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Abstract
Obesity constitutes a global health epidemic which worsens the main leading death causes such as type 2 diabetes, cardio-
vascular diseases, and cancer. Changes in the metabolism in patients with obesity frequently lead to insulin resistance, along 
with hyperglycemia, dyslipidemia and low-grade inflammation, favoring a more aggressive tumor microenvironment. One of 
the hallmarks of cancer is the reprogramming of the energy metabolism, in which tumor cells change oxidative phosphoryla-
tion to aerobic glycolysis or “Warburg effect”. Aerobic glycolysis is faster than oxidative phosphorylation, but less efficient 
in terms of ATP production. To obtain sufficient ATP, tumor cells increase glucose uptake by the glucose transporters of 
the GLUT/SLC2 family. The human glucose transporter GLUT12 was isolated from the breast cancer cell line MCF7. It is 
expressed in adipose tissue, skeletal muscle and small intestine, where insulin promotes its translocation to the plasma mem-
brane. Moreover, GLUT12 over‐expression in mice increases the whole‐body insulin sensitivity. Thus, GLUT12 has been 
proposed as a second insulin‐responsive glucose transporter. In obesity, GLUT12 is downregulated and does not respond to 
insulin. In contrast, GLUT12 is overexpressed in human solid tumors such as breast, prostate, gastric, liver and colon. High 
glucose concentration, insulin, and hypoxia upregulate GLUT12 both in adipocytes and tumor cells. Inhibition of GLUT12 
mediated Warburg effect suppresses proliferation, migration, and invasion of cancer cells and xenografted tumors. This 
review summarizes the up-to-date information about GLUT12 physiological role and its implication in obesity and cancer, 
opening new perspectives to consider this transporter as a therapeutic target.
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Introduction

Obesity, which has multiplied its incidence in the last dec-
ades, constitutes a global health epidemic. In obesity, an 
excessive accumulation of dysfunctional adipose tissue leads 
to the development of many comorbidities, such as type 2 
diabetes mellitus, non-alcoholic fatty liver disease and cardi-
ovascular disorders, among others [20]. Remarkably, obesity 

also increases the risk to suffer different types of cancers, 
including breast, liver, colorectal and ovarian [25].

The pathophysiology of obesity frequently leads to insulin 
resistance, hyperinsulinemia, hyperglycemia, dyslipidemia 
and low-grade chronic inflammation. These factors favor an 
aggressive tumor microenvironment. Indeed, the secretion 
of proinflammatory cytokines, adipokines and estrogens by 
dysfunctional adipocytes contributes to initiation, progres-
sion and recurrence of tumors in subjects with obesity [50, 
52]. The deregulation of molecules within the microenviron-
ment milieu increases the tumor activity through JAK-STAT, 
MAPK and PI3K signaling pathways, the main actors for 
growth, proliferation and apoptosis evasion in tumor cells 
[32, 38].

Reprogramming the energy metabolism is recognized as 
a hallmark of cancer [28]. Among other changes, tumor cells 
drive their catabolic glycolytic signaling pathway to produce 
lactate in the presence of oxygen, a process known as aero-
bic glycolysis or “Warburg effect” [71]. Aerobic glycolysis 
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is faster than oxidative phosphorylation, but less efficient in 
terms of ATP production. Therefore, to produce sufficient 
ATP via glycolysis, tumor cells need to increase glucose 
uptake and metabolism. Glucose uptake in tumor cells is 
carried out by facilitative transport across the plasma mem-
brane mediated by the sugar transporters of the GLUT/SLC2 
family [5]. Of note, the uptake through these transporters has 
been established as the rate-limiting step for ATP production 
through glucose metabolism [30].

