Skip to main content

Advertisement

Log in

Prognostication in NAFLD: physiological bases, clinical indicators, and newer biomarkers

  • Review
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Non-alcoholic fatty liver disease (NAFLD) is becoming an epidemic in Western countries. Notably, while the majority of NAFLD patients will not evolve until advanced liver disease, a minority of them will progress towards liver-related events. Therefore, risk stratification and prognostication are emerging as fundamental in order to optimize human and economic resources for the care of these patients.

Liver fibrosis has been clearly recognized as the main predictor of poor hepatic and extrahepatic outcomes. However, a prediction based only on the stage of fibrosis is near-sighted and static, as it does not capture the propensity of disease to further progress, the speed of progression and their changes over time. These determinants, which result from the interaction between genetic predisposition and acquired risk factors (obesity, diabetes, etc.), express themselves in disease activity, and can be synthesized by biomarkers of hepatic inflammation and fibrogenesis.

In this review, we present the currently available clinical tools for risk stratification and prognostication in NAFLD specifically with respect to the risk of progression towards hard hepatic outcomes, i.e., liver-related events and death. We also discuss about the genetic and acquired drivers of disease progression, together with the physiopathological bases of their come into action. Finally, we introduce the most promising biomarkers in the direction of repeatedly assessing disease activity over time, mainly in response to future therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Araújo AR, Rosso N, Bedogni G, Tiribelli C, Bellentani S (2018) Global epidemiology of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: what we need in the future. Liver Int 38:47–51

    Article  PubMed  Google Scholar 

  2. Angulo P, Kleiner DE, Dam-Larsen S, Adams LA, Bjornsson ES, Charatcharoenwitthaya P et al (2015) Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterol ago 149(2):389–397 (e10)

    Article  Google Scholar 

  3. Dulai PS, Singh S, Patel J, Soni M, Prokop LJ, Younossi Z et al (2017) Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: systematic review and meta-analysis: Dulai et al. Hepatology 65(5):1557–1565

    Article  CAS  PubMed  Google Scholar 

  4. Ekstedt M, Hagström H, Nasr P, Fredrikson M, Stål P, Kechagias S et al (2015) Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatol 61(5):1547–1554

    Article  CAS  Google Scholar 

  5. Taylor RS, Taylor RJ, Bayliss S, Hagström H, Nasr P, Schattenberg JM et al (2020) Association between fibrosis stage and outcomes of patients with nonalcoholic fatty liver disease: a systematic review and meta-analysis. Gastroenterol 158(6):1611–1625

    Article  CAS  Google Scholar 

  6. CalzadillaBertot L, Adams L (2016) The natural course of non-alcoholic fatty liver disease. Int J Mol Sci 17(5):774

    Article  Google Scholar 

  7. Schuppan D, Surabattula R, Wang XY (2018) Determinants of fibrosis progression and regression in NASH. J Hepatol 68(2):238–250

    Article  CAS  PubMed  Google Scholar 

  8. Younossi ZM, Stepanova M, Rafiq N, Makhlouf H, Younoszai Z, Agrawal R et al (2011) Pathologic criteria for nonalcoholic steatohepatitis: Interprotocol agreement and ability to predict liver-related mortality. Hepatol 53(6):1874–1882

    Article  Google Scholar 

  9. Hagström H, Nasr P, Ekstedt M, Hammar U, Stål P, Hultcrantz R et al (2017) Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD. J Hepatol 67(6):1265–1273

    Article  PubMed  Google Scholar 

  10. Sanyal AJ, Van Natta ML, Clark J, Neuschwander-Tetri BA, Diehl A, Dasarathy S et al (2021) Prospective study of outcomes in adults with nonalcoholic fatty liver disease. N Engl J Med ott 385(17):1559–1569

    Article  CAS  Google Scholar 

  11. Hagström H, Talbäck M, Andreasson A, Walldius G, Hammar N (2020) Ability of noninvasive scoring systems to identify individuals in the population at risk for severe liver disease. Gastroenterol 158(1):200–214

    Article  Google Scholar 

  12. Heyens LJM, Busschots D, Koek GH, Robaeys G, Francque S (2021) Liver fibrosis in non-alcoholic fatty liver disease: from liver biopsy to non-invasive biomarkers in diagnosis and treatment. Front Med 8:615978

    Article  Google Scholar 

  13. Mózes FE, Lee JA, Selvaraj EA, Jayaswal ANA, Trauner M, Boursier J et al (2022) Diagnostic accuracy of non-invasive tests for advanced fibrosis in patients with NAFLD: an individual patient data meta-analysis. Gut 71(5):1006–1019

    Article  PubMed  Google Scholar 

  14. Vilar-Gomez E, Chalasani N (2018) Non-invasive assessment of non-alcoholic fatty liver disease: clinical prediction rules and blood-based biomarkers. J Hepatol 68(2):305–315

    Article  CAS  PubMed  Google Scholar 

  15. Hagström H, Nasr P, Ekstedt M, Stål P, Hultcrantz R, Kechagias S (2019) Accuracy of noninvasive scoring systems in assessing risk of death and liver-related endpoints in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 17(6):1148–1156 (e4)

    Article  PubMed  Google Scholar 

  16. Sun W, Cui H, Li N, Wei Y, Lai S, Yang Y et al (2016) Comparison of FIB-4 index, NAFLD fibrosis score and BARD score for prediction of advanced fibrosis in adult patients with non-alcoholic fatty liver disease: a meta-analysis study: Non-invasive assessment of liver fibrosis in NAFLD. Hepatol Res 46(9):862–870

