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Abstract
Multi-label distribution is a popular direction in current machine learning research and is relevant to many practical prob-
lems. In multi-label learning, samples are usually described by high-dimensional features, many of which are redundant or 
invalid. This paper proposes a multi-label static feature selection algorithm to solve the problems caused by high-dimensional 
features of multi-label learning samples. This algorithm is based on label importance and label relevance, and improves the 
neighborhood rough set model. One reason for using neighborhood rough sets is that feature selection using neighborhood 
rough sets does not require any prior knowledge of the feature space structure. Another reason is that it does not destroy the 
neighborhood and order structure of the data when processing multi-label data. The method of mutual information is used 
to achieve the extension from single labels to multiple labels in the multi-label neighborhood; through this method, the label 
importance and label relevance of multi-label data are connected. In addition, in the multi-label task scenario, features may 
be interdependent and interrelated, and features often arrive incrementally or can be extracted continuously; we call these 
flow features. Traditional static feature selection algorithms do not handle flow features well. Therefore, this paper proposes 
a dynamic feature selection algorithm for flow features, which is based on previous static feature selection algorithms. The 
proposed static and dynamic algorithms have been tested on a multi-label learning task set and the experimental results show 
the effectiveness of both algorithms.

Keywords  Flow feature · Label correlation · Label importance · Multi-label distribution · Neighborhood rough set

1  Introduction

In the traditional machine learning framework, each sam-
ple corresponds to only one label; this is called single-label 
learning. Single-label learning is the most well-studied and 
widely used machine learning framework [1]. In single-label 
learning, an instance in the learning framework describes 
the properties of each real-world object, and the instance is 
associated with the class label of the semantic object to form 
a sample. Single-label learning has achieved good results in 

the single-label learning domain when the target instance 
has an explicit single class label.

In the real world, however, there is often more than one 
unique semantics. In fact, most objects are associated with 
more than one concept at the same time [2–5]. For example, 
an elderly patient may suffer from several diseases, includ-
ing diabetes, hypertension, and coronary heart disease; a 
picture of a tiger in a forest may be associated with multiple 
keywords, such as “tiger” and “tree.” Because polysemantic 
objects no longer have a single semantic meaning, a single-
label learning framework that only considers a single explicit 
semantics is unlikely to achieve good results. To reflect this 
problem intuitively for polysemous words, the most obvi-
ous approach is to assign multiple category labels to each 
example of a polysemous word. This set of category labels is 
referred to as a subset of labels. The learning paradigm that 
uses the multi-label approach to labeling sample examples is 
known as multi-label learning [6]. Multiply labeled objects 
are ubiquitous in all areas of life. The multi-label learning 
paradigm has been widely used in text classification [7, 8], 
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bioinformatics [9, 10], sentiment recognition [11, 12], and 
information retrieval [13, 14].

Similarly to traditional single-label learning, multi-label 
learning has faced many challenges. With respect to the data 
structure of labeled instances, problems faced by multi-label 
tasks include large feature dimensionality [15, 16], large 
numbers of labels [17], label imbalance [18], and flow fea-
tures [19]. For multi-label learning tasks, the dimensionality 
of multi-label data is large, often with thousands or tens of 
thousands of features [20, 21]. For a given learning task, 
a large proportion of these high-dimensional features may 
be redundant or invalid. High-dimensional data may cause 
various problems for learning, including overfitting, longer 
computation time, and higher memory consumption, com-
pared with single-label data [22–25]. Therefore, reducing the 
dimensionality of the labeling task is a priority. Multi-label 
dimensionality reduction is a data preprocessing technique 
that can be used to remove redundant and irrelevant features 
and reduce the dimensionality of high-dimensional features. 
Common methods that have been proposed for multi-label 
dimensionality reduction include LDA [26], MDDM [27], 
MLST [28], PUM [29], and PL-ML [30]. Of these multi-
label dimensionality techniques, multi-label feature selection 
methods have received much attention.