The GLUT family of glucose transporters

The GLUT/SLC2 (SoLute Carrier) protein family of facili-
tative glucose transporters mediates the bidirectional trans-
port of monosaccharides across the plasma membrane down 
their concentration gradient, being the main actors in the 
maintenance of glucose homeostasis within the body. Four-
teen different members of the SLC2 family have been iden-
tified. They are grouped into three classes based on their 
primary sequence homology: class I includes GLUT1-4 
and GLUT14; class II comprises GLUT5, 7, 9 and 11; and 
class III includes GLUT6, 8, 10, 12, and the H+/myo-ino-
sitol cotransporter HMIT. The subcellular location, level of 
expression, and regulation of each GLUT is specific for each 
tissue according to the metabolic needs of the cells, and to 
allow the appropriate distribution of whole-body glucose 
[3, 31]. Mutations and/or dysregulation of GLUT proteins 
are the cause or are associated with a variety of diseases [2, 
3, 31, 53].

The isoforms of class I were the first cloned and charac-
terized, and their physiological roles, together with that for 
GLUT5, are well established. However, the function in the 
organism of the rest of GLUTs still is under investigation. 
GLUT1 is expressed in red blood cells, blood–brain bar-
rier, brain, kidney, placenta, and in the rest of the organism 
at different levels, being its main function the maintenance 
of basal glucose concentration. GLUT2 can also transport 
galactose and fructose; it is expressed in the liver, pancreatic 
beta cells, and basolateral membrane of the renal and intesti-
nal epithelial cells for glucose re/absorption. In the pancreas, 
its function is to transport glucose during the postprandial 
periods to stimulate the release of insulin. GLUT3, together 
with GLUT1, is the main glucose transporter in the brain. 
GLUT4 is located intracellularly in insulin-sensitive tissues, 
and translocates to the membrane in response to insulin to 
transport glucose into the cell. GLUT5 is the main fructose 
transporter; it is expressed in the brush border of the intes-
tinal epithelium but also in red blood cells, adipose tissue, 
skeletal muscle, spermatozoa and kidney [3, 31].

The glucose transporter GLUT12

The human glucose transporter GLUT12 (SLC2A12), one 
of the latest GLUT transporters identified, belongs to the 
class III of the facilitative glucose transporter family SLC2 
[42]. It was isolated from the breast cancer cell line MCF7 
by its homology with GLUT4, the insulin sensitive glucose 
transporter [59].

Using radiolabeled-sugars uptake and electrophysio-
logical methods applied to GLUT12-expressing Xenopus 
laevis oocytes, studies from our laboratory demonstrated 
that glucose transport increases by 50% in the presence of 
Na+. Furthermore, glucose induces chloride currents that 
are uncoupled to glucose transport. GLUT12 shows low 
sugar selectivity transporting: D-glucose > α-methyl-D-
glucose (αMG) > 2-deoxy-D-glucose (2-DOG) > D-galac-
tose > D-fructose [54]; being αMG the classical substrate 
of the Na+/glucose cotransporters SGLTs, not transported 
by any of the other GLUT transporters [9]. Studies per-
formed in GLUT12-reconstituted proteo-liposomes show 
a glucose Km of 6.4 mM, which is half of that for GLUT1 
[45].

As GLUT4 (class I) and the rest of the members of 
class III, GLUT12 contains a dileucine motif in the N and 
C-terminal domains, that retains the transporter in intra-
cellular compartments, mostly in perinuclear regions asso-
ciated with the Golgi network, in the absence of insulin 
stimulus [1, 59]. In line with these data, GLUT12 pro-
tein is expressed in white adipose tissue, skeletal muscle, 
and small intestine, all insulin-responsive tissues, where 
insulin promotes its translocation to the plasma mem-
brane [21, 22, 67]. Accordingly, the promoter region of 
hGLUT12 contains insulin response elements [22]. In 
addition, GLUT12 over‐expression in mice increases the 
whole‐body insulin sensitivity and glucose clearance rate 
in insulin‐sensitive tissues [57]. However, in Zebrafish, 
the lack of GLUT12 is related to heart failure and dia-
betic phenotype during embryonic development, in which 
GLUT4 is expressed later than GLUT12 [35]. Altogether, 
these data support the role of GLUT12 as a second insu-
lin‐responsive glucose transporter [57, 67].