    Article  CAS  PubMed  Google Scholar 

  17. McPherson S, Stewart SF, Henderson E, Burt AD, Day CP (2010) Simple non-invasive fibrosis scoring systems can reliably exclude advanced fibrosis in patients with non-alcoholic fatty liver disease. Gut 59(9):1265–1269

    Article  PubMed  Google Scholar 

  18. Lee J, Vali Y, Boursier J, Spijker R, Anstee QM, Bossuyt PM et al (2021) Prognostic accuracy of FIB-4, NAFLD fibrosis score and APRI for NAFLD-related events: a systematic review. Liver Int 41(2):261–270

    Article  PubMed  PubMed Central  Google Scholar 

  19. Patel K, Wilder J (2014) The clinical utility of FibroScan® as a noninvasive diagnostic test for liver disease. Med Devices Evid Res 107

  20. Jiang W, Huang S, Teng H, Wang P, Wu M, Zhou X et al (2018) Diagnostic accuracy of point shear wave elastography and transient elastography for staging hepatic fibrosis in patients with non-alcoholic fatty liver disease: a meta-analysis. BMJ Open 8(8):e021787

    Article  PubMed  PubMed Central  Google Scholar 

  21. Imajo K, Kessoku T, Honda Y, Tomeno W, Ogawa Y, Mawatari H et al (2016) Magnetic resonance imaging more accurately classifies steatosis and fibrosis in patients with nonalcoholic fatty liver disease than transient elastography. Gastroenterol 150(3):626–637 (e7)

    Article  Google Scholar 

  22. Han MAT (2020) Noninvasive tests (NITs) for hepatic fibrosis in fatty liver syndrome. Life 10(9):198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hsu C, Caussy C, Imajo K, Chen J, Singh S, Kaulback K et al (2019) Magnetic resonance vs transient elastography analysis of patients with nonalcoholic fatty liver disease: a systematic review and pooled analysis of individual participants. Clin Gastroenterol Hepatol 17(4):630–637 (e8)

    Article  PubMed  Google Scholar 

  24. Boursier J, Hagström H, Ekstedt M, Moreau C, Bonacci M, Cure S et al (2022) Non-invasive tests accurately stratify patients with NAFLD based on their risk of liver-related events. J Hepatol 76(5):1013–1020

    Article  CAS  PubMed  Google Scholar 

  25. Hagström H, Talbäck M, Andreasson A, Walldius G, Hammar N (2020) Repeated FIB-4 measurements can help identify individuals at risk of severe liver disease. J Hepatol 73(5):1023–1029

    Article  PubMed  Google Scholar 

  26. Önnerhag K, Hartman H, Nilsson PM, Lindgren S (2019) Non-invasive fibrosis scoring systems can predict future metabolic complications and overall mortality in non-alcoholic fatty liver disease (NAFLD). Scand J Gastroenterol 54(3):328–334

    Article  PubMed  Google Scholar 

  27. Vespasiani-Gentilucci U, Gallo P, Dell’Unto C, Volpentesta M, Antonelli-Incalzi R, Picardi A (2018) Promoting genetics in non-alcoholic fatty liver disease: combined risk score through polymorphisms and clinical variables. World J Gastroenterol 24(43):4835–4845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Loomba R, Schork N, Chen C-H, Bettencourt R, Bhatt A, Ang B et al (2015) Heritability of hepatic fibrosis and steatosis based on a prospective twin study. Gastroenterol 149(7):1784–1793

    Article  Google Scholar 

  29. Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA et al (2008) Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 40(12):1461–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu Y-L, Patman GL, Leathart JBS, Piguet A-C, Burt AD, Dufour J-F et al (2014) Carriage of the PNPLA3 rs738409 C >G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J Hepatol 61(1):75–81

    Article  CAS  PubMed  Google Scholar 

  31. Sookoian S, Pirola CJ (2011) Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatol 53(6):1883–1894

    Article  CAS  Google Scholar 

  32. Vespasiani-Gentilucci U, Gallo P, Porcari A, Carotti S, Galati G, Piccioni L et al (2016) The PNPLA3 rs738409 C > G polymorphism is associated with the risk of progression to cirrhosis in NAFLD patients. Scand J Gastroenterol 51(8):967–973

    Article  CAS  PubMed  Google Scholar 

  33. Pingitore P, Dongiovanni P, Motta BM, Meroni M, Lepore SM, Mancina RM et al (2016) PNPLA3 overexpression results in reduction of proteins predisposing to fibrosis. Hum Mol Genet ott 13:341

    Article  Google Scholar 

  34. Pingitore P, Pirazzi C, Mancina RM, Motta BM, Indiveri C, Pujia A et al (1841) 2014 Recombinant PNPLA3 protein shows triglyceride hydrolase activity and its I148M mutation results in loss of function. Biochim Biophys Acta 4:574–580

    Google Scholar 

  35. Wang Y, Kory N, BasuRay S, Cohen JC, Hobbs HH (2019) PNPLA3, CGI‐58, and inhibition of hepatic triglyceride hydrolysis in mice. Hepatol hep.30583.

