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Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive and dismal cancers globally. Emerging evidence has estab-
lished that mTOR and Hippo pathways are oncogenic drivers of HCC. However, the prognostic value of these pathways in 
HCC remains unclear. In this study, we aimed to develop a gene signature utilizing the mTOR/Hippo genes for HCC prog-
nostication. A multiple stage strategy was employed to screen, and a 12-gene signature based on mTOR/Hippo pathways was 
constructed to predict the prognosis of HCC patients. The risk scores calculated by the signature were inversely correlated 
with patient prognosis. Validation of the signature in independent cohort confirmed its predictive power. Further analysis 
revealed molecular differences between high and low-risk groups at genomic, transcriptomic, and protein-interactive levels. 
Moreover, immune infiltration analysis revealed an immunosuppressive state in the high-risk group. Finally, the gene sig-
nature could predict the sensitivity to current chemotherapeutic drugs. This study demonstrated that combinatorial mTOR/
Hippo gene signature was a robust and independent prognostic tool for survival prediction of HCC. Our findings not only 
provide novel insights for the molecular understandings of mTOR/Hippo pathways in HCC, but also have important clinical 
implications for guiding therapeutic strategies.
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Introduction

Hepatocellular carcinoma (HCC) is the most common type 
of liver cancer and accounts for 75–90% of all liver cancers, 
causing over 600,000 deaths annually [24, 28]. Despite sig-
nificant advancements in diagnosis and treatment, the 5-year 
survival rate of HCC patients remains low, with only ~ 18% 
of patients surviving beyond 5 years after diagnosis [22]. 
Although drugs like sorafenib and regorafenib have shown 
some effectiveness against advanced HCC, their overall 
impact on survival is limited [13, 17]. Actually, one of the 
major challenges in treating HCC is the tumor heterogeneity 
and high frequency of recurrence, which makes it difficult 
to predict the outcome and design effective treatments [7, 
9]. Therefore, there is an urgent need for better predictive 
tools to identify patients at high risk of recurrence and poor 
outcomes, in order to develop more targeted and effective 
therapies.

Conventional prognostic models for HCC rely on clinico-
pathological factors including tumor size, number of lesions, 
microvascular invasion, and cirrhosis, as well as the levels 
of certain biomarkers in serum [4, 14, 25]. However, these 
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prognostic models have limited sensitivity and specificity 
and do not support the identification of meaningful patterns 
of prognosis, particularly given the substantial heterogene-
ity of HCC. To address this challenge, multigene classifiers 
have been proposed as a promising solution to predict the 
outcome and recurrence of HCC, but their clinical util-
ity remains limited [15, 18]. Therefore, there is a pressing 
demand for the development of novel molecular tools that 
can facilitate the accurate prediction of HCC prognosis.

The mammalian target of rapamycin (mTOR) and Hippo 
signaling pathways are extensively identified as two impor-
tant drivers of HCC. mTOR pathway is a highly conserved 
serine/threonine kinase signaling pathway that plays a cru-
cial role in the regulation of cell growth [2], and hepatic 
metabolisms [12]. Dysregulation of mTOR pathway has 
been proved to contribute to the development and progres-
sion of the disease [27]. In HCC, activation of mTOR leads 
to increased cell proliferation and survival, angiogenesis, 
and decreased apoptosis, all of which contribute to tumor 
growth and metastasis [30]. On the other hand, Hippo is a 
conserved signaling that controls cell proliferation, survival, 
and differentiation in various tissues [21]. Hippo pathway 
has been shown to play an important role in HCC, control-
ling cell proliferation, survival, angiogenesis, and inflam-
mation [29].

