryptic diversity analysis of Parachlorella-clade microalgae (Chlorophyta). Microbiology, 90, 455–469. https://doi.org/10.1134/S0026261721040081

    Article  CAS  Google Scholar 

  • Krivina, E., Temraleeva, A., & Sinetova, A. (2021b). New species Micractinium kostikovii (Chlorellaceae, Trebouxiophyceae) from Russia. Phycological Research. https://doi.org/10.1111/pre.12469

  • Lambert, A., & Steel, M. (2013). Predicting the loss of phylogenetic diversity under non-stationary diversification models. Journal of Theoretical Biology, 337, 111–124. https://doi.org/10.1016/j.jtbi.2013.08.009

    Article  Google Scholar 

  • Lanzoni, O., Fokin, S. I., Lebedeva, N., Migunova, A., Petroni, G., & Potekhin, A. (2016). Rare freshwater ciliate Paramecium chlorelligerum Kahl, 1935 and its macronuclear symbiotic bacterium candidatus Holospora parva. PLoS ONE, 11(12), e0167928. https://doi.org/10.1371/journal.pone.0167928

    Article  CAS  Google Scholar 

  • Luo, W., Pflugmacher, S., Pröschold, T., Walz, N., & Krienitz, L. (2006). Genotype versus phenotype variability in Chlorella and Micractinium (Chlorophyta, Trebouxiophyceae). Protist, 157, 315–333. https://doi.org/10.1016/j.protis.2006.05.006

  • Malavasi, V., Škaloud, P., Rindi, F., Tempesta, S., Paoletti, M., Pasqualetti, M., & Fontaneto, D. (2016), DNA-based taxonomy in ecologically versatile microalgae: A re-evaluation of the species concept within the coccoid green algal genus Coccomyxa (Trebouxiophyceae, Chlorophyta). PLoS ONE, 11(3), e0151137. https://doi.org/10.1371/journal.pone.0151137

  • Nomokonova, V. I., Vykhristyuk, L. A., & Tarasova, N. G. (2001). Trophic state of Vasilievskiy lakes of Togliatti suburb. Izvestiya of the Samara Russian Academy of Sciences Scientific Center, 3(2), 274–283.

    Google Scholar 

  • Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20(2), 289–290. https://doi.org/10.1093/bioinformatics/btg412

    Article  CAS  Google Scholar 

  • Pröschold, T., Bock, C., Luo, W., & Krienitz, L. (2010). Polyphyletic distribution of bristle formation in Chlorellaceae: Micractinium, Diacanthos, Didymogenes and Hegewaldia gen. nov. (Trebouxiophyceae, Chlorophyta). Phycological Research, 58, 1–8. https://doi.org/10.1111/j.1440-1835.2009.00552.x

    Article  CAS  Google Scholar 

  • Pröschold, T., & Darienko, T. (2020). Choricystis and Lewiniosphaera gen. nov. (Trebouxiophyceae, Chlorophyta), two different green algal endosymbionts in freshwater sponges. Symbiosis, 82(3),1–14. https://doi.org/10.1007/s13199-020-00711-x

  • Pröschold, T., Darienko, T., Silva, P. C., Reisser, W., & Krienitz, L. (2011). The systematics of Zoochlorella revisited employing an integrative approach. Environmental Microbiology, 13, 350–364. https://doi.org/10.1111/j.1462-2920.2010.02333.x

    Article  CAS  Google Scholar 

  • Pröschold, T., Pitsch, G., & Darienko, T. (2020). Micractinium tetrahymenae (Trebouxiophyceae, Chlorophyta), a new endosymbiont isolated from Ciliates. Diversity, 12, 200. https://doi.org/10.3390/d12050200

    Article  CAS  Google Scholar 

  • Pröschold, T., Rieser, D., Darienko, T., et al. (2021). An integrative approach sheds new light onto the systematics and ecology of the widespread ciliate genus Coleps (Ciliophora, Prostomatea). Scientific Reports, 11, 5916. https://doi.org/10.1038/s41598-021-84265-y

    Article  CAS  Google Scholar 

  • Puillandre, N., Lambert, A., Brouillet, S., & Achaz, G. (2012). ABGD, automatic barcode gap discovery for primary species delimitation. Molecular Ecology, 21, 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x

    Article  CAS  Google Scholar 

  • Seibel, P.N., Müller, T., Dandekar, T., Schultz, J., & Wolf, M. (2006). 4SALE: a tool for synchronous RNA sequence and secondary structure alignment and editing. BMC Bioinformatics, 7, 1−498. https://doi.org/10.1186/1471-2105-7-498

  • Seibel, P.N., Müller, T., Dandekar, T., & Wolf, M. (2008). Synchronous visual analysis and editing of RNA sequence and secondary structure alignments using 4SALE. BMC Research Notes, 1, 1−91. https://doi.org/10.1186/1756-0500-1-91

