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Abstract
Extracellular histones have been reported to aggravate different pathophysiological processes by increasing vas-
cular permeability, coagulopathy, and inflammation. In the present study, we elucidate how extracellular histones 
(10–100 µg/mL) concentration dependently increase cytosolic reactive oxygen species (ROS) production using human 
umbilical vein endothelial cells (HUVECs). Furthermore, we identify cyclooxygenase (COX) and NADPH oxidase 
(NOX) activity as sources of ROS production in extracellular histone-treated HUVEC. This COX/NOX-mediated 
ROS production is also involved in enhanced NF-kB activity and cell adhesion molecules (VCAM1 and ICAM1) 
expression in histone-treated HUVEC. Finally, by using different toll-like receptor (TLR) antagonists, we demonstrate 
the role of TLR4 in CAMs overexpression triggered by extracellular histones in endothelial cells. In conclusion, our 
data suggest that through TLR4 signaling, extracellular histones increase endothelial cell activation, a mechanism 
involving increased COX- and NOX-mediated ROS. These findings increase our understanding on how extracellular 
histones enhance systemic inflammatory responses in diseases in which histone release occurs as part of the patho-
logical processes.
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Introduction

Histones are essential proteins regulating chromatin con-
formation and gene transcription, but when histones are 
released into extracellular space, they can mediate proin-
flammatory activity [3]. Extracellular histones act as an 
aggravating factor in multiple pathophysiological processes 
and disease progression [7]. Among these, they have been 
implicated in organ injury after trauma [1], autoimmune 
diseases [21], and ischemic heart disease [5]. In addition, 
when released into the bloodstream, histones mediate in the 
pathology of strokes [9], disseminated intravascular coagula-
tion [23], sepsis [32], and septic shock [11].

As a communicative dynamic barrier between intravas-
cular and extravascular spaces, endothelium is responsive 
to circulating compounds, including extracellular histones. 
Indeed, it has been reported that organ injury mediated by 
extracellular histones is caused primarily through endothe-
lial damage [18] and induced endothelial barrier dysfunc-
tion [12]. Specifically, molecular studies in histone-exposed 
endothelial cells have pinpointed their roles in inducing  Ca2+ 
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overload [8], increasing cell adhesion molecules (CAMs) 
[35] and tissue factor expression [34], and disarranging 
vasoactive mediator release [25], thus altering vascular 
homeostasis. In addition, both apoptotic and autophagy 
pathway activation have been implicated in histone-mediated 
endothelial cell death [16].

Dying cells and neutrophil extracellular trap (NET) 
formation by activated neutrophils have been shown to be 
major endogenous sources of extracellular histones [7, 10]. 
These histones and nucleosomes released into the blood-
stream are described as damage-associated molecular pat-
terns (DAMPs) [14] whose response is driven by pattern 
recognition receptors (PPRs) [4]. Among PPRs, toll-like 
receptors (TLRs) have been reported as the main receptors 
for extracellular histones [7]. In this regard, endothelium 
expresses different TLRs [31], which modify its physiology 
upon exposure to extracellular histones, ultimately resulting 
in endothelial injury and dysfunction [7].

Extracellular histones have been implicated in increased 
production of reactive oxygen species (ROS) [17, 27]. Pro-
duction of ROS has been identified as a key component in 
progression of many inflammatory diseases, acting both 
as signaling molecule and inflammatory mediator [20]. 
Although recent data have provided insight into several 
actions triggered by extracellular histones in endothe-
lial cells, the mechanisms by which extracellular histones 
increase ROS production remain unclear.

Although previous studies have reported that extracellular 
histones increase intracellular ROS levels in human umbilical 
vein endothelial cells (HUVEC) [25], the sources of ROS 
involved in histone-triggered effects have been less studies. 
Here, we aimed to get deeper insight into the mechanism 
involved in the production of oxidative stress in HUVEC 
exposed to extracellular histones, interrogating for the main 
oxidative stress generating cellular factors. Furthermore, 
we investigated the role of increased ROS production in the 
activity of key inflammatory modulator NF-kB, and expres-
sion of different CAMs in human endothelial cells exposed to 
extracellular histones. Finally, we determined the role of dif-
ferent TLR types in the observed histone-triggered response.