Interestingly, recent studies have uncovered a significant 
interplay between the mTOR and Hippo pathways in the 
progression of HCC [3]. Investigations revealed that these 
pathways interact to regulate key cellular processes. Specifi-
cally, LATS kinase in Hippo pathway attenuates mTORC1 
activation by impairing the interaction of Raptor with Rheb 
[8]. Likewise, YAP can activate mTORC1 activity and thus 
regulates lipid metabolism [26]. Reciprocally, mTOR com-
plexes (including mTORC1 and mTORC2) controls YAP 
activity and downstream cell proliferation [1]. As such, 
the integration of molecular signature analyses of mTOR-
Hippo signaling may hold potential for the development of 
a prognostic prediction model for HCC, offering clinicians 
a powerful tool for assessing patient outcomes and guiding 
personalized therapeutic strategies.

In this study, we comprehensively investigated the expres-
sion patterns of Hippo-YAP signaling genes using transcrip-
tomic data from public datasets. We constructed a prognos-
tic model based on the expression of Hippo-YAP signaling 
genes for predicting the survival, immune infiltration, and 
chemotherapeutic sensitivity of patients with OSCC.

Methods

The RNA expression data and clinical information of HCC 
used in this study were acquired from TCGA portal (https:// 
portal. gdc. cancer. gov/) and ICGC database (http:// dcc. icgc. 

org), respectively. The training set consisted of RNA-seq 
data from 374 HCC patients obtained from TCGA, while the 
testing sets comprised RNA-seq data from ICGC (n = 240) 
obtained from ICGC database. The data for this compre-
hensive set of genes from mTOR and Hippo pathways were 
sourced from PathCards database (https:// pathc ards. genec 
ards. org/). A comprehensive description of methods can be 
found in Supplementary Materials.

Results

Functional enrichment analysis related to mTOR/
Hippo pathway genes in HCC

mTOR pathway senses nutrients and controls cell prolifera-
tion, while Hippo pathway senses mechanical signals and 
regulates cell proliferation. Recent studies suggest that the 
two pathways exhibit crosstalk in HCC, and aberrations in 
these pathways contribute to HCC growth (Fig. 1A). To 
identify potential biological functions of mTOR/Hippo 
genes, we conducted functional enrichment analyses using 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) databases. GO analysis revealed signifi-
cant enrichment of terms related to protein kinase activity, 
GTPase binding, and focal adhesions (Fig. 1B). KEGG 
analysis showed enriched pathways involved in mTOR and 
Hippo signalings, human cancers, and stem cell pluripotency 
(Fig. 1C).

Establishment and validation of the mTOR/Hippo 
gene signature of HCC prognosis

To construct a risk model based on mTOR/Hippo genes for 
predicting the prognosis of HCC patients, we identified a 
risk model consisting of 12 genes, including CD44, FLT3, 
MAP4K1, LIN28B, WNT8A, GPC1, EIF4E, KIT, CYCS, 
PPARGC1A, BNIP3 and RRAGD (Figs. 2A–B and S1A–B). 
The risk score was tightly associated with WHO grades 
and histological stages of HCC patients, but not related to 
patient genders and ages (Figs. 2C–D and S1E–F). To evalu-
ate the prognostic significance of this model, we performed 
Kaplan–Meier survival analysis and found that patients in 
the high-risk score group had a significantly lower survival 
rate compared to those in the low-risk score group (Fig. 2E). 
Time-dependent receiver operating characteristic (ROC) 
curves were used to assess the predictive performance of 
the risk signature. The area under the curve (AUC) values 
at 1, 3 and 5 years were 0.79, 0.79 and 0.83, respectively, 
indicating the risk signature with robust prognostic accuracy 
(Fig. 2F). To further explore the utility of the risk model 
in different subgroups of patients with HCC, we stratified 
patients based on age (< = 65 vs. > 65 years), gender (male 
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vs. female), grade (G1-2 vs. G3-4), and stage (stage I-II vs. 
stage III-IV). Results showed that the high-risk score group 
consistently exhibited a higher proportion of patients with 
poor outcomes than the low-risk score group across all sub-
groups (Figure S2).