There are two main methods for multi-label dimension-
ality reduction: multi-label feature extraction and multi-
label feature selection. Multi-label feature extraction 
methods, such as LDA, MDDM, and MLST, reduce the 
dimensionality of the feature space using spatial mapping 
techniques or spatial transformations, but these destroy 
the structural information of the original feature space, 
obscure the physical meaning of the features, and lack a 
semantic interpretation. Although methods such as PUM 
and PL-ML can improve learning performance, they all 
share a common limitation: a complete feature set needs 
to be collected before feature selection, and no attention is 
paid to the correlation between labels. In contrast to multi-
label feature extraction methods, feature selection methods 
do not perform any feature space transformation or map-
ping; instead, they preserve the original spatial structure. A 
feature selection method selects a subspace that best repre-
sents the semantic features of the feature space by ranking 
the features by importance in the original feature space, 
and uses this subspace to represent the original feature 
space to the greatest extent possible [31, 32]. Thus, multi-
label selection methods preserve the physical meaning of 
the feature space well, which is an advantage over feature 
extraction methods [33]. As the amount of multi-label data 
has increased, many feature selection methods for multi-
label learning have been developed. These methods fall 
into three main categories: filters, wrappers, and embed-
dings. A filter first selects the features and then trains the 
classifier, so the feature selection process is independent 

of the classifier. This is equivalent to filtering the features 
first and then training the classifier with a subset of the 
features [34, 35]. Wrappers directly use the final classifier 
as the evaluation function for feature selection, to choose 
the optimal subset of features for a given classifier. Wrap-
per methods rely on a predetermined classifier to directly 
select a subset of features; these methods require multiple 
runs of the classifier to evaluate the quality of the selected 
features, and they are often computationally expensive [36, 
37]. Embedding methods combine the process of feature 
selection with the process of classifier learning, in which 
feature selection is performed during the learning process. 
Embedding methods find a subset of features by the joint 
minimization of empirical errors and penalties, which can 
be approximated as a continuous optimization problem. 
To remove irrelevant and noisy features, the feature selec-
tion matrix is usually used for sparse regularization [38]. 
Filtering methods are independent of the specific learning 
task and model. Among other advantages, filtering meth-
ods are usually more efficient, less computationally expen-
sive, and more general than embedded models; therefore, 
we focus on filtering methods in this paper. Most existing 
filtering algorithms for multi-label problems convert the 
multi-label problem to a single-label problem. Lee et al. 
[29] proposed a method that converts multiple labels to 
multiple binary single labels, and then used an evaluation 
method to evaluate each feature of each label individually 
to obtain a global feature ranking. However, this approach 
ignores the inherent correlation in multi-label data and 
the connection between labels and features. Doquire et al. 
[39] converted multiple labels to a single label consist-
ing of multiple classes, and then solved the feature selec-
tion problem for multi-class single labels. However, this 
method may dramatically increase the complexity of the 
feature selection problem.

In contrast to single-label learning, because an instance 
in multi-label learning corresponds to multiple labels, 
these labels are often interrelated and interdependent. For 
example, in a set of instances in which the object is an 
image, “animal” and “nature” often appear in the same 
image; in a set of instances in which the object is a docu-
ment, a document is often associated with multiple top-
ics, such as “politics” and “economics.” However, existing 
multi-label feature selection methods usually fail to con-
sider label importance or correlation between labels. When 
we perform feature selection, we can focus on the correla-
tion between tags and use this correlation to better select 
features [40–42]. Yu et al. [18] constructed a multi-label 
classification method based on the uncertainty between 
feature space and label space. Elisseeff and Weston [9] 
proposed a large-margin ranking system, which shares 
many properties with support vector machines, to learn 
the ranks of labels for each instance. This paper proposes 
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a neighborhood rough set (NRS) model based on label 
weights and label correlations, which can effectively per-
form feature selection for multi-label problems.