Methods

Cell culture and experimental design

Pooled human umbilical vein endothelial cells (HUVECs) 
from 5 individual female donors were purchased from Lonza 
(Barcelona, Spain) and were grown in Medium 199 (Sigma-
Aldrich, Madrid, Spain) supplemented with 20% fetal bovine 
serum (Gibco, Invitrogen, Barcelona, Spain), endothelial 
cell growth supplement from bovine neural tissue (ECGS, 
Sigma-Aldrich), and heparin sodium salt from porcine 

intestinal mucosa (Sigma-Aldrich). Cells were routinely 
grown in an incubator at 37 °C with 5%  CO2. HUVECs 
from passages 3 to 5 were used in this study. When they 
reached confluence, the media was changed and cells under-
went 4 h exposure to different calf thymus histone concentra-
tions (Sigma-Aldrich, St. Louis, MO, USA): 10, 25, 50, or 
100 µg/mL prepared in PBS. In some experiments, 30 µM 
apocynin (Sigma-Aldrich), 10 µM indomethacin (Sigma-
Aldrich), 10 µM celecoxib (Sigma-Aldrich), 100 µmol/l 
tempol (Sigma-Aldrich), 20 µM Bay11-7082 ((E)-3-(4-
methylphenylsulfonyl)-2-propenenitrile; Sigma-Aldrich), 
20 µg/mL oxPAPC (Invivogen, Toulouse, France), 0.7 µM 
iODN (inhibitory oligodeoxynucleotide with phosphorothio-
ate backbone, Enzo Life Science, Farmingdale, USA), and 
3 µM CLI-095 (Invivogen) were added to HUVEC 1 h prior 
to histone treatment.

Reactive oxygen species production measurement

Intracellular reactive oxygen species (ROS) production was 
detected using fluorescence probes: dihydroethidium (DHE, 
Invitrogen) for intracellular ROS or MitoSOX (Invitrogen) 
for mitochondrial ROS. Histone-treated cells were loaded 
with 2.5 μM DHE or 5 μM MitoSOX for 30 min. Next, cells 
were rinsed with PBS and observed under an inverted fluo-
rescence Nikon Eclipse Ti-S microscope. Fluorescence was 
measured from three different fields per well. Fluorescence 
signals were quantified using NIS-Elements 3.2 software 
(Nikon Izasa S.A, L’Hospitalet de Llobregat, Spain).

Cell transfection

HUVECs were cultured overnight before being transfected 
with Lipofectamine 2000 transfection reagent (Thermo 
Fisher Scientific). Short interference (si)RNA negative con-
trol (Assay ID 117,432) and siRNA NOX1 inhibitor (Assay 
ID 4,390,843) were used at 20 nM in serum-free OptiMEM 
medium (Gibco) during 48 h. HUVEC transfected with 
siNOX1 showed ~ 40% reduction in NOX1 protein levels 
(Suppl. Figure 1B).

Gene expression analysis by RT‑qPCR

Total RNA was isolated from cells using NucleoSpin® 
RNA/Protein (740,933.50, Macherey–Nagel, Düren, Ger-
many) according to the manufacturer’s instructions. For 
reverse transcription (RT) reactions, 200 ng of purified 
RNA was reverse transcribed using random hexamers 
with the high-capacity cDNA reverse transcription kit 
(P/N 4,322,171, Applied Biosystems, Foster City, USA) 
according to the manufacturer’s instructions.

Gene expression was determined by quantitative real-
time PCR analysis using an ABI Prism 7900 HT Fast 
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Real-Time PCR System (Applied Biosystems, Foster City, 
CA, USA). Gene-specific primer pairs and probes were 
purchased from Applied Biosystems (Assays-on-Demand) 
for SOD1 (Hs00533490_m1), SOD2 (Hs00167309_m1), 
VCAM1 (Hs01003372_m1), ICAM1 (Hs00164932_m1), 
and GAPDH (Hs99999905_m1), and were used together 
with TaqMan Universal PCR Master Mix (P/N 4,304,437) 
and reverse-transcribed sample RNA in 20-μl reaction vol-
umes. iTaq TM Universal SYBR Green supermix (Bio-Rad 
Laboratories Inc., Madrid, Spain) was also used in order to 
determine mRNA expression. Primers used in SYBR green-
based qRT-PCR were all purchased from Sigma-Aldrich. 
Primers sequences are described in Table 1. PCR conditions 
were determined according with manufacturer’s instructions. 
Glyceraldehyde-3-phosphate dehydrogenase expression lev-
els were measured in all samples to normalize differences 
in RNA input, RNA quality, and reverse transcription effi-
ciency. Each sample was analyzed in triplicate, and expres-
sion was calculated according to the  2−ΔΔCt method.