To validate the robustness of the established gene signature, 
we conducted further analysis using independent ICGC data-
set. Similarly, patients from the validation cohort were classi-
fied into high- and low-risk groups based on their median risk 
score (Figure S1C–D). The Kaplan–Meier survival analysis 
and ROC curves demonstrated that patients in the low-risk 

group had better survival rates compared to those in the high-
risk group (Fig. 2G–H). These findings further confirm the 
reliability and accuracy of the prognostic signature comprising 
12 mTOR/Hippo genes, which may serve as a valuable tool for 
predicting outcomes in patients with HCC.

mTOR/Hippo gene signature as an independent 
prognostic factor in HCC

Next, we investigated whether the mTOR/Hippo gene sig-
nature was an independent prognostic factor in HCC, and 
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performed univariate and multivariate Cox regression analy-
ses, with covariates including patient gender, age, grade, 
stage, and risk scores. Results of the univariate analysis 
showed a statistically correlation of patient age and the risk 
score with the outcome (p < 0.05) (Fig. 3A). And the mul-
tivariate analysis showed a significant association only in 
the risk score with patient outcomes (p < 0.001) (Fig. 3B).

Moreover, it was observed that the risk score had the high-
est predictive power among all the clinical parameters across 
1-, 3- and 5-year survival predictions (Fig. 3C–E). Then, 
we constructed a nomogram by combining independent 

prognostic factors (Fig. 3F). The calibration chart exhibited 
excellent consistency between the actual observation and 
predictive status for 1-, 3-, and 5-year OS (Fig. 3G), suggest-
ing that the nomogram may serve as a clinically quantitative 
tool to predict the prognosis of HCC patients.

Molecular characteristics of the mTOR/Hippo gene 
signature in HCC

To reveal the molecular characteristics of the mTOR/Hippo 
gene signature, we first examined the correlations of the 
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signature genes. Results showed that several genes were 
highly correlated with others, including MAP4K1 with 
FLT3, MAP4K1 with CD44, FLT3 with KIT, EIF4E with 
KIT, and CYCS with PPARGC1A (Fig. 4A), suggesting that 
these genes may synergistically regulate HCC development. 
Next, we investigated the genomic alterations of signature 
genes. We found that the mutation rate of the signature genes 
was extremely low in HCC samples (< 3%), indicating that 
these genes trended to be genomically stable (Fig. 4B). Thus, 
we asked whether the expression levels of these genes were 
statistically different in HCC samples and normal controls. 
Results showed that the mRNA levels of BNIP3, CYCS, 
RRAGD, CD44, EIF4E, MAP4K1, and LIN28B were higher 
in tumor samples, whereas the mRNA levels of PPARGC1A 
and FLT3 were higher in normal samples (Fig. 4C). There-
fore, we conclude that the distinct expressions of signature 
genes may not attribute to the genomic mutations, but be due 
to transcriptional regulations.

Then, we confirmed the protein levels of differentially 
expressed signature genes in HCC samples. It’s found that 
IHC signals of BNIP3, CYCS, RRAGD, CD44, EIF4E, and 
MAP4K1 were consistently high in tumor cells of HCC, 
compared with normal tissues (Fig. 4D), implying that these 
genes were indeed ectopically expressed in HCC. Finally, we 
assessed protein interactions of the signature genes using 
the PPI (protein–protein interaction) analysis. As displayed 
in the network architecture, the 12 mTOR/Hippo signature 
genes were surrounded by 20 hub genes. The large size of 
the circles in hub genes, including RHEB, DIABLO, ETS2, 
ROCK2, RPTOR, BNIP3L, PIK3C2B and MLS8 indicated 
high correlations of interactions (e.g., co-expression and 
physical interaction) (Fig. 4E). Altogether, these results 
suggest that the transcriptional regulation and protein inter-
active network, but not genomic alteration, are potential 
mechanisms by which the signature genes contribute to HCC 
development and prognosis determination.