In most practical applications of multi-label learn-
ing, the feature space is usually uncertain, with the same 
number of samples for each feature arriving in the feature 
space incrementally, as a flow of feature vectors over time. 
Such features are known as flow features. For example, 
on the social networking platform Twitter, trending topics 
continuously change dynamically over time. When a trend-
ing topic appears, it is always accompanied by a fresh set 
of keywords. These fresh keywords can be used as key fea-
tures to distinguish trending topics. Multi-tag flow feature 
selection assumes that features arrive dynamically over 
time [43] and feature selection is performed as each fea-
ture arrives, to maintain an optimal subset of features at all 
times [44, 45]. Many researchers have attempted to address 
the challenges posed by flow features. For example, Zhang 
et al. [46] proposed the use of global features to process 
flow feature data. Yu et al. [47] conducted a theoretical 
analysis of the pairwise correlation between features in the 
currently selected feature subset, and adopted online pair-
wise comparison techniques to solve the problem of flow 
features. An online flow feature must satisfy three basic 
conditions. First, it should not require any prior knowledge 
to be provided. Second, it should support efficient incre-
mental updates to the selected features. Third, it should 
be able to make accurate predictions at each update. In 
this paper, we mainly use NRS to select streaming feature 
data. The main motivation is that NRS can process mixed 
types of data without destroying the neighborhood and 
order structure of the data. In addition, feature selection 
based on NRS does not require any prior knowledge of the 
feature space structure, and therefore seems to be an ideal 
tool for online streaming feature selection.

The main contributions of this paper are the following: 

1.	 A new form of neighborhood granularity is calculated 
using the average nearest neighbor method and the label 
weights are calculated using the mutual information 
method to obtain the label correlation. The neighbor-
hood granularity and label correlation are combined to 
construct a new NRS relationship and feature impor-
tance model.

2.	 The traditional NRS model is generalized to adapt it 
to multi-label learning. We propose a static multi-label 
feature selection algorithm based on the above NRS.

3.	 We propose a new multi-label flow feature selection 
algorithm that combines a static multi-label feature 
selection algorithm with an online importance update 
framework.

The rest of the paper is organized as follows. Section 2 
introduces related concepts, including multi-label learning 
and NRS. Section 3 presents an NRS model based on label 
weights and label correlations, including a static algorithm 
and a dynamic flow feature algorithm. We report our exper-
imental results in Sect. 4 and present our conclusions in 
Sect. 5.

2 � Preliminaries

2.1 � Multi‑label learning

NDT = ⟨U,F, L⟩ is a multi-label decision system. We define 
X = RN to represent N-dimensional sample space, which 
is U =

{
x1, x2,… , xn

}
⋅ F =

{
f1, f2,… , fm

}
 represents the 

m-dimensional feature space and L =
{
l1, l2,… , lk

}
 rep-

resents the k-dimensional label space. For instance, in the 
sample space xi ∈ U, xi =

{
Fi1,Fi2,… ,Fim

}
 represents a 

specific m-dimensional feature vector corresponding to the 
sample xi , and yi ∈ Y = L represents a k-dimensional label 
vector yi =

{
y1
i
, y2

i
,… , yk

i

}
 corresponding to xi . The task of 

multi-label learning is to find a mapping f∶X → Y  : when 
xi contains the label li , the corresponding value of yi is 1; 
otherwise, it is −1. That is, when yk

i
= 1 , the sample xi ∈ lk 

is the label category [48].

2.2 � Neighborhood rough set

Given a decision system NDT = ⟨U,C,D⟩,U =

�
x1, x2,

… , x
n

}
 represents a non-empty set of instances, that is, the 

set composed of all samples, C =
{
a1,… , aN

}
 represents the 

attribute set corresponding to the sample, and D represents 
the set of decision attributes.

For a given parameter � and feature set C, the �-domain 
relationship on X can be determined. We call the deci-
sion system a neighborhood decision system: NDS =< 
U,C ∪ D, 𝛿 >.

Definition 1  Given an N-dimensional real space 
Ω,Δ∶RN × RN → R , we say that Δ is a metric on RN if Δ 
satisfies the following constraints: 

(1)	 Δ
(
x1, x2

)
≥ 0 , if and only when x1 = x2,∀x1, x2 ∈ RN;

(2)	 Δ
(
x1, x2

)
= Δ

(
x2, x1

)
,∀x1, x2 ∈ RN;

(3)	 Δ
(
x1, x3

)
≤ Δ

(
x1, x2

)
+ Δ

(
x2, x3

)
,∀x1, x2, x3 ∈ RN

Definition 2  For ∀xi ∈ U and a feature subset B ⊆ C , we 
define the �-neighborhood of xi based on parameter C as:
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where 𝛿 > 0 , by ΔB

(
xi, xj

)
 , the set of instances of values is 

granulated. We call ⟨Ω,ΔB⟩ the metric space, and �B
(
xi
)
 the 

�-neighborhood information particle generated by xi . In this 
manner, we granulate the neighborhood of all objects in the 
universal space.