We have reported that extracellular glucose and insulin 
also induce rapid translocation of GLUT12 to the brush 
border membrane in the human intestinal epithelial cell 
line Caco-2 and in mice jejunum, most probably in relation 
with its participation in sugar absorption during postpran-
dial periods. In these cells, GLUT12 trafficking to the api-
cal membrane and sugar uptake are increased by activation 
of AMPK [22], a cellular energy sensor that plays a key 
role in energy cell homeostasis [29]. Interestingly, it has 
been reported the GLUT12 unresponsiveness to insulin 
in the heart of diabetic mice, where GLUT4 would be the 
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only GLUT transporter sensitive to insulin [73]. However, 
the authors found the highest expression of GLUT12 in the 
cell membrane, possibly trying to compensate for the lack 
of GLUT4 due to insulin resistance [73].

GLUT12 is also expressed in the cytoplasm and apical 
membrane of distal tubules and collecting ducts of human 
and rat kidney [39]. This expression is increased in animal 
models of hypertension and diabetic nephropathy, suggest-
ing that GLUT12 would contribute to additional glucose 
reabsorption in the late nephron, when the glucose transport 
capacity in the proximal tubule is saturated due to an over-
load of filtered glucose [39]. These data are supported by 
the evidence that in the distal tubular epithelial kidney cell 
line MDCK, high extracellular glucose induces GLUT12 
translocation to the apical membrane from the perinuclear 
localization, in a process mediated by mTOR signaling [78].

Expression of GLUT12 has also been found in the cyto-
plasm of mammary epithelial cells of pregnant rats, from 
where it translocates to the apical membrane during lacta-
tion. Since GLUT1, the other glucose transporter in mam-
mary glands, is not found in the membrane in lactation, the 
authors suggest that GLUT12 may be the main transporter 
in charge of transporting glucose into the milk [40].

Regarding GLUT12 in the brain, our group has demon-
strated its expression in different brain areas in mice [23]. 
Furthermore, we have reported an increase of GLUT12 
expression in the brain of mice in models of Alzheimer’s 
disease (AD) where Glut1 and Glut3 (the main glucose 
transporters in the brain) are decreased. Indeed, β-amyloid 
deposition directly induces GLUT12 upregulation [23]. In 
line with these results, we demonstrated for the first time the 
increase of GLUT12 in the frontal cortex of aged subjects, 
that is even higher in AD aged patients [55]. Knowing that 
a progressive impairment of the brain´s capacity to utilize 
glucose and respond to insulin occurs in AD [15], these data 
suggest an important role of GLUT12 in this pathology.

Interestingly, although GLUT12 is a facilitative trans-
porter, it can also mediate the entrance of glucose into the 
cell in co-transport with H+, being able to accumulate the 
sugar against its concentration gradient in MDCK cells [78]. 
Likewise, functional studies performed in Caco‐2 cells show 
that sugar transport is increased by H+ [22]. As mentioned 
before, GLUT12 belongs to class III of the GLUT fam-
ily, which also includes the H+-myoinositol cotransporter 
[79]. This characteristic of GLUT12 suggests that it could 
be implicated in glucose reabsorption in the late nephron, 
where the tubular fluid pH is acidic [79], and in the small 
intestine, which presents an acidic microenvironment next 
to the brush border. GLUT12 can also transport substrates 
different from hexoses. Thus, it has been shown that it 
transports vitamin C from the epithelial cells of the choroid 
plexus into the cerebrospinal fluid, and urate from the blood 
into the liver, as demonstrated in cell lines and GLUT12 

knockout mice [46, 69]. GLUT12 protein is also expressed 
in the endocrine chromaffin cells from the adrenal medulla, 
the anterior pituitary lobe, the gastrin-secreting pyloric 
glands, and the epithelial cells of the thyroid gland follicles 
[45], as well as in human fetal membranes and placenta [26, 
27, 64, 65]. And GLUT12 mRNA has been found in the 
ciliated cells and ionocytes from the airway epithelium [4].

GLUT12 and obesity

GLUT12 protein expression in human adipose tissue was 
initially described upon the identification of GLUT12 [59]. 
Subsequently, our group demonstrated peri‐nuclear locali-
zation of GLUT12 in mouse adipocytes in which insulin, 
through the PI3K/AKT pathway, induces GLUT12 translo-
cation to the membrane that parallels glucose uptake by the 
transporter [21], as it has been extensively demonstrated for 
GLUT4 [10].