Immune landscape of the mTOR/Hippo gene 
signature in HCC

Immune cell infiltration has been identified as a crucial fac-
tor in the prognosis of HCC. Thus, we evaluated whether 
there were distinct immune infiltration patterns among dif-
ferent risk score groups. The CIBERSORT algorithm was 
employed to estimate the proportion of 22 immune cell types 
in HCC samples (Fig. S3A). Results showed that the high-
risk score group had higher ratio of several immune cells, 
including M0 and M2 macrophages and neutrophils, and 
lower ratio of plasma cells and CD8 T cells, indicating a 
more inactivated and immunosuppressive tumor microen-
vironment in the high-risk score group (Fig. 5A).

Furthermore, we employed the ESTIMATE algorithm to 
calculate the immune score, stromal score, tumor purity, and 

ESTIMATE score in different risk score subgroups. Results 
showed that the low-risk score group had higher ESTIMATE 
and immune scores, and lower tumor purity compared to 
the high-risk score group (Figs. 5B and S3B). This suggests 
that the poor prognosis of the high-risk score group may be 
partly attributed to the higher tumor purity. Overall, these 
results provide insights into the immune landscape of differ-
ent risk score groups in HCC.

Assessment of chemotherapeutic efficacy using 
the mTOR/Hippo gene signature

In order to provide clinical guidance of chemotherapeutic 
strategies in different risk score patients with HCC, we 
investigated the potential of the mTOR/Hippo gene sig-
nature to predict cell response to chemotherapy. Thereby, 
we assessed the sensitivity of different risk score groups to 
FDA-approved or clinical trial anti-cancer drugs using the 
CellMiner database, and analyzed the correlation between 
the risk score and the IC50 of each drug. We identified the 
top 8 drugs that exhibited distinct sensitivities between the 
low- and high-risk score groups. Notably, the IC50 of Sim-
vastatin, Bleomycin, JNJ-38877605, and Zoledronate were 
observed to increase as the risk score increased, indicating 
that these drugs may be more effective in the low-risk score 
group (Fig. 6A–D). Conversely, the IC50 of Volasertib, 
Dolastatin 10, Dromostanolone Propionate, and TAK-960 
analog were observed to decrease as the risk score increased, 
indicating that these drugs may be more suitable for the 
high-risk score group (Fig. 6E–H). These observations 
provide potential guidance for selecting chemotherapeutic 
strategies for HCC patients.

Discussion

HCC is a widespread cancer type that exhibits uncon-
trollable aggressiveness and unfavorable prognosis [19]. 
Therefore, there is an urgent need for accurate and reliable 
prognostic prediction in HCC due to its high prevalence, 
aggressive nature, and poor prognosis. The malignancy of 
HCC primarily depends on signaling pathways, including 
mTOR and Hippo to drive the tumorigenic events [10]. In 
this study, we developed a robust model using 12 mTOR/
Hippo gene to predict the prognosis of HCC patients. Our 
findings suggest that this model has potential to facilitate 
prognostic monitoring of HCC patients.

So far, numerous studies have elucidated the relationship 
between the mTOR/Hippo pathways and HCC, offering 
potential avenues for predicting prognosis using the mTOR/
Hippo related genes. Compared to single-gene indicators, a 
set of genes can produce a more precise and reliable signa-
ture for prognostic prediction. To this end, we obtained gene 
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expression profiles from the TCGA database and developed 
a robust mTOR/Hippo gene risk score model, which was 
effectively validated by independent cohort. Our 12-gene 
risk score model demonstrated an improved ability to predict 
patient prognosis compared to current clinical indicators. 
Our findings suggest that current prognostic factors, includ-
ing gender, age, disease grade, histological stages, and TNM 
stages, are not reliable for outcome prediction (Fig. 3). Nota-
bly, our risk score model showed superior predictive ability 
for both the overall HCC cohort and subgroups. It’s noted 
that some pilot studies have identified prognostic models in 
HCC, including those utilizing either mTOR or Hippo genes 

[20], however, our work provides a more comprehensive 
and accurate model for prognostic estimation by combining 
these two pathways, deepening our understanding of gene 
set-based predictions.