Protein expression analyzed by Western blot

Proteins extracts (50 μg) were denatured with sample buffer 
(Tris 40 mM, EDTA, bromophenol blue 0.01%, sucrose 
40%, SDS 4%, β-mercaptoethanol 10%) and heated to 95 °C 
for 5 min. Afterwards, samples were electrophoresed in 12% 
SDS-PAGE and transferred onto nitrocellulose membrane 
(Whatman GmbH, Dassel, Germany).

After transference, the membrane was blocked with 5% 
milk or 5% BSA (in the case of phosphorylated proteins) in 
Tris-buffered saline and Tween 20 (TBST) for 1 h. After-
wards, the membranes were incubated with the specific 
primary antibodies: p65 subunit of NF-κB, p-p65(Ser276), 
SOD1, and SOD2 (from Cell Signaling, Beverly, MA, 
USA); NLRP3 (from Novus, NBP2-12,446); COX1, COX-
2, NOX1, NOX4, and β-actin as loading control (from Santa 
Cruz BioTech, Dallas, TX, USA).

Afterwards, the blots were washed again with TBST and 
incubated for a further 1 h with a secondary mouse, rabbit, 
or goat antibody with horseradish peroxidase-linked con-
jugate. The membrane was incubated at room temperature 

with constant agitation. Finally, the membrane was washed 
3 × 5 min with TBST. Luminol was added onto the mem-
brane (ECL Western Blotting Detection Reagents, GE 
Healthcare, Hatfield, and Hertfordshire, UK), and membrane 
chemiluminescence was revealed by LAS-4000 image reader 
(GE Healthcare).

Statistical analysis

Values are expressed as mean ± standard error of mean 
(SEM). Student’s t-test was applied for between-group com-
parisons. One-way analysis of variance was used to deter-
mine the difference between groups. When an interaction 
effect was found, multiple comparisons were performed 
using the Student–Newman–Keuls method “post hoc” test. 
Statistical significance was set at *P < 0.05, **P < 0.01, and 
***P < 0.001, as indicated in each case. GraphPad Prism 
v6.0 (GraphPad Software, San Diego, CA, USA) was used 
for statistical analysis and graphic representations.

Results

Extracellular histones induce ROS production 
in a concentration‑dependent manner and increase 
antioxidant enzyme expression in HUVEC

The first aim of the present work was to investigate the effect 
of extracellular histones on ROS production in endothelial 
cells. Exposure of HUVEC to increasing concentrations 
of extracellular histones (10, 25, 50, and 100 μg/mL) for 
4 h resulted in a concentration-dependent increase of ROS 
production, showing statistically significance with con-
centrations above 50 μg/mL. Specifically, ROS produc-
tion increased up to 80 ± 10% when cells were exposed to 
50 μg/mL (P < 0.001), and up to 103 ± 19% when exposed to 
100 μg/mL (P < 0.001) (Fig. 1A). Conversely, no changes in 
mitochondrial ROS production were observed in endothelial 
cells exposed to 50 μg/mL of extracellular histones com-
pared to non-treated cells (Fig. 1B).