In obesity, the accumulation of lipids in the adipose tissue 
triggers an inflammatory response which includes the secre-
tion of proinflammatory cytokines such as Tumor necrosis 
factor-alpha (TNF‐α) [68]. In line with this data, we have 
reported that TNF‐α, by AMPK activation, increases glucose 
uptake in 3T3‐L1 murine adipocytes cell line by triggering 
GLUT12 translocation to the membrane [21]. The hypertro-
phy and hyperplasia of the adipocytes also lead to a hypoxic 
environment which further alters the secretion pattern of adi-
pokines [58]. Hypoxia also induces upregulation of GLUT12 
protein expression in 3T3-L1 adipocytes [21]. Accordingly, 
the promoter region of GLUT12 gene (SLC2A12) contains 
hypoxia response elements [22]. The adipokines leptin and 
adiponectin, however, reduce glucose transport by GLUT12 
by inducing the transporter internalization in 3T3-L1 adi-
pocytes and mouse visceral adipose tissue explants. Of 
note, GLUT4 is upregulated by the two adipokines [21]. 
Figure 1 summarizes the regulation of GLUT2 trafficking 
in adipocytes.

In visceral adipose tissue of diet-induced obese (DIO) 
mice and subjects with obesity, we found that the expres-
sion of GLUT12 was decreased compared to lean con-
trols, as it occurs for GLUT4. Moreover, the increase of 
Akt phosphorylation and GLUT12 expression in adipo-
cytes induced by intraperitoneal injection of insulin in 
lean animals is lost in obese mice [21]. In line with these 
data, we have also shown that in DIO mice, where mesen-
teric adipose tissue contributes to intestinal inflammation 
through the secretion of proinflammatory cytokines [62], 
the amount of GLUT12 in the apical membrane of the 
enterocytes is lower than in lean animals [22, 24]. Fur-
thermore, in agreement with the results found in visceral 
adipose tissue, intraperitoneal injection of insulin in DIO 
mice does not induce translocation of GLUT12 to the api-
cal membrane of the enterocytes, compared to the increase 
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found in control animals. These results are accompanied 
by Tnf‐α and Hypoxia inducible factor-1 α (Hif‐1α) genes 
upregulation in the jejunal mucosa of the obese mice [22].

GLUT12 expression is also decreased in the mesenteric 
adipose tissue and kidney of DIO mice, while no changes 
on GLUT12 amount are found in skeletal muscle [24]. 
In an equine model of insulin resistance, other authors 
have found a decrease of GLUT4 expression in the mem-
brane of omental adipose tissue and skeletal muscle, while 
GLUT12 expression was unchanged [74, 75].

Brown adipose tissue (BAT) represents only 1–2% of 
body fat in humans [36]. Functionally, it is characterized 
by its thermogenic capacity of dissipating energy as heat 
[36] having, therefore, an important role in the regulation 
of energy homeostasis and the prevention of obesity [77]. 
BAT activity is also involved in the regulation of glucose 
homeostasis [47]. We have not observed significant change 
on GLUT12 expression in BAT from DIO mice (Fig. 2A). 
In agreement with the literature [43], a significant decrease 
of GLUT4 was found in the same animals (Fig. 2B).

As obesity, aging is characterized by a chronic inflamma-
tory condition, frequently accompanied by the accumulation 
of visceral fat that eventually may lead to obesity [18, 19]. 
Contrary to the decrease of GLUT12 in obesity, we have 
found an increase of GLUT12 expression in murine small 
intestine, mesenteric adipose tissue, kidney [24], and brain 
[23] of aged mice, and in the frontal cortex of aged individu-
als [55]. These data suggest that in obesity, the excessive 
energy condition would induce GLUT12 downregulation in 
some organs whereas in aging, the decrease of metabolism 
would be a stimulus to upregulate GLUT12 [24].

