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Abstract
Drug efficacy is dependent on the pharmacokinetics and pharmacodynamics of therapeutic agents. Tight junctions, detoxifi-
cation enzymes, and drug transporters, due to their localization on epithelial barriers, modulate the absorption, distribution, 
and the elimination of a drug. The epithelial barriers which control the pharmacokinetic processes are sex steroid hormone 
targets, and in this way, sex hormones may also control the drug transport across these barriers. Thus, sex steroids contribute 
to sex differences in drug resistance and have a relevant impact on the sex-related efficacy of many therapeutic drugs. As a 
consequence, for the further development and optimization of therapeutic strategies, the sex of the individuals must be taken 
into consideration. Here, we gather and discuss the evidence about the regulation of ATP-binding cassette transporters by 
sex steroids, and we also describe the signaling pathways by which sex steroids modulate ATP-binding cassette transporters 
expression, with a focus in the most important ATP-binding cassette transporters involved in multidrug resistance.
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Introduction

The efficacy of a drug is affected by the presence of epithe-
lial barriers that limit the processes of absorption, distribu-
tion, and elimination. These epithelial barriers are highly 
selective and prevent the passage of many polar molecules. 
Two examples are the intestine barrier formed by the entero-
cytes and the blood–brain barrier (BBB) mainly formed by 
the brain capillary endothelial cells (BCEC). BBB is one 

of the most important barriers since it limits the passage 
of molecules from blood to the brain making difficult the 
development of drugs to treat brain diseases. At the molecu-
lar level, that function is conferred by tight junctions (TJ) 
between adjacent cells of the epithelial barriers which impair 
the paracellular movement of molecules, by detoxification 
enzymes, and efflux transporters [115], such as ATP-binding 
cassette (ABC) transporters. ABC transporters are expressed 
at barriers cells, where they actively extrude therapeutic 
drugs and xenobiotics out of the cells [128].

The different sex steroid background between sexes 
contributes to the differences in some physiological func-
tions between men and women, for example, the differences 
between sexes in bone turnover [28], blood pressure [109], 
and also in neuroprotection [121]. This is supported by the 
wide distribution of sex steroid receptors in several organs. 
For example, they are present in vascular cells [51, 90, 112], 
the liver [4, 70, 98], the kidney [30, 99], the skin [120], the 
gastrointestinal tract [12], and brain cells [67, 83], expand-
ing the list of target tissues beyond reproductive organs. The 
response to drug treatments differs between men and women 
due to relevant differences in drug pharmacokinetics [122, 
125]. ABC transporters play a significant role in the absorp-
tion, distribution, and elimination of several drugs, thereby 

Key points   
• ABC transporters are differentially expressed between sexes.
• ABC transporters are regulated by sex hormones and by its 
receptor’s modulators.
• ABC transporters are regulated by genomic and non-genomic 
signaling mechanisms.
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contributing to differences in responses to a large number of 
medications between men and women. Thus, the objective 
of the present review is to discuss the available evidences in 
the literature about the regulation of ABC transporters by 
sex steroids in several tissues and their possible involvement 
in drug resistance.

ABC transporters

ABC transporters are a class of membrane proteins which 
couple the ATP hydrolysis to the extrusion of molecules 
against their electrochemical gradient [15]. In terms of struc-
ture, ABC transporters are composed by two transmembrane 
domains (TMDs) responsible for substrate translocation, 
and two intracellular nucleotide binding domains (NBDs) 
responsible for ATP hydrolysis [135]. The transport cycle 
of the ABC transporters is still a theme of debate [132]. 
Briefly, at an inward-facing conformation, the substrate 
binds to the TMDs from the cytoplasm or the inner leaflet of 
the lipidic bilayer. Two ATP molecules bind and induce the 
NBDs dimerization, leading to an occluded state. ATP mol-
ecules are hydrolyzed, and the ABC transporter adopts an 
outward-facing conformation allowing the substrate release. 
Finally, the ADP and Pi dissociate from the NBDs, and the 
exporter returns to the initial inward-facing conformation 
[15]. Moreover, ABC transporters can be composed by one 
or two protein subunits. In the human genome, there are 
48 ABC coding genes distributed over 7 subfamilies (A-G) 
[106]. The most preponderant ABC transporters involved in 
multidrug resistance are MDR1 (or ABCB1), the first mem-
ber of the ABCB subfamily, MRPs (1–9), from the ABCC 
subfamily, and BCRP (or ABCG2), the second member of 
the ABCG subfamily [94].

Function and localization of ABC drug transporters

ABC drug transporters have the endogenous function of 
regulating the transport of various substances like nutrients, 
metabolites, bile salts, and many biologically relevant mol-
ecules [94]. Due to their function, ABC drug transporters 
are widely expressed in the epithelial cells of the organs 
involved in the absorption, distribution, and excretion of 
substances. Thus, ABC drug transporters are mainly present 
in the absorptive epitheliums of the intestine and lungs, in 
physiological barriers like BBB or blood–placenta barrier, 
and also in the liver and kidney, which function as excre-
tory organs. The localization of the ABC drug transporters 
in the referred organs and tissues is summarized in Table 1. 
In addition, ABC drug transporters are also importantly 
expressed in tumoral tissues, where they play a pivotal role 
in chemotherapy resistance, which contributes to the growth 
and development of tumors [106].

Due to their expression and capacity of transporting 
therapeutic drugs, generally, ABC drug transporters can 
affect the efficacy of a drug in three ways: 1) by limiting 
the absorption; 2) when the drug has already reached the 
blood circulation, the presence of ABC transporters in intern 
physiological barriers limit the passage of the drug to its 
action site; and 3) the presence of ABC drug transporters 
in excretory organs facilitates the elimination of drugs and 
their metabolites [127].

Multidrug resistance protein 1 (MDR1)

The most well-characterized ABC drug transporter is MDR1 
(or ABCB1), which was identified as an efflux pump in 1976 
by Juliano and Ling [49]. MDR1 is capable of recognizing a 
vast array of structurally diverse substrates, and the majority 
of them are hydrophobic or amphipathic molecules [17]. For 
that reason, MDR1 is able to transport a great array of thera-
peutic drugs, like antibiotics, anticancer, and antiepileptic 
agents [35]. Aside from therapeutic drugs, MDR1 is also 
able to transport endogenous compounds and metabolites, 
like bile acids, bilirubin, and amyloid-β protein (Aβ) [35].