Table 1  Primer sequences Gene Sense (5′—3′) Antisense (3′—5′)

GAPDH TCG GAG TCA ACG GAT TTG CAA CAA TAT CCA CTT TAC CAGAG 
IL18 CCT TTA AGG AAA TGA ATC CTCC CAT CTT ATT ATC ATG TCC TGGG 
IL1A AGA GGA AGA AAT CAT CAA GC TTA TAC TTT GAT TGA GGG CG
IL1B CTA AAC AGA TGA AGT GCT CC GGT CAT TCT CCT GGA AGG 
MYD88 GTT GTC TCT GAT GAT TAC CTG GGG GAA CTC TTT CTT CAT TG
NOX1 CCG GTC ATT CTT TAT ATC TGTG CAA CCT TGG TAA TCA CAA CC
NOX2 AAG ATC TAC TTC TAC TGG CTG AGA TGT TGT AGC TGA GGA AG
NOX4 AAT TTA GAT ACC CAC CCT CC TCT GTG GAA AAT TAG CTT GG
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Furthermore, HUVEC exposed to extracellular histones 
(50 μg/mL) showed altered expression of cytosolic superoxide 
dismutase (SOD1), whereas no significant differences were 
observed for the mitochondrial variant SOD2. Results showed 
significantly increased SOD1 expression levels in HUVEC 
(21 ± 8%, P < 0.05; Fig. 1C) at 50 μg/mL of extracellular his-
tones. These data were supported by protein levels: relative lev-
els assessed by densitometry revealed a significant increase in 
the cytosolic SOD (82 ± 35%, P < 0.05), while conversely, mito-
chondrial SOD protein levels were found unaltered (Fig. 1D) in 
agreement to the mRNA levels measured by RT-qPCR.

COX and NOX are involved in ROS production 
induced by extracellular histones in HUVEC

We next sought to determine which specific sources of ROS 
production were induced in endothelial cells exposed to extra-
cellular histones. NADPH-oxidase (NOX) [6] and cyclooxy-
genase (COX) [26] have been suggested as important sources 

of ROS production under inflammatory conditions. To evalu-
ate the source of ROS production of histone-treated HUVEC, 
we incubated HUVEC with apocynin (antioxidant) and indo-
methacin (COX inhibitor) before extracellular histone (50 μg/
mL) treatment. Results showed a significant decrease in ROS 
production when endothelial cells were treated with both apo-
cynin and indomethacin. (Fig. 2A). In addition, to determine 
the role of extracellular histones in modulation of different 
isoforms of COX and NOX, HUVECs were treated with 50 μg/
mL extracellular histones, and COX-1, COX-2, NOX1, and 
NOX4 mRNA expression and protein levels were determined. 
Histone-exposed HUVEC showed increased mRNA expres-
sion of COX-2 and NOX1, while COX-1 and NOX4 expres-
sion remained unaltered (Fig. 2B). Moreover, histones induced 
an increase in COX-2 protein production (38 ± 6%, P < 0.001) 
while COX-1 levels were unaltered. Conversely, no significant 
changes on NOX1 and NOX4 were observed (Fig. 2C). Alto-
gether, these results suggest a role for COX and NOX enzymes 
in histone-dependent ROS production in HUVEC.
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Fig. 1  Extracellular histone-treated HUVEC increases ROS produc-
tion and antioxidant response through increased SOD1 expression. 
A HUVECs were exposed to different concentrations of histones 
for 4  h and intracellular ROS levels were determined by DHE oxi-
dation (n = 7) as described in Methods. B HUVECs were exposed 
to 0 µg/mL of histones (0H) and 50 µg/mL of histones (50H) for 4 h 
and mitochondrial ROS levels were determined by MitoSOX probe 
(n = 6) as described in Methods. C HUVECs were exposed to 50 µg/
mL of histones for 4 h (n = 3). Relative SOD1 and SOD2 expression 

were determined by qRT-PCR. D Protein extracts (20  µg protein) 
from cultured HUVEC incubated at 50  µg/mL of histones for 4  h 
were loaded on SDS-PAGE gels and analyzed by Western blotting 
using anti-SOD1 and anti-SOD2. β-actin was used as loading control. 
One representative experiment of three performed is shown. Relative 
levels assessed by densitometry are presented. Data are expressed as 
mean ± SEM of n = 6–7. *P < 0.05 and ***P < 0.001 versus 0 µg/mL 
of histones
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ROS productions mediated by COX and NOX 
are involved in NF‑kB/CAM pathway expression 
in histone‑treated HUVEC

Given that increased ROS levels are associated with 
increased activity of pro-inflammatory mediators and with 
the expression of adhesion molecules, we next performed 
Western blot analysis to evaluate the levels and activity 
of NF-κB, a pivotal molecule in endothelial inflammation 
control, and the expression and activity of VCAM1 and 
ICAM1, both involved in leukocyte adhesion to endothe-
lium monolayer.