As GLUT4 knockout mice is surprisingly normoglycemic 
[37], and the skeletal muscle retains the capacity of respond-
ing to insulin [66], GLUT12 has been proposed as an impor-
tant transporter of glucose when GLUT4 is impaired in the 
muscle [67]. Accordingly, GLUT12 overexpression in mice 
improves whole body insulin sensitivity [57]. We can argue 
that GLUT12 could be a glucose transporter of clinical inter-
est in conditions where insulin resistance is present. Interest-
ingly, Fam et al. [17] reported no change of GLUT12 and 
GLUT1 total expression in their model of GLUT4 knockout 

Fig. 1   Summary of GLUT12 regulation in adipocytes. Insulin, 
TNF‐α and hypoxia induce GLUT12 translocation to the membrane 
from intracellular compartments, which parallels increase on glucose 
uptake. The adipokines leptin and adiponectin, however, reduce glu-
cose transport by GLUT12 by triggering the transporter internaliza-
tion [21]

Fig. 2   Expression of GLUT12 
and GLUT4 in interscapular 
brown adipose tissue (BAT) 
of lean (control) and diet-
induced obese mice (DIO). 
BAT samples correspond to the 
study of Gil-Itube et al. [24]. 
Mice were 18 months old and 
had been fed with DIO diet for 
16 months. Upper panels, pro-
tein expression is represented as 
the optical density ratio between 
(A) GLUT12 / (B) GLUT4 and 
β-Actin, and expressed in fold 
change relative to the control 
group as mean ± SEM (n = 9). 
Bottom panels, representative 
Western blot images. C, Con-
trol; DIO, diet-induced obese 
mice. *p < 0.05 vs. control. 
Western blots were performed 
as previously described [24]

A B
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mice, hypothesizing that other GLUTs may contribute to 
regulate the glucose homeostasis. It would be of interest to 
study whether the relative amount of GLUT12 in the plasma 
membrane is increased in this model, explaining the main-
tenance of normoglycemia.

GLUT12 and cancer

GLUT12 protein is overexpressed in human breast tumors 
compared to non-tumoral breast tissue [60]. In MCF-7 cells, 
metabolites that drive to oncogenic proliferation such as 
estradiol and epidermal growth factor increases GLUT12 
protein levels [41]. Interestingly, upregulation of GLUT12 
has also been found in MCF-7 cells incubated with a high 
glucose concentration; under this condition, the increase of 
cell migration observed is abolished after GLUT12 inhibi-
tion [44]. Most recently, it has been demonstrated the sup-
pression of proliferation, migration and invasion of breast 
cancer cells and xenografted tumors, after inhibition of 
GLUT12-mediated Warburg effect [61].

When we analyzed GLUT12 mRNA expression levels in 
breast cancer patient cohorts using the KMplotter online tool, 
we observed a decrease in overall survival and recurrence-free 
survival in patients with high GLUT12 expression (Fig. 3).

In addition, immunohistochemistry studies revealed 
higher expression of GLUT12 in a cohort of triple nega-
tive breast cancer (TNBC) patients compared to non-TNBC. 
Within TNBC patients, those showing higher GLUT12 
expression presented shorter overall survival and recurrence-
free survival [61].

Differently, high levels of GLUT12 mRNA have been signif-
icantly associated with better overall survival in lung adenocar-
cinoma patients [16]. And, at the protein level, we have found 
in lung adenocarcinoma tumors a decreased trend on GLUT12 
expression, compared to non-tumoral adjacent tissue (Fig. 4). 

GLUT12 and GLUT1 are expressed in the plasma mem-
brane and cytoplasm of prostate carcinoma cell lines. Inter-
estingly, while GLUT12 is absent in normal prostate tis-
sue and present in primary prostate carcinomas, an inverse 
pattern has been observed for GLUT1 [13]. Remarkably, in 

Fig. 3   Kaplan–Meier survival 
plots of SLC2A12 expression 
level in breast cancer patients. 
KM Plotter Online Tool (http://​
www.​kmplot.​com) was used as 
a clinical outcome prediction 
tool. The parameters evaluated 
were Overall Survival (Left 
panel) and Recurrence-Free 
Survival (Right panel). Patients 
were distributed according to 
the best cutoff values of the 
gene expression (lowest p value) 
into “high” vs. “low”