In absorptive organs, MDR1 is expressed in the apical 
membrane of the enterocytes [32, 53, 85] and on the api-
cal surface of alveolar [29] and bronchial epithelium [7]. 
Hence, MDR1 can limit the bioavailability of orally and air-
way administrated drugs. In intern physiological barriers, 
MDR1 is located in the luminal section of the brain capil-
lary endothelial cell membrane [139] and also on the apical 
surface of syncytiotrophoblasts in the placenta [2, 5, 58, 69, 
89]. In the BBB, MDR1 plays the very important role of pro-
tecting the brain against xenobiotics and also in the removal 
of metabolites like Aβ into the blood stream. The evidence 
concerning the extrusion of the Aβ peptide by MDR1 in 
the BBB has already been reviewed [27]. Recent studies 
confirmed the MDR1 involvement in Aβ clearance from the 
brain, showing that the luminal accumulation of Aβ peptides 
in brain capillaries from wild-type mice was greater than in 
brain capillaries from Mdr1 knock-out mice [13]. Another 
study showed that the inhibition of MDR1 with its specific 
inhibitor, PSC835, compromises the transport of Aβ peptide 
in mouse brain capillaries and in porcine BCEC [129]. How-
ever, besides these protective roles, MDR1 can limit the drug 
passage to the brain tissue, which is difficult in the develop-
ment of drugs for brain diseases. In the placenta, MDR1 
protects the fetus from mother-born noxious compounds. 
The evidence of the MDR1 protective role in the placenta 
was extensively reviewed by Joshi et al. [48]. Finally, MDR1 
is also present in the membrane of the hepatocytes facing the 
bile canaliculus (apical) [45, 68] and in the apical membrane 
of the proximal tubule epithelial cells [78]. Thus, MDR1 
contributes to the elimination of substances through the bile 
and also participates in the tubular secretion process.
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Multidrug resistance‑associated proteins (MRPs)

MRPs are members of the ABCC subfamily [84] and are 
also capable of transporting a wide range of endogenous 
substrates and therapeutic agents, like antiretroviral and 
anticancer drugs [35]. MRP1, the most well-characterized 
MRP, has a considerable range of endogenous substrates 
and, for example, is capable of transporting leukotrienes 
[62], folates [149], and many other endogenous substances 
along with several therapeutic agents [35]. Another example 
is MRP4, which, in addition to therapeutic drugs, is capable 

of transporting substances like cAMP [22] and prostaglan-
dins [103].

Among the MRPs expressed in the intestine, only MRP2 
was found to be localized on the apical side of the membrane 
of the enterocytes [85]. Data from the Caco-2 cell line reported 
that MRP1 has an intracellular localization [24, 97] and that 
MRP3 [24, 97] and MRP4 have a basolateral localization [81]. 
So, only MRP2 is able to pump drugs back into the intesti-
nal lumen. Regarding the brain barriers, in the BBB, MRP1, 
MRP4, and MRP5 are localized on the luminal side of the 
membrane of the brain capillary endothelial cells [93]. In the 

Table 1   Human localization 
of ABC drug transporters in 
pharmacokinetics most relevant 
organs/tissue

BCEC, blood capillary endothelial cells; CPEC, choroid plexus epithelial cells

Organ/tissue Transporter Localization References

Intestine MDR1 Enterocytes (apical) [32, 53, 85]
MRP1 Caco-2 cells (intracellular) [24, 97]
MRP2 Enterocytes (apical) [85]
MRP3 Caco-2 cells (basolateral) [97]
MRP4 Caco-2 cells (basolateral) [81]
BCRP Enterocytes (apical) [75, 82]

Lungs MDR1 Brochiolar epithelium (apical) [7]
Ciliated cells of bronchiolar epithelium (apical) [7, 11]
Alveolar epithelium (apical) [29]
Alveolar type I cells (apical) [11, 29]

Liver MDR1 Hepatocytes (apical) [45, 68]
Cholagenocytes (apical) [136]

MRP2 Hepatocytes (apical) [55, 68, 92, 119]
Cholagenocytes (apical) [18]

MRP3 Hepatocytes (basolateral) [56, 151]
Cholagenocytes (basolateral) [151]

MRP4 Hepatocytes (basolateral) [36, 104]
MRP6 Hepatocytes (basolateral) [118]
BCRP Hepatocytes (apical) [68, 75]

Kidney MDR1 Proximal tubule epithelial cells (apical) [78]
MRP2 Proximal tubule epithelial cells (apical) [117]
MRP4 Proximal tubule epithelial cells (apical) [138]
MRP6 Proximal tubule epithelial cells (basolateral) [118]
BCRP Proximal tubule epithelial cells (apical) [46]

Placenta MDR1 Syncytiotrophoblasts (apical) [2, 5, 58, 69, 89]
MRP1 Syncytiotrophoblasts (basolateral) [2, 5, 58, 89]
MRP2 Syncytiotrophoblasts (apical) [37, 79, 130]
MRP3 Syncytiotrophoblasts (apical) [130]
MRP5 Syncytiotrophoblasts (basal) [79]
BCRP Syncytiotrophoblasts (apical) [38]

BBB MDR1 BCEC (luminal) [139]
MRP1 BCEC (luminal) [93]
MRP4 BCEC (luminal) [93]
MRP5 BCEC (luminal) [93]
BCRP BCEC (luminal) [21, 25]

CP MRP1 CPEC (basolateral) [102]
MRP4 CPEC (basolateral) [61]
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blood cerebrospinal fluid barrier (BCSFB), MRP1 is local-
ized on the basolateral membrane of the choroid plexus epi-
thelial cells (CPEC) [102]. Still in the BCSFB, MRP4 is also 
expressed on the basolateral membrane of the CPEC [61]. So, 
MRPs like MDR1 also limit the passage of drugs to the brain. 
In the placenta, MRP2 and MRP3 were on the apical side [37, 
79, 130], while MRP5 and MRP1 are localized on the baso-
lateral side of the membrane of the syncytiotrophoblasts [2, 5, 
38, 58, 89]. Here, only MRP2 and MRP3 may participate in 
the fetus protection from deleterious substances derived from 
maternal blood. In the liver, MRP2 was identified in the apical 
membrane of the hepatocytes [55, 68, 93, 119]. On the other 
hand, MRP3 and MRP4 are present in the basolateral side [36, 
56, 104, 151]. In the kidney, MRP2 and MRP4, like MDR1, 
were shown to be located in the apical side of the proximal 
tubule epithelial cells [117]. Thus, MRP2 and MRP4 promote 
the elimination of substances in the kidney through tubular 
secretion.

Breast cancer resistance protein (BCRP)

BCRP was first identified in 1998 by Doyle et al. in MCF7 
cells [26]. Contrarily to the previous ABC transporters, BCRP 
is considered a half-transporter since it is composed of one 
NBD and one TMD and needs to homodimerize to form a 
functional transporter in the plasma membrane [116]. BCRP is 
known for its role in pharmacoresistance. Like MDR1, BCRP 
is also capable of transporting a wide array of hydrophobic and 
amphipathic drugs from a wide range of therapeutic agents. 
BCRP can also transport a few metabolites like estrone-3-sul-
phate and uric acid [35, 116].