  • Simpson, P. D., & Van Valkenburg, S. D. (1978). The ultrastructure of Mychonastes ruminatus gen. et sp. nov., a new member of the Chlorophyceae isolated from brackish water. British Phycological Journal, 13(2), 117–130. https://doi.org/10.2216/10-15.1

  • Sogin, M. L., Morrison, H. G., Huber, J. A., et al. (2006). Microbial diversity in the deep sea and the underexplored rare biosphere. Proceedings of the National Academy of Sciences, 103, 12115–12120. https://doi.org/10.1073/pnas.0605127103

    Article  CAS  Google Scholar 

  • Somogyi, B., Felföldi, T., Solymosi, K., Flieger, K., Márialigeti, K., Böddi, B., & Vörös, L. (2014). One step closer to eliminating the nomenclatural problems of minute coccoid green algae: Pseudochloris wilhelmii, gen. et sp. nov. (Trebouxiophyceae, Chlorophyta). European Journal of Phycology, 48(4), 427–436. https://doi.org/10.1080/09670262.2013.854411

  • Spanner, C., Darienko, T., Biehler, T., Sonntag, B., & Pröschold, T. (2020). Endosymbiotic green algae in Paramecium bursaria: A new isolation method and a simple diagnostic PCR approach for the identification. Diversity, 12(6), 240. https://doi.org/10.3390/d12060240

    Article  Google Scholar 

  • Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriology Reviews, 35, 171–205. https://doi.org/10.1128/br.35.2.171-205.1971

    Article  CAS  Google Scholar 

  • Sverdrup, A. E., & Frolova, L. L. (2020). Saprobity identification of hydrobiont species of Verhniy Kaban lake of Kazan by 18S rRNA marker gene. Scientific Notes of V.I. Vernadsky Crimean Federal University. Biology Chemistry, 4, 127–142. https://doi.org/10.37279/2413-1725-2020-6-4-127-142

  • Temraleeva, A., Krivina, E., & Boldina, O. (2022) Edaphochloris gen. nov.: A new genus of soil green algae (Trebouxiophyceae, Chlorophyta) with simple morphology. Plant Systematics and Evolution. https://doi.org/10.1007/s00606-021-01795-8

  • Temraleeva, A., Moskalenko, S., Mincheva, E., Bukin, Y., & Sinetova, M. (2018). Spongiosarcinopsis terrestris gen. et sp. nov. (Chlorophyta, Chlorophyceae): A new genus of green algae from gray forest soil, Russia. Phytotaxa, 376(6), 291–300. https://doi.org/10.11646/phytotaxa.376.6.4

  • Vorobyev, K., Andronov, E., Rautian, M., Skoblo, I., Migunova, A., & Kvitko, K. (2009). An atypical Chlorella symbiont from Paramecium bursaria. Protistology, 6(1), 39–44.

    Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR Protocols: A Guide to Methods and Applications (pp. 315–322). Academic Press.

    Google Scholar 

  • Zou, S., Fei, C., Song, J., Bao, Y., He, M., & Wang, C. (2016a). Combining and comparing coalescent, distance and character-based approaches for barcoding microalgaes: A test with Chlorella-like species (Chlorophyta). PloS O, 11(4), e0153833. https://doi.org/10.1371/journal.pone.0153833

    Article  CAS  Google Scholar 

  • Zou, S., Fei, C., Wang, C., Gao, Z., Bao, Y., He, M., & Wang, C. (2016b). How DNA barcoding can be more effective in microalgae identification: A case of cryptic diversity revelation in Scenedesmus (Chlorophyceae). Science and Reports, 9(6), 36822. https://doi.org/10.1038/srep36822

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Bioline company for the opportunity to use of the Leica THUNDER 3D Cell Culture Imaging system (Leica Microsystems, Germany).

Funding

The work was funded by the Russian Foundation for Basic Research (RFBR), project no.19–34-60002 (sampling, isolation, cultivation and morphological observation, DNA extraction, PCR, phylogenetic analysis) and the Ministry of Science and Higher Education of the Russian Federation project no.0279–2021-0010 (species delimitation), project no.N121021600184-6 (ultrastructural observations by transmission electron microscopy), project no.121040800126–5 (maintaining algae strains in the ACSSI collection).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Krivina.

Ethics declarations

Human and animals participation

Our research did not involve human or animals participants.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivina, E.S., Boldina, O.N., Bukin, Y.S. et al. Species delimitation polyphasic approach reveals Meyerella similis sp. nov.: a new species of “small green balls” within the Chlorella-clade (Trebouxiophyceae, Chlorophyta). Org Divers Evol 23, 25–40 (2023). https://doi.org/10.1007/s13127-022-00590-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-022-00590-8

Keywords

Navigation