From the neighborhood information particle clusters, {
�
(
xi
)
∣ i = 1, 2,… , n

}
 can lead to a neighborhood rela-

tion N on the universal space U. This relation can be rep-
resented by a matrix system M(N) =

(
rij
)
n×m

 : if xj ∈ �
(
xi
)
 , 

then rij = 1 ; otherwise, rij = 0 . For neighborhood relations, 
we have 

(1)	 ∀xi ∈ U∶ 𝛿1
(
xi
)
⊆ 𝛿2

(
xi
)

(2)	 N1 ⊆ N2

The neighborhood information particle clusters defined 
in this manner constitute the basic concept system in the 
universal space.
Definition 3  Given a non-empty finite set U =

{
x1, x2,… , xn

}
 

on the actual space and a neighborhood relation N on U, we 
call the two-tuple NAS = ⟨U,N⟩ a neighborhood approxima-
tion space.

Definition 4  For a given decision system NDT = ⟨U,C,D⟩ 
and X ⊆ N  , the lower approximation and upper approxi-
mation of X in the neighborhood approximation space 
NAS = ⟨U,N⟩ are defined as [49] 

(1)	 NX =
{
xi ∣ 𝛿

(
xi
)
⊆ X, xi ∈ U

}

(2)	 N̄X =
{
xi ∣ 𝛿

(
xi
)
∩ X ≠ �, xi ∈ U

}

respectively, where NX is also referred to as the positive 
domain of X in the approximation space NAS = ⟨U,N⟩ , 
which is the largest union of neighborhood information 
particles that can be completely contained in X.

Definition 5  For a neighborhood decision system 
NDT = ⟨U,A,D, �⟩,D partitions U into N equivalence 
classes: X1,X2,… ,XN ⋅ ∀B ⊆ A , we define the upper and 
lower approximations of the decision attribute D with 
respect to B as

(1)�B
(
xi
)
=
{
xj ∣ xj ∈ U,ΔB

(
xi, xj

)
≤ �

}

(2)NBD =

N⋃

i=1

NBXi

(3)NBD =

N⋃

i=1

NBXi

respectively [50], where �B
(
xi
)
 is the informative neighbor-

hood particle generated by attribute B and metric Δ.
The lower approximation of decision attribute D, also 

called the decision-positive region, is denoted by POS(D).
The size of the positive region reflects the degree to 

which the classification problem is separable in a given 
attribute space, with larger positive regions indicating areas 
of overlap (i.e., fewer boundaries) for each category. We can 
describe such classification problems in more detail using 
this set of attributes.

Definition 6  Suppose that A, B are two sets; we define the 
degree to which A is contained in B, I(A, B), as follows [51].

When A = � or B = � , we define I(A,B) = 0 ⋅ I(A,B) 
reflects the importance of B to A.

The dependency of decision attribute D on condition 
attribute B is defined as follows [52]:

where �B(D) denotes the proportion of samples in the sam-
ple set that can be included by a decision according to the 
description of condition attribute B.

The positive region of the decision is larger if the decision 
attribute D is more dependent on the condition attribute B.

3 � Proposed method

3.1 � Improvements to neighborhood particles based 
on average nearest neighbors

G i v e n  a  d e c i s i o n  s y s t e m 
NDT = ⟨U,C,D⟩,U =

�
x1, x2,… , xn

�
 represents a non-

empty set of instances, C represents the feature set cor-
responding to the instance set, and D represents the deci-
sion attribute set. The traditional single-label method for 
neighborhood information particle division is unsuitable for 
multi-label data. For general data, a group of instances with 
the same attribute value or label value is called an equiva-
lence class. Similarly, for mixed data, a group of instances 
with similar attribute values or label values is called a neigh-
borhood class. In this paper, the margin of particles in the 
sample is used for granulating the neighborhood size.