Regarding absorptive epitheliums, BCRP is expressed in 
the intestine and it is localized in the apical membrane of 
enterocytes [75, 82]. Thus, BCRP can limit the absorption of 
orally administrated drugs. In the intern physiological barriers, 
BCRP is expressed in the luminal side of the BCEC [21, 25] 
where it contributes to brain pharmacoresistance. BCRP is 
also expressed in the blood–placenta barrier, more precisely in 
the apical surface of the syncytiotrophoblasts [38]. Moreover, 
BCRP is present in the apical side of the membrane of proxi-
mal tubule epithelial cells, in the kidney, and also in the apical 
surface of the hepatocytes [46]. Thus, BCRP also contributes 
to the elimination of substances through the bile and also by 
contributing to the tubular secretion process in the kidneys.

Regulation of ABC drug transporters by sex 
hormones

Multidrug resistance protein 1 (MDR1)

A few studies have been published demonstrating the differ-
ential MDR1 expression between sexes (Table 2). In mouse 

kidneys, Kanado et al. showed that MDR1 has a sex-depend-
ent expression. MDR1 protein expression showed approxi-
mately 1.5-fold higher expression in females than in males 
[50]. In rodents, there are two isoforms of MDR1 encoded 
by the Mdr1a and Mdr1b genes. A study with C57BL/6 
mice reported that Mdr1b gene has a gender-dependent 
expression in the kidney, brain, and lungs. In the kidney 
and lungs, Mdr1b gene has a higher expression in females 
than in males, while in the brain, the expression was higher 
in males. Additionally, the expression of Mdr1a gene in the 
kidney was higher in females when compared to male mice 
[23]. In the BCSFB, Mdr1a and Mdr1b genes did not show 
differences in expression between male and female rats, and 
their expression is not influenced by female or male sex hor-
mone background [100, 101, 114].

The evidence of sex differences in MDR1 expression sig-
nals a possible regulation by sex steroid hormones. The evi-
dence about the regulation of MDR1 by sex hormones and 
sex hormone receptor modulators is summarized in Table 3.

Pregnant female C75BL mice injected for 4 days with 
17α-ethynylestradiol, an agonist of estrogen receptors, led 
to the upregulation of MDR1 mRNA (Mdr1a) and protein 
in the placenta. On the other hand, 17α-ethynylestradiol 
does not show any significant effects in the expression of 
Mdr1b gene on the placenta. Digoxin is a known MDR1 
substrate and is specifically transported by MDR1 across 
the placenta. The authors showed that the administration of 
17α-ethynylestradiol decreased the digoxin transport from 
the mother to fetus [143]. In the kidneys, 17β-estradiol (E2) 
upregulated the expression of Mdr1b gene and MDR1 pro-
tein in mouse renal tissue cultures [50]. In addition, Cui 
et al. showed that after gonadectomy, Mdr1a gene expres-
sion increased in male and decreased in female mouse kid-
neys [23].

The evidence about the sex steroid regulation of MDR1 
expression in humans comes from in vitro studies. In NCI-
ADR-RES and placental JAR cell lines, E2 leads to an 
upregulation of MDR1 protein levels in a concentration-
dependent manner. In the same study was also shown that 
E2 stimuli lead to a decrease in the saquinavir uptake in JAR 
cell line. This effect was abrogated in the presence of vera-
pamil, a MDR1 inhibitor [20]. In human cytotrophoblasts, 
treatment with E2 upregulated MDR1 protein and mRNA 
expression. The treatment with E2 also caused a decrease in 
the intracellular accumulation of digoxin [31]. In addition, 
the treatment of the colon adenocarcinoma LS-180 cells 
with E2 leads to an upregulation of Mdr1 gene expression. 
The same study also assessed the effect of E2 on MDR1 
where E2 increased the MDR1 activity in cells incubated 
with rhodamine 123 (rho 123, a MDR1 substrate) [1]. In the 
human renal proximal tubular epithelial cells, the treatment 
with E2 increased the mRNA and protein MDR1 expression. 
The effects of E2 on MDR1 activity were also investigated 
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Table 2   Sex differences in ABC drug transporters expression

Transporter Tissue Species Sex differences References

mRNA Protein Activity

MDR1 Kidney Mouse [23, 50]

Lungs Mouse [23]

Brain Mouse [23]

Choroid plexus Rat [101, 114]

Brain capillairies Rat [42]

MRP1 Brain Mouse [34]

Choroid plexus Mouse [34]

MRP2 Liver Rat [110]

Brain Mouse [34]

Choroid plexus Mouse [34]

MRP3 Kidney Mouse [72]

Liver Mouse [107]

Liver Rat [110]

MRP4 Kidney Mouse [72]

Liver Mouse [107]

Brain Mouse [34]

Choroid plexus Mouse [34]

MRP5 Choroid plexus Mouse [34]

BCRP Harderian gland Hamster [76]

Gastrointestinal tract Human [40]

Liver Mouse [134]

Brain Rat [134]

Kidney Rat [42]

Brain capillairies Rat [42]

Liver Rat [42]

 Higher expression in females when compared with males
 Higher expression in males when compared with females
 No significant differences between sexes

• Mdr1a and Mdr1b
♦ Mdr1b
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Table 3   Regulation of ABC drug transporters by sex steroids and sex hormone receptor modulators

Trans

porter

Stimuli/gonade

ctomy

Cellular model or 

tissue

Species and sex 

(when applicable)

Effect Refer

encesmR

NA

Prot

ein

Acti

vity

MDR

1

17β-Estradiol NCI-ADR-RES cell 

line

Human [20, 

88]

MCF-7 cell line Human [88]

T47-D cell line Human [88]

MDA-MB-231 cell 

line

Human [88]

JAR cell line Human [20]

LS-180 cell line Human [1]

Renal proximal 

tubular epithelial cells

Human [50]

Cytotrophoblast 

cultures

Human [31]

Renal tissue cultures Male and female 

mice

Mdr

1a
[50]

Mdr

1b

Progesterone NCI-ADR-RES cell 

line

Human [20]

JAR cell line Human [20]

Cytotrophoblast 

cultures

Human [31]

Testosterone Renal tissue cultures Male and female 

mice

Mdr

1a
[50]

Mdr

1b

Renal proximal 

tubular epithelial cells

Human [50]

17α-

Ethynylestradio

l

Caco-2 cell line Human [3]

Placenta Pregnant female 

mice

Mdr

1a
[142]

Mdr

1b

5α-Androstane-

3β,17β-diol

Brain microvascular 

endothelial cells

Human [156]