  36. Pirazzi C, Valenti L, Motta BM, Pingitore P, Hedfalk K, Mancina RM et al (2014) PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum Mol Genet 23(15):4077–4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kozlitina J, Smagris E, Stender S, Nordestgaard BG, Zhou HH, Tybjærg-Hansen A et al (2014) Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 46(4):352–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mahdessian H, Taxiarchis A, Popov S, Silveira A, Franco-Cereceda A, Hamsten A et al (2014) TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. Proc Natl Acad Sci 111(24):8913–8918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Smagris E, Gilyard S, BasuRay S, Cohen JC, Hobbs HH (2016) Inactivation of Tm6sf2, a gene defective in fatty liver disease, impairs lipidation but not secretion of very low density lipoproteins. J Biol Chem 291(20):10659–10676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dongiovanni P, Petta S, Maglio C, Fracanzani AL, Pipitone R, Mozzi E et al (2015) Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatol 61(2):506–514

    Article  CAS  Google Scholar 

  41. Luukkonen PK, Zhou Y, Hyötyläinen T, Leivonen M, Arola J, Orho-Melander M et al (2016) The MBOAT7 variant rs641738 alters hepatic phosphatidylinositols and increases severity of non-alcoholic fatty liver disease in humans. J Hepatol 65(6):1263–1265

    Article  CAS  PubMed  Google Scholar 

  42. Buch S, Stickel F, Trépo E, Way M, Herrmann A, Nischalke HD et al (2015) A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat Genet 47(12):1443–1448

    Article  CAS  PubMed  Google Scholar 

  43. Mancina RM, Dongiovanni P, Petta S, Pingitore P, Meroni M, Rametta R et al (2016) The MBOAT7-TMC4 variant rs641738 Increases risk of nonalcoholic fatty liver disease in individuals of European descent. Gastroenterol 150(5):1219-1230.e6

    Article  CAS  Google Scholar 

  44. Santoro N, Zhang CK, Zhao H, Pakstis AJ, Kim G, Kursawe R et al (2012) Variant in the glucokinase regulatory protein (GCKR) gene is associated with fatty liver in obese children and adolescents. Hepatol 55(3):781–789

    Article  CAS  Google Scholar 

  45. Raimondo A, Rees MG, Gloyn AL (2015) Glucokinase regulatory protein: complexity at the crossroads of triglyceride and glucose metabolism. Curr Opin Lipidol 26(2):88–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ma Y, Belyaeva OV, Brown PM, Fujita K, Valles K, Karki S et al (2019) 17-beta hydroxysteroid dehydrogenase 13 is a hepatic retinol dehydrogenase associated with histological features of nonalcoholic fatty liver disease. Hepatol 69(4):1504–1519

    Article  CAS  Google Scholar 

  47. Pirola CJ, Garaycoechea M, Flichman D, Arrese M, San Martino J, Gazzi C et al (2019) Splice variant rs72613567 prevents worst histologic outcomes in patients with nonalcoholic fatty liver disease. J Lipid Res 60(1):176–185

    Article  CAS  PubMed  Google Scholar 

  48. Abul-Husn NS, Cheng X, Li AH, Xin Y, Schurmann C, Stevis P et al (2018) A protein-truncating HSD17B13 variant and protection from chronic liver disease. N Engl J Med 378(12):1096–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shi H, Kichaev G, Pasaniuc B (2016) Contrasting the Genetic architecture of 30 complex traits from summary association data. Am J Hum Genet 99(1):139–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nobili V, Donati B, Panera N, Vongsakulyanon A, Alisi A, Dallapiccola B et al (2014) A 4-polymorphism risk score predicts steatohepatitis in children with nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr 58(5):632–636

    Article  CAS  PubMed  Google Scholar 

  51. Krawczyk M, Rau M, Schattenberg JM, Bantel H, Pathil A, Demir M et al (2017) Combined effects of the PNPLA3 rs738409, TM6SF2 rs58542926, and MBOAT7 rs641738 variants on NAFLD severity: a multicenter biopsy-based study. J Lipid Res 58(1):247–255

    Article  CAS  PubMed  Google Scholar 

  52. Vespasiani-Gentilucci U, Dell’Unto C, De Vincentis A, Baiocchini A, Delle Monache M, Cecere R et al (2018) Combining genetic variants to improve risk prediction for NAFLD and its progression to cirrhosis: a proof of concept study. Can J Gastroenterol Hepatol 2018:1–9

    Article  Google Scholar 

  53. Dongiovanni P, Stender S, Pietrelli A, Mancina RM, Cespiati A, Petta S et al (2018) Causal relationship of hepatic fat with liver damage and insulin resistance in nonalcoholic fatty liver. J Intern Med 283(4):356–370

    Article  CAS  PubMed  Google Scholar 

  54. Gellert-Kristensen H, Richardson TG, Davey Smith G, Nordestgaard BG, Tybjærg-Hansen A, Stender S (2020) Combined effect of PNPLA3, TM6SF2, and HSD17B13 variants on risk of cirrhosis and hepatocellular carcinoma in the general population. Hepatol 72(3):845–856

    Article  CAS  Google Scholar 

  55. Bianco C, Jamialahmadi O, Pelusi S, Baselli G, Dongiovanni P, Zanoni I et al (2021) Non-invasive stratification of hepatocellular carcinoma risk in non-alcoholic fatty liver using polygenic risk scores. J Hepatol 74(4):775–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. De Vincentis A, Tavaglione F, Jamialahmadi O, Picardi A, AntonelliIncalzi R, Valenti L et al (2022) A polygenic risk score to refine risk stratification and prediction for severe liver disease by clinical fibrosis scores. Clin Gastroenterol Hepatol 20(3):658–673

