Skip to main content

Advertisement

Log in

ERG mediates the inhibition of NK cell cytotoxicity through the HLX/STAT4/Perforin signaling pathway, thereby promoting the progression of myocardial infarction

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

This study aimed to investigate the role of ERG in the HLX/STAT4/Perforin signaling axis, impacting natural killer (NK) cell cytotoxicity and myocardial infarction (MI) progression. NK cell cytotoxicity was assessed via co-culture and 51Cr release assays. Datasets GSE34198 and GSE97320 identified common differentially expressed genes in MI. NK cell gene expression was analyzed in MI patients and healthy individuals using qRT-PCR and Western blotting. ERG's regulation of HLX and STAT4's regulation of perforin were studied through computational tools (MEM) and ChIP experiments. HLX's influence on STAT4 was explored with the MG132 proteasome inhibitor. Findings were validated in a mouse MI model.

ERG, a commonly upregulated gene, was identified in NK cells from MI patients and mice. ERG upregulated HLX, leading to STAT4 proteasomal degradation and reduced Perforin expression. Consequently, NK cell cytotoxicity decreased, promoting MI progression. ERG mediates the HLX/STAT4/Perforin axis to inhibit NK cell cytotoxicity, fostering MI progression. These results provide vital insights into MI's molecular mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MI:

Myocardial infarction

ERG:

E26-related gene

NK:

Natural killer

HLX:

H2.0-like homeobox

STAT4:

Signal transducer and activator of transcription 4

SMCs:

Smooth muscle inhibitory cells

TNF-α:

Tumor Necrosis Factor-alpha

IFN-γ:

Interferon-γ

FS:

Fractional shorter

LVEF:

Left ventricular ejection fraction

a-SMA:

Alpha-smooth muscle actin

vWF:

Von Willebrand factor

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

RT-qPCR:

Reverse transcription-quantitative polymerase chain reaction

References

  1. Ackers-Johnson M, Li PY, Holmes AP, O’Brien SM, Pavlovic D, Foo RS (2016) A simplified, langendorff-free method for concomitant isolation of viable cardiac myocytes and nonmyocytes from the adult mouse heart. Circ Res 119:909–920. https://doi.org/10.1161/CIRCRESAHA.116.309202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Backteman K, Ernerudh J, Jonasson L (2014) Natural killer (NK) cell deficit in coronary artery disease: no aberrations in phenotype but sustained reduction of NK cells is associated with low-grade inflammation. Clin Exp Immunol 175:104–112. https://doi.org/10.1111/cei.12210

    Article  CAS  PubMed  Google Scholar 

  3. Bae S, Oh K, Kim H, Kim Y, Kim HR, Hwang YI, Lee DS, Kang JS, Lee WJ (2013) The effect of alloferon on the enhancement of NK cell cytotoxicity against cancer via the up-regulation of perforin/granzyme B secretion. Immunobiology 218:1026–1033. https://doi.org/10.1016/j.imbio.2012.12.002

    Article  CAS  PubMed  Google Scholar 

  4. Balakrishnan S, Bhat FA, Raja Singh P, Mukherjee S, Elumalai P, Das S, Patra CR, Arunakaran J (2016) Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif 49:678–697. https://doi.org/10.1111/cpr.12296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barnes A, Gibson W (2021) Pediatric heart transplant. Semin Pediatr Surg 30:151039. https://doi.org/10.1016/j.sempedsurg.2021.151039

    Article  PubMed  Google Scholar 

  6. Bianco B, Fernandes RFM, Trevisan CM, Christofolini DM, Sanz-Lomana CM, de Bernabe JV, Barbosa CP (2019) Influence of STAT4 gene polymorphisms in the pathogenesis of endometriosis. Ann Hum Genet 83:249–255. https://doi.org/10.1111/ahg.12309