Genistein Caco-2 cell line Human [3]

Ovariectomy Kindey Female mice Mdr

1a
[23]

Mdr

1b
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Table 3   (continued)

MDR1 Orchidectomy Kidney  Male mice Mdr1

a 
  [23] 

Mdr1

b 
MRP1 Progesterone Cytotrophoblast 

cultures 

Human    [31] 

Esterone HTR-8/Svneo 

cell line 
Human    [8] 

MRP2 17α-

Ethynylestradiol 

Caco-2 cell line Human    [3] 

Liver Female rats    [87] 

Liver Male rats    [66, 

146] 

Liver Male mice    [77] 

Hepatocyte 

cultures 

Rat    [65] 

Estradiol-17β-D-

glucuronide 

Caco-2 cell line Human    [137] 

Intestinal 

segments 

Male rats    [137] 

Liver Female rats    [155] 

Hepatocytes 

cultures 

Rat    [6, 10] 

Genistein Caco-2 cell line Human    [3] 

MRP3 17α-

Ethynylestradiol 

HepG2 cell 

line  

Human    [111] 

Liver Female rats    [87] 

Ovariectomy Kidney  Female mice    [72] 

Orchidectomy Kidney
 
 Male mice    [72] 

MRP4 17α-

Ethynylestradiol 

Liver Female rats    [87] 

Dihydrotestoster

one 

LnCAP cell line Human    [44] 

BCRP 17β-Estradiol MCF-7 cell line  Human 
  

  [47, 

152] 

A549 cell line Human    [47] 

MDA-MB-453 

cell line  

Human    [64] 

MDA-MB-468 

cell line  

Human    [64] 

 Increase mRNA or protein expression/increase in activity 

 Non-significant effects 

 Decrease mRNA or protein expression/decrease in activity 
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Table 3   (continued)

BCRP 17β-Estradiol BeWo cell line Human [143, 

144]

Brain 

capillaries

Rat [41, 

42, 73]

Progesterone T47-D cell 

line

Human [148]

BeWo cell line Human [144]

BeWo cell line Human [147]

Dihydrotestoster

one

MCF-7 cell 

line

Human [16]

Testosterone BeWo cell line Human [143]

17β-

estradiol+testoste

rone

BeWo cell line Human [143]

17β-

estradiol+progest

erone

BeWo cell line Human [144]

17α-

Ethynylestradiol

Brain 

capillaries

Rat [91]

Liver Male rat [66]

Estriol BeWo cell line Human [143]

Propyl pyrazole 

triol

Brain 

capillaries

Rat [42, 

73]

Diarylpropionit

rile

Brain 

capillaries

Rat [73]

Ovariectomy Kidney Female mice [134]

Liver Female mice [134]

Orchidectomy Kidney Male mice [134]

Liver Male mice [134]

 Increase mRNA or protein expression/increase in activity
 Non-significant effects
 Decrease mRNA or protein expression/decrease in activity

❖ Cells were transfected with plasmids containing the Erα/β gene
■ Cells were transfected with a Bcrp gene containing plasmid
 Luciferase assay
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and, for that, after the treatment with E2, human renal proxi-
mal tubular epithelial cells were incubated with digoxin in 
the presence or absence of PSS833, a MDR1 inhibitor. They 
observed that E2 increased MDR1 activity by approximately 
0.5-fold [50].

In a mechanistic perspective, there is data demonstrat-
ing that MDR1 is regulated by sex steroids via both nuclear 
estrogen receptors (ER). In Caco-2 cells, which only 
express ERβ [12], the administration of 17α-ethinylestradiol 
increases mRNA and protein MDR1 expressions. The 
pre-treatment of Caco-2 cells with ICI 182,780 (ICI), an 
estrogen receptor antagonist, reverted the upregulation of 
MDR1 induced by 17α-ethinylestradiol. The authors also 
demonstrated that the stimulation with 17α-ethinylestradiol 
lead to a decrease in Rh123 uptake. The presence of vera-
pamil reverted the effects induced by 17α-ethinylestradiol 
[3]. Another study with four breast cancer cell lines, two 
Erα+ positive (MCF-7 and T47-D) and two ER− negative 
(MDA-MB-231 and NCI/ADR-RES), revealed that E2 
only decreased the expression of MDR1 protein levels in 
ERα-positive cell lines [88]. Estrogens may regulate MDR1 
expression through genomic signaling pathways. However, 
there is no data clarifying the involvement of ERs bind-
ing to the Mdr1 gene, or the interaction of ERs with other 
transcription factors. These data suggest that ERβ upregu-
lates the Mdr1 expression and ERα downregulates this 
gene. However, a study where human brain microvascular 
endothelial cells (hBMEC) were treated with 5α-androstane-
3β,17β-diol demonstrated a downregulation of MDR1 (pro-
tein) expression. Nonetheless, the pre-treatment with ICI 
reverted the effect of 5α-androstane-3β,17β-diol [154]. 
5α-androstane-3β,17β-diol is an androgen metabolite which 
is a total agonist for ERβ and binds with low affinity to ERα. 
In BBB, ERβ shows a higher expression than ERα [73]. 
Thus, ERβ may be able to modulate MDR1 expression in the 
BBB. In Caco-2 cells, the effect was distinct, and the ERβ 
activation led to an upregulation of MDR1, contrarily to the 
downregulation observed in hBMEC. A possibly explanation 
may reside in different interactions of ERβ with other tran-
scription factors and in ERβ recruitment of different chro-
matin coregulators in these two cell types, what highlights 
the hypothesis of a tissue-dependent regulation by estrogens.

According to the presented data, it is evident that, at least, 
estrogens regulate MDR1 expression. For progesterone and 
testosterone, the evidence is limited, although a few stud-
ies report that progesterone upregulates MDR1 (mRNA and 
protein) expression in human cytotrophoblasts [31] and in 
NCI-ADR-RES and placental JAR cell lines [20]. Also, in 
JAR cell line, P4 stimuli lead to a decrease in the saquina-
vir uptake and the presence of verapamil reverted the effect 
[20]. On the other hand, the evidence about the testoster-
one regulation of MDR1 comes from studies in rodents or 
with rodents’ cell cultures. It was shown that testosterone 

has no effect on MDR1 protein expression in mouse renal 
tissue cultures and in human renal proximal tubular epithe-
lial cells. In human renal proximal tubular epithelial cells, 
it was also showed that testosterone induced no effects in 
MDR1 activity [50]. In contrast, in vivo testosterone results 
are not in line with those observed for in vitro experiments. 
Gonadectomy of male mice increase Mdr1a and Mdr1b 
gene expressions in the kidney, and the subsequent hormone 
replacement with dihydrotestosterone (DHT) induced Mrd1a 
and Mdr1b expression levels to return to those observed in 
control mice [23]. In Wistar rats administrated with the 
excipients, Gremopher RH, Poloxamer 188, and Tween 80 
were observed a variation in the testosterone plasma con-
centration and in the MDR1 protein expression in jejunal 
segments [74].