    Article  PubMed  Google Scholar 

  57. Lin Y-C, Chang P-F, Chang M-H, Ni Y-H (2014) Genetic variants in GCKR and PNPLA3 confer susceptibility to nonalcoholic fatty liver disease in obese individuals. Am J Clin Nutr 99(4):869–874

    Article  CAS  Google Scholar 

  58. Stender S, Kozlitina J, Nordestgaard BG, Tybjærg-Hansen A, Hobbs HH, Cohen JC (2017) Adiposity amplifies the genetic risk of fatty liver disease conferred by multiple loci. Nat Genet 49(6):842–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sheka AC, Adeyi O, Thompson J, Hameed B, Crawford PA, Ikramuddin S (2020) Nonalcoholic steatohepatitis: a review. JAMA 323(12):1175

    Article  CAS  PubMed  Google Scholar 

  60. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2016) Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes: HEPATOLOGY, Vol. XX, No. X 2016. Hepatol 64(1):73–84

    Article  Google Scholar 

  61. Younossi ZM, Golabi P, de Avila L, Paik JM, Srishord M, Fukui N et al (2019) The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: a systematic review and meta-analysis. J Hepatol 71(4):793–801

    Article  PubMed  Google Scholar 

  62. Stepanova M, Rafiq N, Makhlouf H, Agrawal R, Kaur I, Younoszai Z et al (2013) Predictors of all-cause mortality and liver-related mortality in patients with non-alcoholic fatty liver disease (NAFLD). Dig Dis Sci 58(10):3017–3023

    Article  CAS  PubMed  Google Scholar 

  63. Alexander M, Loomis AK, van der Lei J, Duarte-Salles T, Prieto-Alhambra D, Ansell D et al (2019) Risks and clinical predictors of cirrhosis and hepatocellular carcinoma diagnoses in adults with diagnosed NAFLD: real-world study of 18 million patients in four European cohorts. BMC Med 17(1):95

    Article  PubMed  PubMed Central  Google Scholar 

  64. El-serag HB, Tran T, Everhart JE (2004) Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterol 126(2):460–468

    Article  Google Scholar 

  65. Kawamura Y, Arase Y, Ikeda K, Seko Y, Imai N, Hosaka T et al (2012) Large-scale long-term follow-up study of Japanese patients with non-alcoholic fatty liver disease for the onset of hepatocellular carcinoma. Am J Gastroenterol 107(2):253–261

    Article  CAS  PubMed  Google Scholar 

  66. Kanwal F, Kramer JR, Li L, Dai J, Natarajan Y, Yu X et al (2020) Effect of metabolic traits on the risk of cirrhosis and hepatocellular cancer in nonalcoholic fatty liver disease. Hepatol 71(3):808–819

    Article  Google Scholar 

  67. Simeone J, Bae J, Hoogwerf B, Li Q, Haupt A, Ali A et al (2017) Clinical course of nonalcoholic fatty liver disease: an assessment of severity, progression, and outcomes. Clin. Epidemiol 9:679–688

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tilg H, Moschen AR, Roden M (2017) NAFLD and diabetes mellitus. Nat Rev Gastroenterol Hepatol 14(1):32–42

    Article  CAS  PubMed  Google Scholar 

  69. Stefan N, Kantartzis K, Häring H-U (2008) Causes and metabolic consequences of fatty liver. Endocr Rev 29(7):939–960

    Article  CAS  PubMed  Google Scholar 

  70. Yoo J-J, Kim W, Kim MY, Jun DW, Kim SG, Yeon J-E et al (2019) Recent research trends and updates on nonalcoholic fatty liver disease. Clin Mol Hepatol 25(1):1–11

    Article  PubMed  Google Scholar 

  71. Ioannou GN, Weiss NS, Kowdley KV, Dominitz JA (2003) Is obesity a risk factor for cirrhosis-related death or hospitalization? A population-based cohort study. Gastroenterol 125(4):1053–1059

    Article  Google Scholar 

  72. Stepanova M, Rafiq N, Younossi ZM (2010) Components of metabolic syndrome are independent predictors of mortality in patients with chronic liver disease: a population-based study. Gut 59(10):1410–1415

    Article  PubMed  Google Scholar 

  73. Jarvis H, Craig D, Barker R, Spiers G, Stow D, Anstee QM et al (2020) Metabolic risk factors and incident advanced liver disease in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of population-based observational studies. PLOS Med 17(4):e1003100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Adams LA, Sanderson S, Lindor KD, Angulo P (2005) The histological course of nonalcoholic fatty liver disease: a longitudinal study of 103 patients with sequential liver biopsies. J Hepatol Gen 42(1):132–138

    Article  Google Scholar 

  75. De Vincentis A, Tavaglione F, Spagnuolo R, Pujia R, Tuccinardi D, Mascianà G et al (2022) Metabolic and genetic determinants for progression to severe liver disease in subjects with obesity from the UK Biobank. Int J Obes 46(3):486–493

    Article  Google Scholar 

  76. Otgonsuren M, Stepanova M, Gerber L, Younossi ZM (2013) Anthropometric and clinical factors associated with mortality in subjects with nonalcoholic fatty liver disease. Dig Dis Sci 58(4):1132–1140