    Article  CAS  PubMed  Google Scholar 

  7. Borodina I, Kenny LC, McCarthy CM, Paramasivan K, Pretorius E, Roberts TJ, van der Hoek SA, Kell DB (2020) The biology of ergothioneine, an antioxidant nutraceutical. Nutr Res Rev 33:190–217. https://doi.org/10.1017/S0954422419000301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bose R, Karthaus WR, Armenia J, Abida W, Iaquinta PJ, Zhang Z, Wongvipat J, Wasmuth EV, Shah N, Sullivan PS, Doran MG, Wang P, Patruno A, Zhao Y, International SUCPCFPCDT, Zheng D, Schultz N, Sawyers CL (2017) ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis. Nature 546:671–675. https://doi.org/10.1038/nature22820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen X, Li Q, Zhang Z, Yang M, Wang E (2022) Identification of Potential Diagnostic Biomarkers From Circulating Cells During the Course of Sleep Deprivation-Related Myocardial Infarction Based on Bioinformatics Analyses. Front Cardiovasc Med 9:843426. https://doi.org/10.3389/fcvm.2022.843426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Durer S, Shaikh H, Ewing Sarcoma (2023) In: StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL)

  11. Feng L, Tian R, Mu X, Chen C, Zhang Y, Cui J, Song Y, Liu Y, Zhang M, Shi L, Sun Y, Li L, Yi W (2022) Identification of genes linking natural killer cells to apoptosis in acute myocardial infarction and ischemic stroke. Front Immunol 13:817377. https://doi.org/10.3389/fimmu.2022.817377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fish JE, Cantu Gutierrez M, Dang LT, Khyzha N, Chen Z, Veitch S, Cheng HS, Khor M, Antounians L, Njock MS, Boudreau E, Herman AM, Rhyner AM, Ruiz OE, Eisenhoffer GT, Medina-Rivera A, Wilson MD, Wythe JD (2017) Dynamic regulation of VEGF-inducible genes by an ERK/ERG/p300 transcriptional network. Development 144:2428–2444. https://doi.org/10.1242/dev.146050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Good CR, Aznar MA, Kuramitsu S, Samareh P, Agarwal S, Donahue G, Ishiyama K, Wellhausen N, Rennels AK, Ma Y, Tian L, Guedan S, Alexander KA, Zhang Z, Rommel PC, Singh N, Glastad KM, Richardson MW, Watanabe K, Tanyi JL, O’Hara MH, Ruella M, Lacey SF, Moon EK, Schuster SJ, Albelda SM, Lanier LL, Young RM, Berger SL, June CH (2021) An NK-like CAR T cell transition in CAR T cell dysfunction. Cell 184:6081–6100. https://doi.org/10.1016/j.cell.2021.11.016. (e6026)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guo C, Figueiredo I, Gurel B, Neeb A, Seed G, Crespo M, Carreira S, Rekowski J, Buroni L, Welti J, Bogdan D, Gallagher L, Sharp A, Fenor de la Maza MD, Rescigno P, Westaby D, Chandran K, Riisnaes R, Ferreira A, Miranda S, Cali B, Alimonti A, Bressan S, Nguyen AHT, Shen MM, Hawley JE, Obradovic A, Drake CG, Bertan C, Baker C, Tunariu N, Yuan W, de Bono JS (2023) B7–H3 as a Therapeutic Target in Advanced Prostate Cancer. Eur Urol 83:224–238. https://doi.org/10.1016/j.eururo.2022.09.004

    Article  CAS  PubMed  Google Scholar 

  15. Higazi H, He L, Fang J, Sun F, Zhou Q, Huang T, He X, Wang Y, Xiong F, Yang P, Yu Q, Li J, Wagner KU, Adam BL, Zhang S, Wang CY (2019) Loss of Jak2 protects cardiac allografts from chronic rejection by attenuating Th1 response along with increased regulatory T cells. Am J Transl Res 11:624–640

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang JF, Lian NF, Lin GF, Xie HS, Wang BY, Chen GP, Lin QC (2023) Expression alteration of serum exosomal circular RNAs in obstructive sleep apnea patients with acute myocardial infarction. BMC Med Genomics 16:50. https://doi.org/10.1186/s12920-023-01464-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jia Y, Xu H, Li Y, Wei C, Guo R, Wang F, Wu Y, Liu J, Jia J, Yan J, Qi X, Li Y, Gao X (2018) A Modified Ficoll-Paque Gradient Method for Isolating Mononuclear Cells from the Peripheral and Umbilical Cord Blood of Humans for Biobanks and Clinical Laboratories. Biopreserv Biobank 16:82–91. https://doi.org/10.1089/bio.2017.0082