Figure 3A shows a concentration-dependent increase 
of the p65 subunit of NF-κB and its phosphorylation 
in HUVEC treated with extracellular histones. Blot 

quantification revealed a significant increase of p65 
phosphorylation when endothelial cells were exposed to 
50 (P < 0.05) and 100 μg/ml (P < 0.01) of extracellular 
histones (Fig. 3A). Importantly, this effect was abro-
gated when cells were previously exposed to BAY11-
7082, an inhibitor of p65 activation (Fig. 3B). Since Bay 
11–7082 also acts as a selective inhibitor for nod-like 
receptor family pyrin domain containing 3 (NLRP3), we 
also determined the NLRP3 protein levels. However, no 
significant changes were observed in HUVEC exposed 
to increasing concentrations of extracellular histones 
(Fig. 3B). Also, no changes were observed in the expres-
sion of the pro-inflammatory cytokines IL-1β, IL-18, and 
IL-1α associated with NLRP3 in histone-treated cells 
(Suppl. Figure 1A).
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Fig. 2  ROS induced by extracellular histones is mediated by COX 
and NOX activity. A HUVECs were preincubated with apocynin 
(Apo) and indomethacin (Indo) for 1 h and treated with 0 µg/mL of 
histones (0H) and 50 µg/mL of histones for 4 h (50H, n = 10). Intra-
cellular ROS levels were determined by DHE oxidation as described 
in Methods. B HUVEC exposed to 50  µg/mL of histones for 4  h 
(n = 7). Relative COX-1, COX-2, NOX1, and NOX4 expression were 
determined by qRT-PCR. C Protein extracts (20  µg protein) from 

cultured HUVEC incubated at 50  µg/mL of histones for 4  h (n = 4) 
were loaded on SDS-PAGE gels and analyzed by Western blot-
ting using anti-COX-1, anti-COX-2, anti-NOX1, and anti-NOX4. 
β-actin was used as loading control. One representative experiment 
of three performed is shown. Relative levels assessed by densitom-
etry are presented. Data are expressed as mean ± SEM. *P < 0.05 and 
***P < 0.001 versus 0 µg/mL of histones
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To investigate the effect of extracellular histones in 
VCAM1 and ICAM1 expression, we determined mRNA 
expression in HUVEC by qRT-PCR. Histone-treated 
HUVEC showed significant increased expression (Fig. 3B) 
of both VCAM1 (150 ± 20%, P < 0.01) and ICAM1 
(177 ± 53%, P < 0.001) at 50 μg/mL of histones. As occurred 
for p65 activation, BAY11-7082 caused a significant reduc-
tion in histone-mediated VCAM1 (P < 0.05) and ICAM1 
(P < 0.05) mRNA levels (Fig. 3C), indicating that NF-κB is 
involved in adhesion molecule expression induced by extra-
cellular histones in HUVEC.

In order to determine whether extracellular histone-
induced ROS-generating enzymes are related to the 
observed pro-inflammatory pathway induction, we studied 
VCAM1 and ICAM1 mRNA expression in histone-treated 
HUVEC previously incubated with the superoxide dismutase 
mimetic tempol, apocynin, and the COX-2-specific inhibitor 
celecoxib. All treatments abrogated the VCAM1 and ICAM1 
mRNA induction observed in endothelial cells exposed to 

extracellular histones (Fig. 3D). Moreover, specific siRNA 
knock-down of NOX-1 significantly reduced ROS produc-
tion and VCAM1 expression in histone-treated cells (Suppl. 
Figure 1B). These results thus indicate the involvement of 
ROS, NOX-1 and COX-2, in the enhanced CAM expres-
sion observed in endothelial cells after extracellular histone 
exposure.