(4)POS(D) =
{
xi ∣ 𝛿B

(
xi
)
⊆ D, xi ∈ U

}

(5)I(A,B) =
Card(A ∩ B)

Card(A)

(6)�B(D) = Card
(
NBD

)
∕Card(U)
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Definition 7  Given a sample x, the margin of x relative to a 
set of samples U is defined as follows:

where NS(x) denotes the instance from U that has the short-
est distance from x and whose label class is different from 
that of x and NT(x) denotes the instance from U that has the 
shortest distance from x and has the same label class as x; 
we call these instances the nearest miss and the nearest hit, 
respectively. Δ(x,NS(x)) denotes the distance between x and 
NS(x), and Δ(x,NT(x)) denotes the distance between x and 
NT(x). We call �(x) = {y ∣ Δ(x, y) ≤ m(x)} the neighborhood 
particle about x. To facilitate the setting of neighborhood 
information particles, we set m(x) = 0 when m(x) < 0.

A sample may have a positive or negative effect on differ-
ent labels. Thus, for a given sample, the degree of granular-
ity may depend on the label used.

Definition 8  For a sample x and label lk ∈ L , the margin of 
x with respect to lk is

As noted above, each sample has a different label and 
correspondingly a different granularity. Depending on the 
different decision views, we need to combine all the single-
label granularities of a given sample to form a multi-label 
granularity [53]. Therefore, in this paper, we choose the 
average granularity (i.e., the average nearest neighborhood, 
also known as the neutral view) to represent the multi-label 
granularity of a sample [54].

To solve the problem of the granularity selection of � , 
combining Eqs. 1 and 9, the new neighborhood of the sam-
ple is defined as

We have defined a new neighborhood information particle 
to solve the problem of selecting the neighborhood granu-
larity, which is caused by multi-label data. In addition, the 
average nearest neighbor reflects the relationship between 
features in an instance. This new neighborhood model con-
siders the relationships between features and is based on 
improved neighborhood information.

(7)m(x) = Δ(x,NS(x)) − Δ(x,NT(x))

(8)mlk
(x) = Δlk

(
x,NSlk (x)

)
− Δlk

(
x,NTlk (x)

)
, lk ∈ L

(9)mneu(x) =
1

L

L∑

i=1

mlk
(x)

(10)�B
(
xi
)
=
{
xj ∣ xj ∈ U,ΔB

(
xi, xj

)
≤ mneu

(
xi
)}

3.2 � Label correlation

Definition 9  In the neighborhood decision system 
NDS = ⟨U,C ∪ D, �⟩  ,  f o r  a n y  i n s t a n c e 
xi, yi =

{
y1
i
, y2

i
,… , ym

i

}
 is its corresponding label vector, and 

lj is a label in the label space L = D . When xi belongs to 
category lj , the corresponding value of yj

i
 is 1. We define 

Dj =
{
xi ∣ ∀xi ∈ U, y

j

i
= 1

}
 , that is, the set of all instances 

in U that belong to category lj . Through the definition of 
multi-label decision space, we can expand the decision-
positive region of single-label decision making, using Eq. 4. 
For a certain feature subset B ⊆ C , the lower approximation 
of the decision lj about B is

Multi-label data differs from single-label data in that it is 
necessary to consider the importance of the labels and the 
correlation between them because the labels of each instance 
are always somehow related.

Definition 10  For a sample xi and the corresponding feature 
vector Yi , that is, D = 

{(
xi, Yi

)
∣ 1 ≤ i ≤ N, xi ∈ U, Yi ∈ L

}
,N 

is the number of instances in the training set and 
li, lj ∈ L(1 ≤ i, j ≤ k) are any two labels in the label space 
L. The correlation between li and lj is calculated by mutual 
information:

A labeled undirected graph (WUG) = (V, E,W) can be 
constructed by applying Eq.  12. V = L =

{
l1, l2,… , lm

}
 

represents the set of nodes of the undirected graph, 
E =

{(
li, lj

)
∣ li, lj ∈ L

}
 represents its set of edges, and 

w
(
li, lj

)
= MI

(
li, lj

)
 represents the weight of each edge [55]. 