    Article  CAS  PubMed  Google Scholar 

  18. Keiffer TR, Ciancanelli MJ, Edwards MR, Basler CF (2020) Interactions of the Nipah Virus P, V, and W Proteins across the STAT Family of Transcription Factors. mSphere 5 https://doi.org/10.1128/mSphere.00449-20

  19. Kim TD, Lee SU, Yun S, Sun HN, Lee SH, Kim JW, Kim HM, Park SK, Lee CW, Yoon SR, Greenberg PD, Choi I (2011) Human microRNA-27a* targets Prf1 and GzmB expression to regulate NK-cell cytotoxicity. Blood 118:5476–5486. https://doi.org/10.1182/blood-2011-04-347526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lebeau PF, Chen J, Byun JH, Platko K, Austin RC (2019) The trypan blue cellular debris assay: a novel low-cost method for the rapid quantification of cell death. MethodsX 6:1174–1180. https://doi.org/10.1016/j.mex.2019.05.010

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu XT, Sun HT, Zhang ZF, Shi RX, Liu LB, Yu JJ, Zhou WJ, Gu CJ, Yang SL, Liu YK, Yang HL, Xu FX, Li MQ (2018) Indoleamine 2,3-dioxygenase suppresses the cytotoxicity of 1 NK cells in response to ectopic endometrial stromal cells in endometriosis. Reproduction 156:397–404. https://doi.org/10.1530/REP-18-0112

    Article  CAS  PubMed  Google Scholar 

  22. Murphy A, Goldberg S (2022) Mechanical Complications of Myocardial Infarction. Am J Med 135:1401–1409. https://doi.org/10.1016/j.amjmed.2022.08.017

    Article  PubMed  Google Scholar 

  23. Nishibaba R, Higashi Y, Goto Y, Hisaoka M, Kanekura T (2016) Epithelioid sarcoma with multiple lesions on the left arm: a case report. J Med Case Rep 10:295. https://doi.org/10.1186/s13256-016-1088-z

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ortega-Rodriguez AC, Marin-Jauregui LS, Martinez-Shio E, Hernandez Castro B, Gonzalez-Amaro R, Escobedo-Uribe CD, Monsivais-Urenda AE (2020) Altered NK cell receptor repertoire and function of natural killer cells in patients with acute myocardial infarction: A three-month follow-up study. Immunobiology 225:151909. https://doi.org/10.1016/j.imbio.2020.151909

    Article  CAS  PubMed  Google Scholar 

  25. Putz EM, Hoelzl MA, Baeck J, Bago-Horvath Z, Schuster C, Reichholf B, Kern D, Aberger F, Sexl V, Hoelbl-Kovacic A (2014) Loss of STAT3 in Lymphoma Relaxes NK Cell-Mediated Tumor Surveillance. Cancers (Basel) 6:193–210. https://doi.org/10.3390/cancers6010193

    Article  CAS  PubMed  Google Scholar 

  26. Ritter AT, Shtengel G, Xu CS, Weigel A, Hoffman DP, Freeman M, Iyer N, Alivodej N, Ackerman D, Voskoboinik I, Trapani J, Hess HF, Mellman I (2022) ESCRT-mediated membrane repair protects tumor-derived cells against T cell attack. Science 376:377–382. https://doi.org/10.1126/science.abl3855

    Article  CAS  PubMed  Google Scholar 

  27. Roger VL (2021) Epidemiology of Heart Failure: A Contemporary Perspective. Circ Res 128:1421–1434. https://doi.org/10.1161/CIRCRESAHA.121.318172