    Article  CAS  PubMed  Google Scholar 

  77. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115(5):1343–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fabbrini E, Mohammed BS, Magkos F, Korenblat KM, Patterson BW, Klein S (2008) Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterol 134(2):424–431

    Article  CAS  Google Scholar 

  79. Bugianesi E, Gastaldelli A, Vanni E, Gambino R, Cassader M, Baldi S et al (2005) Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia 48(4):634–642

    Article  CAS  PubMed  Google Scholar 

  80. Mota M, Banini BA, Cazanave SC, Sanyal AJ (2016) Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metab 65(8):1049–1061

    Article  CAS  Google Scholar 

  81. Polyzos SA, Kountouras J, Mantzoros CS (2016) Adipokines in nonalcoholic fatty liver disease. Metab 65(8):1062–1079

    Article  CAS  Google Scholar 

  82. Chatrath H, Vuppalanchi R, Chalasani N (2012) Dyslipidemia in patients with nonalcoholic fatty liver disease. Semin Liver Dis 32(01):022–029

    Article  CAS  Google Scholar 

  83. Min H-K, Kapoor A, Fuchs M, Mirshahi F, Zhou H, Maher J et al (2012) Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab 15(5):665–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Musso G, Gambino R, Cassader M (2013) Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis. Prog Lipid Res 52(1):175–191

    Article  CAS  PubMed  Google Scholar 

  85. Méndez-Sánchez N, Cerda-Reyes E, Higuera-de-la-Tijera F, Salas-García AK, Cabrera-Palma S, Cabrera-Álvarez G et al (2020) Dyslipidemia as a risk factor for liver fibrosis progression in a multicentric population with non-alcoholic steatohepatitis. F1000Res gen 9:56

    Article  Google Scholar 

  86. Karadeniz G, Acikgoz S, Tekin IO, Tascýlar O, Gun BD, Cömert M. Oxidized low-density-lipoprotein accumulation is associated with liver fibrosis in experimental cholestasis. Clinics [Internet]. 2008 [citato 2022 mag 5];63(4). Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-59322008000400020&lng=en&nrm=iso&tlng=en

  87. Yimin Furumaki H, Matsuoka S, Sakurai T, Kohanawa M, Zhao S et al (2012) A novel murine model for non-alcoholic steatohepatitis developed by combination of a high-fat diet and oxidized low-density lipoprotein. Lab Invest 92(2):265–281

    Article  CAS  PubMed  Google Scholar 

  88. Ho C-M, Ho S-L, Jeng Y-M, Lai Y-S, Chen Y-H, Lu S-C et al (2019) Accumulation of free cholesterol and oxidized low-density lipoprotein is associated with portal inflammation and fibrosis in nonalcoholic fatty liver disease. J Inflamm 16(1):7

    Article  Google Scholar 

  89. Golabi P, Otgonsuren M, de Avila L, Sayiner M, Rafiq N, Younossi ZM (2018) Components of metabolic syndrome increase the risk of mortality in nonalcoholic fatty liver disease (NAFLD). Med (Baltimore) 97(13):e0214

    Article  Google Scholar 

  90. Younossi ZM, Otgonsuren M, Venkatesan C, Mishra A (2013) In patients with non-alcoholic fatty liver disease, metabolically abnormal individuals are at a higher risk for mortality while metabolically normal individuals are not. Metab 62(3):352–360

    Article  CAS  Google Scholar 

  91. Portincasa P, Bonfrate L, Khalil M, Angelis MD, Calabrese FM, D’Amato M et al (2021) Intestinal barrier and permeability in health, obesity and NAFLD. Biomed 10(1):83

    Google Scholar 

  92. Vespasiani-Gentilucci U, Gallo P, Picardi A (2018) The role of intestinal microbiota in the pathogenesis of NAFLD: starting points for intervention. Arch Med Sci 14(3):701–706

    Article  CAS  PubMed  Google Scholar 

  93. Raman M, Ahmed I, Gillevet PM, Probert CS, Ratcliffe NM, Smith S et al (2013) Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 11(7):868-875.e3

    Article  CAS  PubMed  Google Scholar 

  94. Mouzaki M, Comelli EM, Arendt BM, Bonengel J, Fung SK, Fischer SE et al (2013) Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatol 58(1):120–127

    Article  CAS  Google Scholar 

  95. Miele L, Valenza V, La Torre G, Montalto M, Cammarota G, Ricci R et al (2009) Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatol 49(6):1877–1887

    Article  CAS  Google Scholar 

  96. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56(7):1761–1772

    Article  CAS  PubMed  Google Scholar 

  97. Zhu L, Baker SS, Gill C, Liu W, Alkhouri R, Baker RD et al (2013) Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatol 57(2):601–609

    Article  CAS  Google Scholar 

  98. Leung C, Rivera L, Furness JB, Angus PW (2016) The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol 13(7):412–425

    Article  CAS  PubMed  Google Scholar 

  99. Tanwar S, Trembling PM, Guha IN, Parkes J, Kaye P, Burt AD et al (2013) Validation of terminal peptide of procollagen III for the detection and assessment of nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease. Hepatol Baltim Md 57(1):103–111