Fig. 4   Expression of GLUT12 in lung adenocarcinoma. Sam-
ples were provided by the Biobank of the University of Navarra and 
processed following standard operating procedures, approved by the 
Ethics Committee of the University of Navarra (n. 2011.006mod1). 
Upper panel, protein expression is represented as the optical density 
ratio between GLUT12 and β-Actin and expressed in fold change, 
relative to the control group, as mean ± SEM (n = 6). Bottom panel, a 
representative Western blot image. N, Non-tumor (control); T, tumor. 
*p < 0.05 vs. control. Western blots were performed as previously 
described [24]

http://www.kmplot.com
http://www.kmplot.com
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prostate cell lines the inhibition of GLUT12 halted the cell 
growth [76].

Regarding the digestive tract, GLUT12 has been 
detected in oral squamous carcinoma cell lines [49]. Most 
important, Cao et al. [12] have recently demonstrated in 
gastric cancer cell lines, that GLUT12 expression induces 
proliferation switching the oxidative phosphorylation path-
way to a highly glycolytic metabolism. The same authors 
show that GLUT12 is upregulated, in an androgen recep-
tor-manner, to counteract the treatment with everolimus, a 
mTOR kinase inhibitor which triggers apoptosis. Accord-
ingly, inhibition of the androgen receptor abolishes the 
increase of GLUT12 expression by everolimus, both in 
gastric cancer cells and a xenografted mice model, favoring 
the antitumoral effects of the drug, as occurs by knocking 
down GLUT12 [12].

The PI3K-AKT-mTOR pathway comprises a node sign-
aling for growth, proliferation, and survival in the tumor 
cells. The AKT upregulation of GLUT1 in tumor cells was 
initially described in the late 90 s of the past century [6], 
being a mechanism for an increase of glucose uptake. In this 
line, GLUT12 translocates to the membrane after PI3K/AKT 
activation by insulin in human muscle [45] and mouse adi-
pocytes [21]. Moreover, mTOR inhibition blocks GLUT12 
trafficking to the membrane under high glucose conditions 
in renal cells [78]. Further research is needed to clarify the 
reprogramming of GLUT12 function in cancer cells and its 
regulation by PI3K signaling pathway.

In patients suffering from colon adenocarcinoma and hep-
atocarcinoma, we have found an increase on GLUT12 and 
GLUT1 protein expression in tumors compared to adjacent 
non-tumor tissue, while the tumor suppressor p53 showed a 

diminishing trend (Fig. 5A and B). To our knowledge, this 
is the first time that expression of GLUT12 in liver/hepato-
carcinoma is reported. Apoptosis depends on glycolytic rates 
[72], and the tumor suppressor p53, which influences both 
the apoptosis [80] and the balance between glycolysis and 
oxidative phosphorylation [8], binds directly to the promot-
ers of GLUT12 and GLUT1 repressing their expression in 
cell lines from different types of cancer [81]. Further, p53 
expression is low or mutated in MCF-7, A549, HT-29 and 
RH-36 cell lines [11, 48], where GLUT12 is expressed [56], 
while is high in neuroblastoma cell lines, in which GLUT12 
is not detected [48, 56, 70].

Hypoxia is one of the common features of cancer. The 
reduction of oxygen availability induces HIF-1, a key regu-
lator of cancer cell proliferation [34], which contributes to 
the anaerobic glycolysis through the stimulation of a num-
ber of genes that mediate glycolysis and angiogenesis [14], 
including GLUT1 and GLUT3 [7, 63]. As mentioned earlier, 
hypoxia increases GLUT12 expression in adipocytes [21]. In 
line with our previous data, we have also shown an increase 
on GLUT12 amount in the hypoxic center of spheroid cul-
tures of the colorectal adenocarcinoma HT29 cell line, in 
comparison with the low expression in the cell monolayers 
[56]. This result would indicate an induction of the activ-
ity of the transporter under hypoxic conditions, that would 
drive to an increase of glycolysis; which, in turn, would be 
important to start the tumor cell response to hypoxic condi-
tions before the angiogenesis is initiated.