    Article  CAS  PubMed  Google Scholar 

  28. Salybekov AA, Kawaguchi AT, Masuda H, Vorateera K, Okada C, Asahara T (2018) Regeneration-associated cells improve recovery from myocardial infarction through enhanced vasculogenesis, anti-inflammation, and cardiomyogenesis. PLoS One 13:e0203244. https://doi.org/10.1371/journal.pone.0203244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Si X, Zheng H, Wei G, Li M, Li W, Wang H, Guo H, Sun J, Li C, Zhong S, Liao W, Liao Y, Huang S, Bin J (2020) circRNA Hipk3 induces cardiac regeneration after myocardial infarction in mice by binding to notch1 and miR-133a. Mol Ther Nucleic Acids 21:636–655. https://doi.org/10.1016/j.omtn.2020.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sivori S, Pende D, Quatrini L, Pietra G, Della Chiesa M, Vacca P, Tumino N, Moretta F, Mingari MC, Locatelli F, Moretta L (2021) NK cells and ILCs in tumor immunotherapy. Mol Aspects Med 80:100870. https://doi.org/10.1016/j.mam.2020.100870

    Article  CAS  PubMed  Google Scholar 

  31. Stokic-Trtica V, Diefenbach A, Klose CSN (2020) NK Cell Development in Times of Innate Lymphoid Cell Diversity. Front Immunol 11:813. https://doi.org/10.3389/fimmu.2020.00813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun K, Li YY, Jin J (2021) A double-edged sword of immuno-microenvironment in cardiac homeostasis and injury repair. Signal Transduct Target Ther 6:79. https://doi.org/10.1038/s41392-020-00455-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Townshend RJL, Eismann S, Watkins AM, Rangan R, Karelina M, Das R, Dror RO (2021) Geometric deep learning of RNA structure. Science 373:1047–1051. https://doi.org/10.1126/science.abe5650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ullrich KA, Schulze LL, Paap EM, Muller TM, Neurath MF, Zundler S (2020) Immunology of IL-12: An update on functional activities and implications for disease. EXCLI J 19:1563–1589. https://doi.org/10.17179/excli2020-3104

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang D, Uyemura B, Hashemi E, Bjorgaard S, Riese M, Verbsky J, Thakar MS, Malarkannan S (2021) Role of GATA2 in Human NK Cell Development. Crit Rev Immunol 41:21–33. https://doi.org/10.1615/CritRevImmunol.2021037643

    Article  PubMed  Google Scholar 

  36. Wang Z, He Y (2021) Precision omics data integration and analysis with interoperable ontologies and their application for COVID-19 research. Brief Funct Genomics 20:235–248. https://doi.org/10.1093/bfgp/elab029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Witkowski M, Weeks TL, Hazen SL (2020) Gut Microbiota and Cardiovascular Disease. Circ Res 127:553–570. https://doi.org/10.1161/CIRCRESAHA.120.316242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xiao L, Parolia A, Qiao Y, Bawa P, Eyunni S, Mannan R, Carson SE, Chang Y, Wang X, Zhang Y, Vo JN, Kregel S, Simko SA, Delekta AD, Jaber M, Zheng H, Apel IJ, McMurry L, Su F, Wang R, Zelenka-Wang S, Sasmal S, Khare L, Mukherjee S, Abbineni C, Aithal K, Bhakta MS, Ghurye J, Cao X, Navone NM, Nesvizhskii AI, Mehra R, Vaishampayan U, Blanchette M, Wang Y, Samajdar S, Ramachandra M, Chinnaiyan AM (2022) Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer. Nature 601:434–439. https://doi.org/10.1038/s41586-021-04246-z

    Article  CAS  PubMed  Google Scholar 

  39. Yang M, Kong DY, Chen JC (2019) Inhibition of miR-148b ameliorates myocardial ischemia/reperfusion injury via regulation of Wnt/beta-catenin signaling pathway. J Cell Physiol 234:17757–17766. https://doi.org/10.1002/jcp.28401