    Article  CAS  Google Scholar 

  100. Karsdal MA, Daniels SJ, Holm Nielsen S, Bager C, Rasmussen DGK, Loomba R et al (2020) Collagen biology and non-invasive biomarkers of liver fibrosis. Liver Int Off J Int Assoc Study Liver 40(4):736–750

    CAS  Google Scholar 

  101. Nielsen MJ, Nedergaard AF, Sun S, Veidal SS, Larsen L, Zheng Q et al (2013) The neo-epitope specific PRO-C3 ELISA measures true formation of type III collagen associated with liver and muscle parameters. Am J Transl Res 5(3):303–315

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Daniels SJ, Nielsen MJ, Krag A, Eslam M, Karsdal MA, Leeming DJ et al (2017) Serum Pro-C3 combined with clinical parameters is superior to established serological fibrosis tests at identifying patients with advanced fibrosis among patients with non-alcoholic fatty liver disease. J Hepatol 66(1):S671

    Article  Google Scholar 

  103. Mak AL, Lee J, van Dijk A-M, Vali Y, Aithal GP, Schattenberg JM et al 2021 Systematic review with meta-analysis: diagnostic accuracy of pro-C3 for hepatic fibrosis in patients with non-alcoholic fatty liver disease. Biomed 9(12):1920

  104. Bril F, Leeming DJ, Karsdal MA, Kalavalapalli S, Barb D, Lai J et al (2019) Use of plasma fragments of propeptides of type III, V, and VI procollagen for the detection of liver fibrosis in type 2 diabetes. Diabetes Care 42(7):1348–1351

    Article  CAS  PubMed  Google Scholar 

  105. Nielsen MJ, Veidal SS, Karsdal MA, Ørsnes-Leeming DJ, Vainer B, Gardner SD et al (2015) Plasma Pro-C3 (N-terminal type III collagen propeptide) predicts fibrosis progression in patients with chronic hepatitis C. Liver Int Off J Int Assoc Study Liver 35(2):429–437

    CAS  Google Scholar 

  106. Boeker KHW, Haberkorn CI, Michels D, Flemming P, Manns MP, Lichtinghagen R (2002) Diagnostic potential of circulating TIMP-1 and MMP-2 as markers of liver fibrosis in patients with chronic hepatitis C. Clin Chim Acta Int J Clin Chem 316(1–2):71–81

    Article  CAS  Google Scholar 

  107. Walsh KM, Timms P, Campbell S, MacSween RN, Morris AJ (1999) Plasma levels of matrix metalloproteinase-2 (MMP-2) and tissue inhibitors of metalloproteinases -1 and -2 (TIMP-1 and TIMP-2) as noninvasive markers of liver disease in chronic hepatitis C: comparison using ROC analysis. Dig Dis Sci 44(3):624–630

    Article  CAS  PubMed  Google Scholar 

  108. Abdelaziz R, Elbasel M, Esmat S, Essam K, Abdelaaty S (2015) Tissue inhibitors of metalloproteinase-1 and 2 and obesity related non-alcoholic fatty liver disease: is there a relationship? Digestion 92(3):130–137

    Article  CAS  PubMed  Google Scholar 

  109. Guha IN, Parkes J, Roderick P, Chattopadhyay D, Cross R, Harris S et al (2008) Noninvasive markers of fibrosis in nonalcoholic fatty liver disease: validating the European Liver Fibrosis Panel and exploring simple markers. Hepatol Baltim Md 47(2):455–460

    Article  Google Scholar 

  110. Vali Y, Lee J, Boursier J, Spijker R, Löffler J, Verheij J et al (2020) Enhanced liver fibrosis test for the non-invasive diagnosis of fibrosis in patients with NAFLD: a systematic review and meta-analysis. J Hepatol 73(2):252–262

    Article  PubMed  Google Scholar 

  111. Connoley D, Patel PJ, Hogan B, Tanwar S, Rhodes F, Parkes J et al (2021) The Enhanced Liver Fibrosis test maintains its diagnostic and prognostic performance in alcohol-related liver disease: a cohort study. BMC Gastroenterol 21(1):268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Day J, Patel P, Parkes J, Rosenberg W (2019) Derivation and performance of standardized enhanced liver fibrosis (ELF) test thresholds for the detection and prognosis of liver fibrosis. J Appl Lab Med 3(5):815–826

    Article  CAS  PubMed  Google Scholar 

  113. Cermelli S, Ruggieri A, Marrero JA, Ioannou GN, Beretta L (2011) Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS One 6(8):e23937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Harrison SA, Ratziu V, Boursier J, Francque S, Bedossa P, Majd Z et al (2020) A blood-based biomarker panel (NIS4) for non-invasive diagnosis of non-alcoholic steatohepatitis and liver fibrosis: a prospective derivation and global validation study. Lancet Gastroenterol Hepatol 5(11):970–985

    Article  PubMed  Google Scholar 

  115. McPherson S, Hardy T, Henderson E, Burt AD, Day CP, Anstee QM (2015) Evidence of NAFLD progression from steatosis to fibrosing-steatohepatitis using paired biopsies: implications for prognosis and clinical management. J Hepatol 62(5):1148–1155

    Article  PubMed  Google Scholar 

  116. Boursier J, Anty R, Vonghia L, Moal V, Vanwolleghem T, Canivet CM et al (2018) Screening for therapeutic trials and treatment indication in clinical practice: MACK-3, a new blood test for the diagnosis of fibrotic NASH. Aliment Pharmacol Ther 47(10):1387–1396

    Article  CAS  PubMed  Google Scholar 

  117. Chuah K, Wan Yusoff WNI, Sthaneshwar P, Nik Mustapha NR, Mahadeva S, Chan W (2019) MACK-3 (combination of hoMa, Ast and CK18): a promising novel biomarker for fibrotic non-alcoholic steatohepatitis. Liver Int 39(7):1315–1324

    Article  CAS  PubMed  Google Scholar 

  118. Tavaglione F, Jamialahmadi O, De Vincentis A, Qadri S, Mowlaei ME, Mancina RM, et al (2022) Development and validation of a score for fibrotic non-alcoholic steatohepatitis. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc S1542–3565(22)00385–8.