TLR4 is involved in ROS‑dependent CAM expression 
in extracellular histone‑treated HUVEC

As described in the introduction, extracellular histones have 
been reported to bind to the cell surface through TLR recep-
tors, although the specific TLR responsible for this process 
is still under debate [14, 33]. We found that preincubation 
of HUVEC with TLR inhibitors after extracellular his-
tone treatment modulated ROS production (Fig. 4A). The 
results demonstrated that histone-induced ROS production 
decreased significantly upon preincubation with OxPAPC 
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(a TLR2 and TLR4 inhibitor), but not when HUVECs were 
pre-treated with iODN (an TLR7 and TLR9 inhibitor). CLI-
095, a selective TLR4 inhibitor, was used to determine the 
specificity of extracellular histone binding to this recep-
tor in HUVEC. CLI-095 decreased histone-mediated ROS 
production in HUVEC (P < 0.01, CLI-095 + 50 μg/mL of 
histones relative to 50 μg/mL of histones) (Fig. 4A). In addi-
tion, expression of MYD88, an adapter protein that mediates 
signal transduction from TLRs to NF-κB, showed a trend for 
increased expression in HUVEC exposed to extracellular 
histones (50 μg/ml) compared to non-treated cells (Suppl. 
Figure 1C). Altogether, these results indicate that HUVECs 
exposed to extracellular histones exhibit an increase in ROS 
production via TLR4.

We further analyzed the role of TLR4 in CAM expres-
sion in histone-treated HUVEC. Extracellular histone-treated 
endothelial cells were preincubated with CLI-095 and VCAM1 
and ICAM1 mRNA expression (Fig. 4B) were determined. 

Results showed reduced VCAM1 and ICAM1 mRNA expres-
sion in histone-incubated cells pre-treated with TLR4 antago-
nist, thus reverting the induction produced by 50 µg/mL of 
histones.

Taken together, our experiments indicate that extracellu-
lar histones increase cytosolic oxidative status in HUVEC, 
increasing ROS production and altering antioxidant enzymes. 
ROSs are produced by COX and NOX enzymes after extra-
cellular histone exposure via a TLR4-dependent mechanism, 
which in turn leads to heightened NF-kB activation and 
VCAM1 and ICAM1 expression (Fig. 4C).

Discussion

In this study, we demonstrated that endothelial cells 
exposed to extracellular histones enhance ROS produc-
tion through a TLR4-COX/NOX pathway, which in turn 
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increases cell adhesion molecules (VCAM1 and ICAM1) 
expression via NFkB activity. First, histone-treated 
HUVEC showed a concentration-dependent rise in cyto-
solic ROS production and a concomitant increase in the 
antioxidant cytosolic superoxide dismutase enzyme SOD1. 
Second, extracellular histone-induced superoxide anion 
production is mediated by COX and NOX activity. Third, 
COX/NOX-mediated increase in ROS induced VCAM1 
and ICAM1 expression through an NFkB-dependent mech-
anism. Finally, we identified TLR4 as the main receptor 
involved in the above described pathway.

Extracellular histones contribute to the pathobiology 
of systemic inflammatory diseases in which endothelium 
activation seems to play a crucial, including both infec-
tions, such as sepsis [32], and sterile inflammation, such 
as stroke [9], disseminated intravascular coagulation [23], 
or ischemia–reperfusion injury [14]. Endothelial cells 
exposed to extracellular histones release proinflammatory 
cytokines [12], induce tissue factor expression [34], and 
show increased adhesion molecules in the cell membrane 
[35]. Indeed, in vivo experiments have demonstrated that 
administration of extracellular histone causes neutrophil 
migration, endothelial dysfunction, and thrombosis [32].

Our results demonstrate that extracellular histones 
increase ROS production in a concentration-dependent 
manner in endothelial cells. Production of ROS is vital 
in the pathogenesis of vascular injury and contributes 
to different vascular responses in inflammation, such as 
vasomotor dysfunction, impaired vascular permeability, 
enhanced thrombus formation, and leukocyte recruitment 
[19]. Increased ROS levels have also been observed in 
histone-treated cardiomyocytes [17] and Kuppfer cells 
[15]. Moreover, pretreatment of dendritic cells with anti-
oxidants prevented H4-induced cytokine secretion [2]. 
Furthermore, histone-exposed endothelial cells showed 
increased expression of the cytosolic SOD1, which can 
be explained as an adaptive compensatory antioxidant 
mechanism in response to oxidative stress to maintain the 
redox-state balance [13].