Multidrug resistance‑associated proteins (MRPs)

As for MDR1, there are also some studies reporting sex dif-
ferences in MRP expression (Table 2). MRP3 and MRP4 
(protein and mRNA) have a sex-related expression in 
mouse kidneys with a greater expression in females [72]. 
In the liver, higher levels of MRP3 protein expression were 
reported in female when compared to male mice. The expres-
sion of MRP4 was only higher in the female liver in mice 
which were submitted to a fasting period [107]. A study with 
Sprague–Dawley rats showed that MRP2 and MRP3 (mRNA 
and protein) have higher expression levels in female livers 
when compared to male rats [110]. In the CP of C57BL/6 
mice, MRP4 showed higher mRNA and protein expression 
levels in females when compared to male mice. Contrarily, 
Mrp5 gene showed higher mRNA expression levels in the 
CP of male mice. For MRP1 and MRP2, no differences were 
observed in their expression levels between sexes [34]. San-
tos and co-workers found that the Mrp1 gene has a higher 
expression level in the CP of male rats when compared with 
female rats [114]. Furthermore, in vitro studies performed 
by others, where mouse CP was incubated with fluo-cAMP 
(a known substrate for MRP4) revealed a higher fluorescence 
intensity in the vascular/perivascular spaces of female com-
pared with male CP. The same study also revealed a 40% 
fluorescence reduction in the vascular/perivascular spaces 
in the CP of female Mrp4 knock-out mice when compared 
to the CP of wild-type female mice [34].

Most of the evidence on the regulation of MRPs by sex 
steroids is summarized in Table 3. In rodents, the treatment 
of rat hepatocytes with 17α-ethynylestradiol decreased 
the expression of MRP2 (mRNA and protein) [65]. These 
results are corroborated by in vivo experiments. Studies 
with male Sprague–Dawley and Wistar rats showed that 
the administration of 17α-ethynylestradiol contributes to 
the downregulation of MRP2 protein expression in the liver 
[66, 144]. Male C57BL/6 mice (8–9 weeks) treated with 
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17α-ethynylestradiol also showed a reduced mRNA and pro-
tein MRP2 expression in the liver when compared to control 
mice [77]. In rat hepatocytes, estradiol-17β-D-glucuronide, a 
17β-estradiol endogenous metabolite, decreased the activity 
of MRP2, and also led to MRP2 internalization [6, 10]. A 
study performed by Zucchetti et al., where female Wistar rats 
were perfused with 1-chloro-2,4-dinitrobenzene (CDNB), a 
MRP2 substrate, showed that estradiol-17β-D-glucuronide 
reduced the elimination of the CDNB intrahepatic metab-
olite dinitrophenyl-gluthatione (DNP-G) in the bile for 
approximately 35% of its basal levels [153]. In rat intestinal 
segments, estradiol-17β-D-glucuronide also decreased the 
activity and expression (protein) of MRP2 [137]. The treat-
ment of male rats with dehydroepiandrosterone (DHEA), 
a hormone precursor capable of binding to many nuclear 
receptors including ERs and androgen receptor (AR) [19], 
decreased the expression of MRP2 (protein) in the liver of 
male rats, and increased MRP3 (protein) expression in the 
liver of female rats [110].

In human colorectal cancer Caco-2 cells, estradiol-17β-
D-glucuronide decreased the activity and induced the inter-
nalization of MRP2 [137]. On the contrary, an increase in 
MRP2 protein expression was observed after treatment of 
Caco-2 cells with 17α-ethynylestradiol [3]. This difference 
may be due to the fact that in the first study they access the 
protein expression in the brush border membrane, and in the 
other study, the authors quantify the total membrane protein. 
Tochetti et al. also showed that estradiol-17β-D-glucuronide 
increase the expression of MRP2 in intracellular membrane 
fractions. Also, in the same cell line, the treatment with gen-
istein, a full agonist of ERβ, increased the expression of 
MRP2 (mRNA and protein) [3].

At the signaling level, in the literature, a few studies have 
tried to uncover the signaling pathways involved in MRP2 
regulation by estrogens in the liver. The pre-treatment of 
rat hepatocytes with G15, a GPER1 inhibitor, reverted the 

downregulation of MRP2 activity induced by estradiol-
17β-D-glucuronide. Additional experiments revealed that 
estradiol-17β-D-glucuronide promotes the internalization 
of MRP2, which was abrogated in the presence of Tyr-
phostin AG 1024 (TYR), an IGf-1R inhibitor. Also, IGf-
1R knockdown, abrogated the downregulation of MRP2 
activity induced by estradiol-17β-D-glucuronide. In the first 
instance, this data shows that GPER and IGf-1R are involved 
in MRP2 regulation by estrogens. In the same study, the pre-
treatment with wortmannin, a PI3K inhibitor, TYR and with 
both compounds, partially abrogated the decrease in MRP2 
activity induced by estradiol-17β-D-glucuronide. Thus, IGF-
1R and PI3K are involved in the same pathway [6]. Another 
study with a different estrogenic compound reported that 
the administration of 17α-ethynylestradiol in the presence 
of LY294002, a PI3K inhibitor, reverted the effect induced 
by 17α-ethynylestradiol on MRP2 protein expression in rat’s 
liver [144]. This result reinforces the involvement of PI3K in 
MRP2 regulation by estrogens. Further experiments showed 
that G15 decreased IGf-1R activation induced by estradiol-
17β-D-glucuronide. So, the activation of GPER precedes 
the activation of IGf-1R. Also, the pre-treatment with TYR 
prevented Akt activation by estradiol-17β-D-glucuronide 
[6]. In summary, the signaling pathway involves the activa-
tion of GPER, which in turn activates IGf-1R. The IGF-1R 
through the PI3K/Akt pathway induces MRP2 internaliza-
tion and a consequent decrease in its activity (Fig. 1). This 
pathway involves the crosstalk with GPER and IGF-1R, a 
tyrosine kinase receptor (RTK). The crosstalk of GPER with 
epidermal growth factor receptor (EGFR), another tyrosine 
kinase receptor, was also reported [96]. In addition to the 
IGF-1R/PI3K/Akt pathway, estrogens may regulate MRP2 
through other signaling pathways, as TYR only showed 
a partial impediment of MRP2 activity downregulation 
by 17α-ethynylestradiol. ICI also partially abrogated the 
effect of 17α-ethynylestradiol on MRP2 activity. This result 