  119. Jang SY, Tak WY, Park SY, Kweon Y-O, Lee YR, Kim G et al (2021) Diagnostic efficacy of serum Mac-2 binding protein glycosylation isomer and other markers for liver fibrosis in non-alcoholic fatty liver diseases. Ann Lab Med 41(3):302–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nah E, Cho S, Kim S, Kim H, Cho H. Diagnostic performance of Mac‐2 binding protein glycosylation isomer (M2BPGi) in screening liver fibrosis in health checkups. J. Clin. Lab. Anal. [Internet]. 2020 ago [citato 2022 mag 6];34(8). Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/jcla.23316

  121. Abe M, Miyake T, Kuno A, Imai Y, Sawai Y, Hino K et al (2015) Association between Wisteria floribunda agglutinin-positive Mac-2 binding protein and the fibrosis stage of non-alcoholic fatty liver disease. J Gastroenterol lug 50(7):776–784

    Article  CAS  Google Scholar 

  122. Romeo S, Sanyal A, Valenti L (2020) Leveraging human genetics to identify potential new treatments for fatty liver disease. Cell Metab 31(1):35–45

    Article  CAS  PubMed  Google Scholar 

  123. Seko Y, Yamaguchi K, Tochiki N, Yano K, Takahashi A, Okishio S et al (2020) Attenuated effect of PNPLA3 on hepatic fibrosis by HSD17B13 in Japanese patients with non-alcoholic fatty liver disease. Liver Int 40(7):1686–1692

    Article  CAS  PubMed  Google Scholar 

  124. Sookoian S, Rosselli MS, Gemma C, Burgueño AL, FernándezGianotti T, Castaño GO et al (2010) Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease: impact of liver methylation of the peroxisome proliferator-activated receptor γ coactivator 1α promoter. Hepatol 52(6):1992–2000

    Article  CAS  Google Scholar 

  125. Hardy T, Zeybel M, Day CP, Dipper C, Masson S, McPherson S et al (2017) Plasma DNA methylation: a potential biomarker for stratification of liver fibrosis in non-alcoholic fatty liver disease. Gut 66(7):1321–1328

    Article  CAS  PubMed  Google Scholar 

  126. Ma J, Nano J, Ding J, Zheng Y, Hennein R, Liu C et al (2019) A peripheral blood DNA methylation signature of hepatic fat reveals a potential causal pathway for nonalcoholic fatty liver disease. Diabetes 68(5):1073–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Cheung O, Puri P, Eicken C, Contos MJ, Mirshahi F, Maher JW et al (2008) Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatol 48(6):1810–1820

    Article  CAS  Google Scholar 

  128. Dongiovanni P, Meroni M, Longo M, Fargion S, Fracanzani A (2018) miRNA signature in NAFLD: a turning point for a non-invasive diagnosis. Int J Mol Sci 19(12):3966

    Article  PubMed  PubMed Central  Google Scholar 

  129. Yamada H, Suzuki K, Ichino N, Ando Y, Sawada A, Osakabe K et al (2013) Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin Chim Acta 424:99–103

    Article  CAS  PubMed  Google Scholar 

  130. Baselli GA, Dongiovanni P, Rametta R, Meroni M, Pelusi S, Maggioni M et al (2020) Liver transcriptomics highlights interleukin-32 as novel NAFLD-related cytokine and candidate biomarker. Gut ott 69(10):1855–1866

    Article  CAS  Google Scholar 

  131. Murphy SK, Yang H, Moylan CA, Pang H, Dellinger A, Abdelmalek MF et al (2013) Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease. Gastroenterol 145(5):1076–1087

    Article  CAS  Google Scholar 

  132. Younossi ZM, Baranova A, Ziegler K, Del Giacco L, Schlauch K, Born TL et al (2005) A genomic and proteomic study of the spectrum of nonalcoholic fatty liver disease. Hepatol Baltim Md 42(3):665–674

    Article  CAS  Google Scholar 

  133. Bell LN, Theodorakis JL, Vuppalanchi R, Saxena R, Bemis KG, Wang M et al (2010) Serum proteomics and biomarker discovery across the spectrum of nonalcoholic fatty liver disease. Hepatol Baltim Md gen 51(1):111–120

    Article  CAS  Google Scholar 

  134. Yamasaki Y, Nouso K, Miyahara K, Wada N, Dohi C, Morimoto Y et al (2015) Use of non-invasive serum glycan markers to distinguish non-alcoholic steatohepatitis from simple steatosis: glycan markers for fatty liver diseases. J Gastroenterol Hepatol 30(3):528–534