Among all the 12 signature genes in the risk score model, 
we found that most of the genes were statistically different 
between tumor tissues and normal controls, and in particu-
lar, two genes (PPARGC1A and FLT3) were decreased in 
the tumor tissue (Fig. 4C). This notion was supported by 
the fact that these two genes were enriched in the low-risk 
score groups (Fig. 2A–B). PPARGC1A encodes a transcrip-
tional coactivator well-known as PGC1-α, participating in 
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mTOR-controlled mitochondrial metabolisms. Previous 
studies have demonstrated the lower PGC-1α expression 
in HCC compared to normal liver tissues, and knockdown 
of PGC-1α led to a cancerous phenotype with immature 
and de-differentiated morphology in HCC cells [16]. Here, 
we found that high PGC1-α expression was enriched in 
patients with low-risk scores, supporting the notion that 
PGC-1α may serve as a tumor-suppressor in HCC. More-
over, FLT3, encoding a class III receptor tyrosine kinase, 

exhibited reduced expression in a significant proportion 
of HCC patients, which was consistent with our findings 
that FLT3 was decreased in HCC tumor tissues [23]. On 
the contrary, other signature genes (e.g., EIF4E, MAP4K1) 
were shown to be highly expressed in tumor samples, sup-
ported by their functions in either mTOR or Hippo regula-
tions. Additionally, RRAGD encodes a pivotal member of 
the Rag guanosine triphosphatases (GTPases) family, RagD, 
that assumes a critical role in the activation of mTORC1. 
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RagD differentially defines substrate specificity downstream 
of mTORC1, promoting phosphorylation of lysosomal sub-
strates TFEB/TFE3 [5]. This highlights RagD's significance 
in orchestrating mTORC1 regulation and underscores the 
functional diversity among Rag paralogues in mTORC1 acti-
vation [11]. Our results showed that RRAGD expression was 
distinct between tumor and control tissues, and elevated in 
the high-risk score groups, which indicates and contributes 
to the poor prognosis of HCC patients. Nevertheless, our 
study provides a comprehensive molecular landscape of 
HCC development by integrating mTOR and Hippo signal-
ing pathways, and offers a reasonable explanation for the 
poor prognosis observed in the high-risk score group.

In clinical practice, the complex molecular network in 
HCC poses a challenge to the effectiveness of drug thera-
peutics and selections. Interestingly, our risk score model 
not only offers a tool for prognosis prediction but also ena-
bles the prediction of sensitivities to clinical chemotherapy 
drugs. For example, simvastatin, a cholesterol-lowering 
statin that prevents the synthesis of cholesterol, has been 
proved to inhibit HCC cell proliferation and increases the 
cell sensitivity to sorafenib [6]. However, it remains unclear 
which subgroup of HCC patients would derive the greatest 
benefit from simvastatin therapy. Here, we demonstrate that 
HCC patients with low-risk scores may benefit more from 
simvastatin treatment, as evidenced by the positive correla-
tion between risk scores and the IC50 of simvastatin. Hence, 
our risk score model could be utilized to guide the develop-
ment of chemotherapeutic regimens in clinical practice.

While our study primarily relies on bioinformatic analy-
ses, it is essential to acknowledge the inherent limitation 
of our study. The findings presented in this study offer a 
potential scenario rather than definitive experimental evi-
dence. The complexity of biological systems and the diverse 
regulatory mechanisms involved necessitate further experi-
mental validations. Therefore, our study serves as a valuable 
foundation, providing hypothesis and insights that should be 
rigorously tested in future experimental settings to ensure 
robustness and clinical relevance.

Conclusions

In conclusion, our study presents a novel mTOR/Hippo gene 
model for HCC that acts as a prognostic tool with significant 
implications for the immune infiltrate features and chemo-
therapy sensitivities. Our findings shed light on the progno-
sis of mTOR-Hippo signalings in HCC, offering molecular 
guidance for the improvement of HCC prognosis.
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