    Article  CAS  PubMed  Google Scholar 

  40. Yao F, Jin Z, Zheng Z, Lv X, Ren L, Yang J, Chen D, Wang B, Yang W, Chen L, Wang W, Gu J, Lin R (2022) HDAC11 promotes both NLRP3/caspase-1/GSDMD and caspase-3/GSDME pathways causing pyroptosis via ERG in vascular endothelial cells. Cell Death Discov 8:112. https://doi.org/10.1038/s41420-022-00906-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zaidi Y, Corker A, Vasileva VY, Oviedo K, Graham C, Wilson K, Martino J, Troncoso M, Broughton P, Ilatovskaya DV, Lindsey ML, DeLeon-Pennell KY (2021) Chronic Porphyromonas gingivalis lipopolysaccharide induces adverse myocardial infarction wound healing through activation of CD8(+) T cells. Am J Physiol Heart Circ Physiol 321:H948–H962. https://doi.org/10.1152/ajpheart.00082.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang B, Zhou WJ, Gu CJ, Wu K, Yang HL, Mei J, Yu JJ, Hou XF, Sun JS, Xu FY, Li DJ, Jin LP, Li MQ (2018) The ginsenoside PPD exerts anti-endometriosis effects by suppressing estrogen receptor-mediated inhibition of endometrial stromal cell autophagy and NK cell cytotoxicity. Cell Death Dis 9:574. https://doi.org/10.1038/s41419-018-0581-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang S, Wang L, Cheng L (2019) Aberrant ERG expression associates with downregulation of miR-4638–5p and selected genomic alterations in a subset of diffuse large B-cell lymphoma. Mol Carcinog 58:1846–1854. https://doi.org/10.1002/mc.23074

    Article  CAS  PubMed  Google Scholar 

  44. Zhang X, Wei H (2021) Role of Decidual Natural Killer Cells in Human Pregnancy and Related Pregnancy Complications. Front Immunol 12:728291. https://doi.org/10.3389/fimmu.2021.728291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zheng B, Yang Y, Han Q, Yin C, Pan Z, Zhang J (2019) STAT3 directly regulates NKp46 transcription in NK cells of HBeAg-negative CHB patients. J Leukoc Biol 106:987–996. https://doi.org/10.1002/JLB.2A1118-421R

    Article  CAS  PubMed  Google Scholar 

  46. Zheng H, Hua J, Li H, He W, Chen X, Ji Y, Li Q (2022) Comprehensive analysis of the expression of N6-methyladenosine RNA methylation regulators in pulmonary artery hypertension. Front Genet 13:974740. https://doi.org/10.3389/fgene.2022.974740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zou Y, Li S, Li Z, Song D, Zhang S, Yao Q (2019) MiR-146a attenuates liver fibrosis by inhibiting transforming growth factor-beta1 mediated epithelial-mesenchymal transition in hepatocytes. Cell Signal 58:1–8. https://doi.org/10.1016/j.cellsig.2019.01.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thank the reviewers for their valuable comments on this article.

Funding

This study was supported by the natural science foundation of Liaoning Province (No. 2019-MS-10).

Author information

Authors and Affiliations

Authors

Contributions

Liang Guo and Di Wu designed the study. Jianfen Shen and Yuan Gao collated the data, designed and developed the database, carried out data analyses and produced the initial draft of the manuscript. Liang Guo and Di Wu contributed to drafting the manuscript. All authors have read and approved the final submitted manuscript.

Corresponding author

Correspondence to Yuan Gao.

Ethics declarations

Ethical statement

All animal experiments mentioned above have been approved by the Ethics Committee of our institute (No. CMUXN2022801). All patients have informed consent and obtained approval from our Clinical Ethics Committee.

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

1. ERG mediates the regulation of NK cell cytotoxicity through the HLX/STAT4/Perforin signaling axis.

2. ERG is significantly overexpressed, and peripheral blood NK cell cytotoxicity is reduced.

3. ERG promotes the expression of HLX and the proteasomal degradation of STAT4.

4. ERG suppresses NK cell cytotoxicity.

5. ERG promotes the progression of mouse MI.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 12410 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Wu, D., Shen, J. et al. ERG mediates the inhibition of NK cell cytotoxicity through the HLX/STAT4/Perforin signaling pathway, thereby promoting the progression of myocardial infarction. J Physiol Biochem 80, 219–233 (2024). https://doi.org/10.1007/s13105-023-00999-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-023-00999-5

Keywords

Navigation