    Article  CAS  PubMed  Google Scholar 

  135. Mayo R, Crespo J, Martínez-Arranz I, Banales JM, Arias M, Mincholé I et al (2018) Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: results from discovery and validation cohorts. Hepatol Commun 2(7):807–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhou Y, Orešič M, Leivonen M, Gopalacharyulu P, Hyysalo J, Arola J et al (2016) Noninvasive detection of nonalcoholic steatohepatitis using clinical markers and circulating levels of lipids and metabolites. Clin Gastroenterol Hepatol 14(10):1463-1472.e6

    Article  CAS  PubMed  Google Scholar 

  137. Angulo P, Bugianesi E, Bjornsson ES, Charatcharoenwitthaya P, Mills PR, Barrera F et al (2013) Simple noninvasive systems predict long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterol ott 145(4):782–789 (e4)

    Article  Google Scholar 

  138. Salomone F, Micek A, Godos J (2018) Simple scores of fibrosis and mortality in patients with NAFLD: a systematic review with meta-analysis. J Clin Med 7(8):219

    Article  PubMed  PubMed Central  Google Scholar 

  139. Unalp-Arida A, Ruhl CE (2017) Liver fibrosis scores predict liver disease mortality in the United States population: Unalp-Arida and Ruhl. Hepatol 66(1):84–95

    Article  CAS  Google Scholar 

  140. Gidener T, Ahmed OT, Larson JJ, Mara KC, Therneau TM, Venkatesh SK et al (2021) Liver stiffness by magnetic resonance elastography predicts future cirrhosis, decompensation, and death in NAFLD. Clin Gastroenterol Hepatol 19(9):1915–1924 (e6)

    Article  PubMed  Google Scholar 

  141. Petta S, Sebastiani G, Viganò M, Ampuero J, Wai-Sun Wong V, Boursier J et al (2021) Monitoring occurrence of liver-related events and survival by transient elastography in patients with nonalcoholic fatty liver disease and compensated advanced chronic liver disease. Clin Gastroenterol Hepatol 19(4):806–815 (e5)

    Article  PubMed  Google Scholar 

  142. Shili-Masmoudi S, Wong GL, Hiriart J, Liu K, Chermak F, Shu SS et al (2020) Liver stiffness measurement predicts long-term survival and complications in non-alcoholic fatty liver disease. Liver Int 40(3):581–589

    Article  PubMed  Google Scholar 

  143. Trebicka J, Gu W, de Ledinghen V, Aubé C, Krag A, Praktiknjo M et al (2022) Two-dimensional shear wave elastography predicts survival in advanced chronic liver disease. Gut 71(2):402–414

    Article  CAS  PubMed  Google Scholar 

  144. Grimaudo S, Pipitone RM, Pennisi G, Celsa C, Cammà C, Di Marco V et al (2020) Association between PNPLA3 rs738409 C>G variant and liver-related outcomes in patients with nonalcoholic fatty liver disease. Clin Gastroenterol. Hepatol 18(4):935–944 (e3)

    Article  CAS  PubMed  Google Scholar 

  145. Meffert PJ, Repp KD, Völzke H, Weiss FU, Homuth G, Kühn JP et al (2018) The PNPLA3 SNP rs738409: G allele is associated with increased liver disease-associated mortality but reduced overall mortality in a population-based cohort. J Hepatol 68(4):858–860

    Article  CAS  PubMed  Google Scholar 

  146. Sahlman P, Nissinen M, Puukka P, Jula A, Salomaa V, Männistö S et al (2020) Genetic and lifestyle risk factors for advanced liver disease among men and women. J Gastroenterol Hepatol 35(2):291–298

    Article  CAS  PubMed  Google Scholar 

  147. Tavaglione F, De Vincentis A, Jamialahmadi O, Pujia R, Spagnuolo R, Picardi A et al (2021) Inborn and acquired risk factors for severe liver disease in Europeans with type 2 diabetes from the UK Biobank. JHEP Rep 3(3):100262

    Article  PubMed  PubMed Central  Google Scholar 

  148. Unalp-Arida A, Ruhl CE (2020) Patatin-like phospholipase domain-containing protein 3 I148M and liver fat and fibrosis scores predict liver disease mortality in the U.S. population. Hepatol 71(3):820–834

    Article  CAS  Google Scholar 

  149. Wijarnpreecha K, Scribani M, Raymond P, Harnois DM, Keaveny AP, Ahmed A et al (2021) PNPLA3 gene polymorphism and liver- and extrahepatic cancer–related mortality in the United States. Clin Gastroenterol Hepatol 19(5):1064–1066

    Article  CAS  PubMed  Google Scholar 

  150. Elsaid MI, Bridges JFP, Li N, Rustgi VK (2022) Metabolic syndrome severity predicts mortality in nonalcoholic fatty liver disease. Gastro Hep Adv 1(3):445–456

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Paolo Gallo.

Ethics declarations

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

• The degree of liver fibrosis is the main determinant of prognosis in NAFLD patients.

• At each time point, NAFLD prognosis is affected by disease propensity to progress.

• Genetic determinants and acquired risk factors are key drivers of NAFLD activity.

• Newer biomarkers are expected to help in evaluating speed of progression over time.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terracciani, F., Falcomatà, A., Gallo, P. et al. Prognostication in NAFLD: physiological bases, clinical indicators, and newer biomarkers. J Physiol Biochem 79, 851–868 (2023). https://doi.org/10.1007/s13105-022-00934-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-022-00934-0

Keyword

Navigation