Our results showed that histone-mediated ROS produc-
tion depends on NOX and COX activity. In this regard, 
NOX-dependent overproduction of ROS observed in 
cardiac myocytes exposed to plasma from patients with 
sepsis [30] could be due to elevated circulating levels 
of pro-inflammatory mediators, including extracellu-
lar histones [11, 32]. Extracellular histones treatment 
of HUVEC did not change NOXs protein levels. In this 
regard, direct interaction of TLR4 with Nox4 has been 
reported as the mechanism involved in LPS-mediated ROS 
generation [24]. Furthermore, it has been reported that 
ROS production by NOX can subsequently trigger other 
ROS-generating sources [6] such as COX. Our findings 
indicate that extracellular histone treatment enhanced 

COX-2 expression while COX1 remained unaltered. In 
this regard, increased COX-2 expression has previously 
been observed in dermal microvascular endothelial cells 
exposed to P. falciparum histones [12]. As demonstrated 
by inhibiting COX-2 activity, ROS production should be 
mediated by COX-2 expression enhancement observed in 
histone-treated endothelial cells. In agreement with these 
results, multiple studies have focused on the contribu-
tion of COX-2-dependent oxidative stress in endothelial 
inflammation [29], suggesting its role as an inflammatory 
signal mediator.

The endothelium responds to inflammatory mediators 
by expressing adhesion molecules on the cell surface, 
increasing rolling, adherence, and transmigration of leu-
kocytes into the underlying tissue. Here, we demonstrate 
elevated VCAM1 and ICAM1 expression in endothelial 
cells exposed to extracellular histones, which are known to 
contribute to inflammatory cell recruitment. These results 
agree with the previous findings of Shrestha et al. [27] and 
are in agreement with the results that histone-neutralizing 
antibodies significantly reduced neutrophil recruitment in 
an in vivo mice model of sterile inflammation [2]. Addi-
tionally, we show that the VCAM1 increased expression in 
histone-treated endothelial cells is dependent on NF-kB, a 
key inflammatory modulator whose activity can be regu-
lated by the cellular redox status [22], in a concentration-
dependent manner. Similar results have been shown using 
primary human coronary artery endothelial cells exposed 
to extracellular histones [34].

Our experiments using different TLR antagonists indicate 
that intervention on TLR4 can restore endothelial levels of 
ROS production enhanced by extracellular histone exposure, 
and hence levels of adhesion molecules in HUVEC. Several 
studies propose that extracellular histone action is triggered 
via TLRs [14, 33, 34], and our results reinforce this idea 
and further demonstrate that endothelial adhesion factors 
are stimulated via TLR4 in HUVEC. Extracellular histone 
release has been implicated in tissue factor expression in 
vascular endothelial cells via TLR2/4-dependent mecha-
nisms [34]. In the liver, however, histone-induced tissue 
injury has been linked to activation of both TLR2/4 [33] 
and TLR9 [14]. Indeed, cell lineage could also be involved 
in TLR-mediated histone action, since it has been observed 
that extracellular histone-activated TLR9 leads to ROS pro-
duction in Kupffer cells [15]. Furthermore, using KO mice, 
Xu et al. found that both TLR2 and TLR4 were implicated 
in histone-mediated cell death, but only TLR4 was respon-
sible for histone-dependent increase of cytokines levels 
[33]. These results suggest that histone binding to specific 
TLRs could activate different molecular pathways that will 
result in a determinant response. Opposite to our results, 
histone-induced expression of adhesion molecules was 
inhibited by neutralizing antibodies anti-TLR9, but not by 
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anti-TLR2 or anti-TLR4, suggesting that TLR9 is involved 
in the histone-induced induction of adhesion molecules in 
EA.hy926 endothelial cells [35]. Discrepancies could be due 
to the previously reported differences between the cell line 
EA.hy926 and HUVECs [28] and reinforce the idea that cell 
specificity may be related to TLR-mediated histone action.

In conclusion, our findings demonstrate that NOX and COX 
have a central role in enhanced ROS production exhibited in 
human endothelial cells exposed to extracellular histones. Fur-
thermore, over-production of ROS in histone-treated HUVEC 
increases CAM expression in an NF-kB-dependent pathway, 
an effect which is triggered specifically through TLR4.
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