On the other hand, in cancer, the increase on glycolytic 
metabolism and lactate production due to the Warburg 
effect leads to an acidic environment [33]. Since GLUT12 
can act as a H+/glucose symporter [79], we hypothesize 

A B

Fig. 5   GLUT12 and GLUT1 expression in colon adenocarci-
noma and hepatocellular carcinoma. Samples were provided by 
the Biobank of the University of Navarra and processed following 
standard operating procedures, approved by the Ethics Committee of 
the University of Navarra (n. 2011.006mod1). A) GLUT12, GLUT1 
and p53 expression in colon adenocarcinoma biopsies and healthy 
adjacent tissue. B) GLUT12, GLUT1, and p53 expression in hepato-

cellular carcinoma and healthy adjacent tissue. Protein expression is 
represented as the optical density ratio between GLUT12, GLUT1 or 
p53 protein and β-Actin and expressed in fold change, relative to the 
healthy tissue, as mean ± SEM (n = 5). Representative western blots 
are shown. *p < 0.05, **p < 0.01 vs. healthy colon/liver. Western blots 
were performed as previously described [24]
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that this mechanism will allow GLUT12 to accumulate 
the sugar inside the tumor cell, thus contributing to its 
proliferation. Figure 6 summarizes GLUT12 regulation in 
tumor cells.

In addition to the involvement of GLUT12 in the pro-
liferation of cancer cells, GLUT12 might be directly 
involved in cancer cell evasion and metastasis. Accord-
ingly, in the cell line HEK293T cells, activation of the 
transcription factor Twist-related protein 1 (TWIST1), 
a key protein for epithelial to mesenchymal transition, 
increases GLUT12 along with GLUT1 and GLUT3 mRNA 
in an insulin-independent manner by directly binding to 
their promoters [51].

Table 1 summarizes the signaling proteins involved in 
oncogenic processes and obesity that regulate GLUT12 
expression and trafficking to the membrane.

Conclusions and future perspectives

GLUT12 is one of the less investigated members of the 
SLC2 family, which displays unique functional properties, 
but whose physiological role in the organism still needs to be 
elucidated. Here, we have collected all the information in the 
literature about GLUT12 in obesity and cancer. It would be 
interesting to elucidate whether in cancer patients with obe-
sity, in fact, the decrease of GLUT12 in adipocytes inversely 

Fig. 6   Summary of GLUT12 regulation in tumor cells. In tumor 
cells, increase of glucose uptake by GLUT12 is stimulated by glu-
cose and the hormones estradiol, epidermal growth factor (EGF) and 
androgens, which induce trafficking of the transporter to the plasma 
membrane. In this way, GLUT12 provides the tumor cell with the 
glucose it needs to produce the required ATP through the aerobic 
glycolysis (“Warburg effect”), for proliferation, migration and inva-

sion. As a consequence of the Warburg effect, extracellular acidifica-
tion also provides GLUT12 with the electrochemical gradient of H+ 
to cotransport and accumulate glucose inside the cell, further feed-
ing the aerobic glycolysis. Hypoxia, one of the common features of 
cancer, also upregulates GLUT12, thus rising glucose uptake, which 
increase anaerobic glycolysis before angiogenesis is initiated to meet 
the oxygen demands of the tumor [41, 44, 56, 61, 76, 79]

Table 1   Signaling proteins 
involved in oncogenic processes 
and obesity that regulate 
GLUT12 expression and 
trafficking to the membrane

Protein Cell/Tissue Reference

PI3K/AKT/mTOR 3T3-L1 murine adipocytes 21
Human skeletal muscle biopsies 67
Madin-Darby canine kidney cell line MDCK 78

AMPK 3T3-L1 murine adipocytes 21
Colon adenocarcinoma cell line Caco-2 22

CaMLL2-AMPK Human prostate cancer cell line LNCaP 76
Estrogen Breast cancer cell line MCF-7 41
Androgen Human prostate cancer cell line LNCaP 76

Gastric cancer cell lines SGC-7901, HGC-27/Xenografted 
mice models

12

EGF Breast cancer cell line MCF-7 41
Twist1 HEK293T cells 51
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correlates with the increase of GLUT12 in the tumor, and 
whether this correlation could contribute to the worse prog-
nosis of these patients with obesity.
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