Fig. 1   MRP2 regulation by 
estrogens. The activation of 
GPER leads to the transactiva-
tion of insulin growth factor 1 
receptor (IGF-1R). IGF-1R is a 
tyrosine kinase receptor. In its 
turn, IGF-1R leads to the activa-
tion of PI3K which converts 
PIP2 in PIP3, providing an 
anchorage point for Akt. The 
anchorage of Akt enables its 
activation by phosphorylation. 
The active Akt lead to MRP2 
membrane internalization



477Regulation of ABC transporters by sex steroids may explain differences in drug resistance between…

1 3

indicates that ER nuclear receptors are also involved in the 
regulation of MRP2 by estrogens [6]. In pregnancy, the 
IGF-1R/PI3K/Akt pathway may be preponderant because 
the studies performed to unravel the MRP2 regulation by 
this molecular pathway were conducted in order to uncover 
the molecular causes of intrahepatic cholestasis. Intrahepatic 
cholestasis is a liver disease that is common in pregnancy, in 
which high levels of estrogens seem to be one of the factors 
involved in its development.

There is also evidence about the signaling pathways 
involved in MRP3 regulation by estrogens. In the HepG2 cell 
line transfected with a plasmid containing ERα gene under 
a CMV promotor, the treatment with 17α-ethynylestradiol 
upregulated mRNA and protein MRP3 expression. Further 
experiments using the same cell line showed that silenc-
ing c-jun prevented the upregulation of MRP3 (protein) by 
17α-ethynylestradiol. In addition, immunoprecipitation anal-
ysis showed that this estrogenic compound also promotes the 
interaction of ERα and c-Jun. This interaction is concordant 
with an in silico analysis, showing the absence of estrogen 
response elements in the Mrp3 gene promotor [111]. Then, 
the putative signaling pathway of MRP3 expression regula-
tion by estrogens involves an indirect genomic mechanism. 
After the ligand binding and ERα dimerization, ER complex 
interacts with c-Jun, which is a member of the AP-1 com-
plex, to drive Mrp3 gene expression (Fig. 2).

Furthermore, gonadectomy increased Mrp3 gene expres-
sion in the kidneys of male mice when compared to intact 
males. Contrarily, in female mice, ovariectomy decreased 
Mrp3 gene expression in the kidneys in comparison with 
intact female mice [72]. 17α-Ethynylestradiol increased 
Mrp3 mRNA levels in female rat hepatocytes [87]. In terms 
of signaling, the outcome was similar to that observed for 
HepG2 cells treated with 17α-ethynylestradiol. Then, it is 
likely that in mouse kidneys and hepatocytes, estrogens also 
drive Mrp3 expression through the indirect genomic path-
way previously reported for HepG2 cells.

Taking into account these data, it is clear that estrogens 
regulate MRP2 and MRP3 expressions. Generally, estro-
gens downregulate MRP2 and upregulate MRP3. These 
data probably explain why MRP3 has a greater expression 
in female mouse kidney [72] and female rodents’ livers 
when compared to males. However, the fact that estrogens 
downregulate MRP2 cannot explain why MRP2 expression 
is higher in female rat livers than in the livers of male rats 
[110]. This hypothesis is supported by a tissue-dependent 
regulation.

The evidence concerning the regulation of MRP1 and 
MRP4 by the sex hormones is very limited, only a few 
studies were reported. In human cytotrophoblast primary 
cultures, treatment with progesterone increased Mrp1 gene 
expression [31]. The treatment of immortalized trophoblast 
cells (HTR-8/SVneo) with estrone (E1) upregulated Mrp1 

gene expression [8]. In LNCaP cells, stimulus with DHT 
increased MRP4 protein expression, while in the same cell 
line transfected with luciferase reporter plasmids cloned 
with two fragments of Mrp4 promotor, DHT did not exert 
any significant effect on luciferase fluorescence [44]. In 
rodents, 17α-ethynylestradiol has no significant effects on 
Mrp4 expression in female rat’s hepatocytes [87]. Besides 
the lack of data, this cannot explain why MRP4 has a higher 
expression in female mouse’s CP and kidney when compared 
to male mice [34, 72].

Breast cancer resistance protein (BCRP/ABCG2)

Studies on the expression analysis of BCRP have shown sex-
specific expression in some tissues (Table 2). The expression 
of Bcrp gene in the Harderian gland is higher in females 
when compared to male hamsters [76]. The expression of 
Bcrp gene through the human gastrointestinal tract is similar 
between males and females [40]. In addition, sex differences 
in the rat brain and in the mouse liver have been reported. In 
the rat brain, BCRP mRNA expression is higher in females 
when compared to males. Contrarily, in the mouse liver, 
the expression of the BCRP (mRNA) is higher in males. 
[134]. This indicates a possible regulation of BCRP by sex 
hormones (Table 3).

E2 treatment of MCF-7 cells transfected with a plas-
mid containing the Bcrp gene upregulated mRNA and 
protein BCRP expression. Tamoxifene, an antiestrogenic 
compound, reverted the upregulation induced by E2. Elec-
trophoretic mobility shift assays performed with nuclear 
extracts of MCF-7 cells, which are ERα positive, in par-
allel with nuclear extracts of MDA-MB-231 ERα-negative 
cells, revealed a band shift resulting from ERα binding to 
the probe containing Bcrp gene promotor, not observed in 
MDA-MB-231 cells [150]. In fact, E2 treatment of MCF-7 
cells downregulated BCRP protein expression. Contrarily, 

Fig. 2   Mrp3 regulation by ERα. Mrp3 gene transcription is regulated 
by an estrogen indirect genomic signaling mechanism. In Mrp3 gene, 
which lack an estrogen response element (ERE), ERα promotes the 
gene transcription by interacting with c-Jun, a member of AP-1 com-
plex, which function as a transcription factor
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in A549 cells (negative for estrogen receptors), E2 does not 
significantly affect BCRP protein expression [47]. These 
controversial effects on BCRP regulation by E2 on MCF-7 
cells may be due to different E2 stimulus durations.

Furthermore, in a recent study where the ERα-negative 
human cell line MDA-MB-453 was transfected with plas-
mids containing Bcrp and Erβ genes, the treatment with E2 
upregulated mRNA and protein BCRP expression. Tamox-
ifen reverted the effects induced by E2. In the same study, 
E2 also upregulated BCRP mRNA and protein expression in 
MBA-MB-468 cells. Also, in this cell line, the silencing of 
the Erβ gene prevented BCRP (mRNA and protein) upregu-
lation by E2 [64]. Then, ERβ positively regulates BCRP 
expression. The treatment of the human placenta BeWo cells 
with estriol increased BCRP mRNA and protein expression, 
and ICI reverted these effects [141]. These data are con-
cordant because estriol has a higher affinity for ERβ than 
ERα [39]. Another study reported that treatment of BeWo 
cells with E2 downregulated BCRP protein expression and 
ICI reverted the effect. Moreover, in the same study, it was 
shown that E2 in BeWo cells downregulates Erβ gene and 
does not affect Erα gene expression [140]. This can explain 
a possible E2 preference for ERα signaling in BeWo cells.

P4 treatment of T47D cells transfected with a reporter 
plasmid containing a luciferase gene under a Bcrp gene 
promotor increased luciferase fluorescence. RU486, a PR 
antagonist, blocked the effects induced by P4. In addition, 

the treatment with P4 in the presence of mythramicin A, an 
Sp1 recruitment blocker, had no significant effect on lucif-
erase fluorescence [146]. A co-immunoprecipitation of Sp1 
and PR has already been reported, which indicates an inter-
action between the two proteins [95]. These data suggest that 
in T47D-cells, PR regulates Bcrp gene expression through 
an indirect genomic signaling mechanism. PR is recruited 
to Bcrp gene promotor by the interaction with Sp1 tran-
scription factor (Fig. 3). The treatment of BeWo cells with 
P4 increased BCRP protein expression, but RU486 did not 
revert the effect induced by P4 [140]. This suggests a signal-
ing through mPRs and highlights the hypothesis of a tissue-
dependent regulation of BCRP by P4. In contrast, also in the 
BeWo cell line, the treatment with P4 downregulated Bcrp 
gene expression [145]. The treatment of BeWo cells with 
both P4 and E2 induced an upregulation in BCRP protein 
expression higher than with P4 alone. ICI and RU486 also 
reverted the cumulative effects induced by both sex steroid 
hormones [140].

In terms of signaling mechanisms, there are some stud-
ies that tried to uncover the signaling mechanism of BCRP 
regulation by estrogens in rat BBB. The treatment of iso-
lated brain capillaries from female and male rats with E2 
decreased BCRP (mRNA and protein) expression levels 
[42, 73]. Also, in vivo studies where mice were adminis-
trated with E2 showed a reduced expression of BCRP (pro-
tein) in brain capillaries [42]. Rat brain capillaries treated 

Fig. 3   Bcrp regulation by 
progesterone. Bcrp gene 
transcription in regulated by 
progesterone through an indirect 
genomic signaling mechanism. 
Progesterone receptor (PR) 
promotes Bcrp gene transcrip-
tion by interacting with Sp-1 
transcription factor
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with E2 were incubated with BODIPY-Prazosin, a BCRP 
substrate, and the luminal fluorescence was measured by 
confocal microscopy. E2 treatment decreased BCRP activ-
ity in rat brain capillaries [41, 42, 73]. Similar results 
were obtained by treating rat brain endothelial cells with 
17α-ethinylestradiol [91]. E2 treatment of brain capillaries 
isolated from ErαKO mice showed that E2 decreased BCRP 
protein expression and activity. However, the same treat-
ment with E2 does not show significant effects in BCRP 
protein expression and activity in brain capillaries isolated 
from ERβKO mice [42, 73]. Rat brain capillaries were also 
incubated with selective agonists for ERα and ERβ, propyl 
pyrazole triol (PPT), and diarylpropionitrile (DNP), respec-
tively. DNP decreased BCRP protein levels and activity 
in brain capillaries, while PPT did not significantly affect 
BCRP protein levels nor its activity. Rat brain capillaries 
were also treated with the ERα antagonist MPP or ICI. MPP 
did not reverte the downregulation of BCRP activity induced 
by E2, while ICI reverted the downregulation of BCRP pro-
tein expression and activity in rat brain capillaries when 
treated with E2 [73]. Then, in the BBB, BCRP is regulated 
by E2 through ERβ. Some contradictory results were also 
reported. Data showed a decrease in BCRP activity after the 
treatment of rat brain capillaries with PPT, and the treat-
ment of ErβKO mice with E2 revealed significant effects in 
BCRP activity [41]. Further experiments tried to uncover 
the signaling mechanism by which E2 downregulated BCRP 
protein expression and activity. The inhibition of PI3K and 
Akt induced the downregulation of BCRP expression. This 
is the same effect observed with E2 treatment. Also, the 
inhibition of PTEN and GSK3 reverted the effects induced 
by E2. It was also demonstrated that E2 led to an increase in 
unphosphorylated PTEN, the activated form of the enzyme, 
and also led to a decrease in phosphorylated PTEN. For 
Akt, the contrary was observed. E2 led to an upregulation 
of inactive Akt and a downregulation of active Akt. Fur-
thermore, the administration of lactacystin, a proteosome 
inhibitor, reverted the downregulation of BCRP induced by 
E2 [42]. Akt can inhibit GS3K by its phosphorylation [43], 
and GS3K phosphorylates proteins, signaling them for ubiq-
uitination [105]. These results point to a putative signaling 
pathway that involves the activation of PTEN by E2, which 
leads to the downregulation of Akt and hence to an increase 
in active GS3K. Then, GS3K may lead BCRP to proteasome 
degradation (Fig. 4). These non-genomic effects possibly 
mediated by ERβ may be triggered by the subpopulation of 
ERs that lie in the plasma membrane [124].

The data about the regulation of BCRP by estrogens 
and progesterone suggests a tissue-dependent regulation of 
BCRP by these two hormones. The evidence concerning the 
regulation of BCRP by androgens is sparse and is mainly 
from studies with an animal model. In the human breast can-
cer cell line MCF-7, the treatment with DHT downregulated 

Bcrp gene expression levels [16]. In rodents, gonadectomy 
of male hamsters increased Bcrp gene expression in the 
Harderian gland [76]. Also, gonadectomy in male mice did 
not exert any effect on BCRP expression in the kidneys but 
downregulated Bcrp expression in the liver of male mice. 
DHT replacement increased Bcrp gene expression in the 
liver of gonadectomized male mice. Regarding female mice, 
gonadectomy increased Bcrp expression in the kidney and 
the administration of DHT increased Bcrp gene expression 
in the liver of ovariectomized female mice [134].

Estrogens and its metabolic products as ABC 
drug transporter regulators

The most common estrogens are E2, E1, and estriol 
(E3). E2 and E1 can be interconverted by the action of 
7β-hydroxysteroid dehydrogenase enzyme. On the other 
hand, E3, is synthetized through the hydroxylation of E2 or 
16α-hydroxyestrone [113]. E1 and E3 are less active estro-
gens than E2 [152]. Stimulation of BeWo cells with E2 leads 
to the downregulation of BCRP [140, 141], and the stimula-
tion with E3 leads to the upregulation [141]. These results 
probably arise from the fact that E3 elects the ERβ signaling 
pathway. The authors showed that the presence of ICI abro-
gated the effects induced by E2 and E3, and the knockdown 
of ERα did not revert the effects promoted by E3 [141]. This 
is in line with the evidence that E3 has a higher affinity for 
ERβ than for ERα [39].

MDR1 is able to transport E1 and E3 [54], and estro-
gens may possibly act as competitive inhibitor for the 
efflux of other substances. If the effect on transporter 
expression was neglected, estrogens may account for an 
easy drug absorption and distribution. In the case of the 
placenta, despite the downregulation of BCRP, E2 leads to 
an upregulation of MDR1. This is shown in JAR cells [20], 
a human placental cell line, and in human primary cyto-
trophoblasts [31]. There is also evidence of the MRP1 gene 
upregulation by E1 in a placenta human cell line. In the 
placenta, MRP1 is located on the basolateral membrane 
of syncytiotrophoblasts [2]. In this case, E1could hypo-
thetically contribute to a greater distribution of therapeutic 
drugs to the fetus. Although, like E3, E1 presents a lower 
affinity for ERs than E2 [9]. E2 is the principal urinary 
metabolite and in human renal proximal tubular epithe-
lial cells is showed that E2 upregulates MDR1 [50]. This 
regulatory mechanism may be relevant in women due to 
the fluctuations of estrogens during the estrous cycle and 
pregnancy. E2 may act in order to balance the hypotheti-
cally increment in E3 (transported by MDR1) reabsorp-
tion as a consequence of the increase in plasma estrogens. 
A similar mechanism of compensation may not occur 
in the liver. Estradiol-17β-D-glucuronide is an estrogen 
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metabolite which is able to be transported by MRP2 [35], 
but is also responsible for its internalization [6, 10, 153] 
being a cholestatic agent.

Crosstalk between constitutive androstane 
receptor and sex steroids in the regulation 
of ABC drug transporters

Constitutive androstane receptor (CAR) acts as a xenobiotic 
and endobiotic receptor, capable of regulating the expression 
of genes involved in drug metabolism and transportation 
pathways, including ABC transporters. There are several 
studies showing that this receptor modulates the expression 
and activity of MDR1, MRP2, and BCRP [14, 63, 123, 142]. 
Swales and Negishi reviewed the influence of sex steroids on 
this receptor [131], reporting that P4 and androgens repress 
the transcriptional activity of CAR [52, 60] and pharma-
cological levels of E2, estrone and pregnane-3,20-dione, a 
P4 metabolite, are able to activate it [52, 86]. Thus, this 
constitutes an additional pathway for the regulation of ABC 
transporters by sex steroids. Other interesting point about 
CAR is that it influences the estrogen signaling by suppress-
ing the p160 activators GRIP-1 and SRC-1, important for 
estrogenic signaling [80].

Summary and concluding remarks

Men and women respond differently to drug treatments. Sex 
differences in drug efficacy as well as in the development of 
drug adverse reactions were reported. For example, women 
respond better than men to the antiarrhythmic verapamil 
[59]. Furthermore, women are more susceptible than men 
to generate adverse effects to morphine [108] and to the anti-
tumor necrosis factor agent infliximab [148]. This diversity 
in drug effectiveness and adverse reactions probably arise 
from sex differences in pharmacokinetics and pharmacody-
namics [33]. These differences are a result of sex-specific 
factors like bodyweight, organ size, percentage of body fat, 
plasma proteins, metabolizing enzymes, and drug transport-
ers [133]. These differences are well reviewed in the follow-
ing references [71, 125, 133]. For instance, women show a 
higher CYP3A4 activity than man [147]. CYP3A4 is the 
most predominant enzyme of CYP3A family involved in the 
metabolism of almost 50% of the available drugs [126]. The 
regulation by sex hormones may be one of the keys to the 
differences in those factors. As mentioned by Madla et al., 
postmenopausal and premenopausal women have a differ-
ent response to antidepressants [57]. During menopause, the 
level of circulating estrogens drops, suggesting the involve-
ment of sex steroids in drug response. This highlights the 
importance of knowing the sex differences and the influence 

Fig. 4   Hypothetical pathway of 
BCRP regulation by E2 in the 
brain capillary endothelial cells. 
The subpopulation of estrogen 
receptor in the plasma mem-
brane may be responsible for the 
estrogens non-genomic effects. 
Upon activation ERβ leads to 
the activation of PTEN, which 
function as a negative Akt 
regulator through PIP3 dephos-
phorylation. This promotes the 
accumulation of GS3K in an 
active state (unphosphorylated) 
which may promote BCRP 
proteasomal degradation
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of sex hormone in drug pharmacokinetics and pharmacody-
namics for the future development of personalized therapies.

ABC transporters are capable of extruding multiple drugs 
out of cells and play a major role in pharmacoresistance. 
Drugs of basically all classes are substrates of ABC trans-
porters [35]. The collected evidence shows that MDR1, 
MRP1, MRP3, MRP4, MRP5, and BCRP have a sex dif-
ferent expression in several tissues or cell lines (summa-
rized in Table 1). The gathered data also demonstrate that 
ABC transporters enumerated before are regulated by sex 
hormones (summarized in Table 2). The sex differences 
described for ABC transporters were determined in terms 
of mRNA and protein expression and were reported from 
studies in animal models. The evidence about the effects 
of the sex hormones in ABC drug transporters activity 
is also scarce. In fact, only few studies have accessed the 
effects of sex hormones in ABC drug transporters activ-
ity in human cells. Despite the lack of functional studies, 
there is no doubt that ABC transporters are regulated by sex 
hormones. Taking into consideration that we do not know 
exactly whether sex hormones influence the ABC transport-
ers activity in human cells, neither if there are functional 
differences between sexes, nor if that putative differences 
in the functioning of ABC drug transporters arise from sex 
hormones, it is imperative to perform more studies and move 
further on this topic.

The collected data showed a tissue-dependent regulation 
of ABC transporters by sex hormones. This is may be due to 
the differential expression of sex hormone receptors in those 
tissues. As previously said, besides ABC transporters, many 
factors, like plasma proteins and metabolizing enzymes, are 
able to influence the efficacy of a drug in a sex dependent 
manner [71, 125]. Each of these factors are just a piece of 
the puzzle and knowing the regulation of them by sex ster-
oids is needed for a further characterization of the molecular 
mechanisms that are behind the sex differences in response 
to a drug treatment. As a final remark for the development 
and optimization of therapeutic strategies accounting on sex 
differences, more investigations are needed, and further stud-
ies on the regulation of ABC transporters, as well as on other 
molecules involved in pharmacokinetics and pharmacody-
namics, by sex steroids, will need to be undertaken.
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