The importance of each node in this undirected graph is 
defined as follows:

LW
(
li
)
 and LW

(
lj
)
 represent the weight divisions of nodes 

li and lj , respectively. SN
(
li
)
 is the set of nodes with edges 

(11)POS
(
Dj
)�

= NBD
j� =

{
xi ∣ 𝛿B

(
xi
)
⊆ Dj, xi ∈ U

}

(12)MI
(
li, lj

)
=

M∑

k=1

M∑

q=1

P
(
lik, ljq

)
log

P
(
lik ∣ ljq

)

P
(
ljq
)

(13)LW
(
li
)
= (1 − d) + d

∑

lj∈SN(li)

LW
(
lj
)
w
(
li, lj

)

SW
(
lj
)

(14)SW
(
lj
)
=
∑

lj

w
(
li, lj

)
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to label li , and w
(
li, lj

)
= MI

(
li, lj

)
 represents the correla-

tion between nodes. Equation 10 is used to calculate SN
(
li
)
 , 

which denotes the sum for the correlation for all edges start-
ing from lj ⋅ d is the damping coefficient, for which it is rec-
ommended to use d = 0.85 citerk58. For ease of calculation, 
an initial weight value can be set for all nodes; this is usually 
1/L, where L is the total number of nodes, that is, the total 
number of labels [56]. Using this algorithm, we can calcu-
late the correlation between node li (i.e., label li ) and other 
nodes lj related to it, as well as the structure of the graph 
(WUG). Through label correlation, we obtain the weight of 
each label in the label space and we complete the exploration 
of label correlation.

3.3 � Feature selection based on neighborhood 
rough sets

T h e  m u l t i - l a b e l  d o m a i n  d e c i s i o n  s y s t e m 
NDS = ⟨U,C ∪ D, �⟩ is handled in a similar manner to the 
single-label decision system. By extending the rough set 
importance theory for multi-label data (Eq. 6) and com-
bining the multi-label neighborhood particles (Eq.  10) 
and label correlation (Eq. 13), we obtain the importance 
of the feature subset B(B ⊆ C) for the decision attribute set 
D = L =

{
l1, l2,… , lm

}
:

The above equation reflects the importance of the deci-
sion-positive region and the corresponding decision attrib-
utes of the feature subset B. It solves the problems of granu-
larity selection and feature association for multi-label NRS.

According to Eq. 15, in the neighborhood decision system 
NDS = ⟨U,C ∪ D, 𝛿⟩,B ⊆ C is a feature subset, a ∈ C − B , 
and the degree of importance of a to B is defined as follows:

(15)�B(D)
� =

m∑

lj∈L

Card
(
POS

(
Dj
)�)

LW
(
lj
)

Card(U)

In the new importance model, we have added label impor-
tance and label relevance to the NRS model. The new NRS 
model reflects the fusion of feature information and label 
correlation.

For the above NRS model, we construct a greedy for-
ward search-based multi-label feature selection algorithm. 
To illustrate the proposed algorithm more clearly, the frame-
work of the algorithm is presented in Fig. 1.

According to the framework shown in Fig. 1, our pro-
posed forward greedy [57] multi-label feature selection algo-
rithm behaves as follows. The final reduced reduct is the best 
subset after feature selection on the feature space.

(16)SIG(a,B,D)� = �B∪a(D)
� − �B(D)

�

Fig. 1   Framework of static multi-label feature selection
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Algorithm  1   Static Multilabel Feature Selection Algorithm based on Label Importance and Label Correlation 
(SMFS-LILC).

In Algorithm 1, steps 1–5 perform the preparation work 
when multiple items of labeled data arrive. Our reduct set 
reduct starts from the empty set and calculates the label 
weights LW(L) of the entire label space. This step requires 
the traversal of the entire label space and the construc-
tion of an undirected graph. Assuming that the number of 
labels in the label space is L, the time complexity of the 
calculation of the correlation between each pair of labels 
is O

(
∣ L ∣2

)
 , and that of the calculation of each label weight 

is O(1). Therefore, the time complexity of steps 1–5 is 
O
(
∣ L ∣2 +1

)
= O

(
∣ L ∣2

)
 . Steps 6–21 are divided into two 

parts: calculating the neighborhood of the instance and 
analyzing whether the instance and the neighborhood are 
important. First, by selecting the average approximation 
neighborhood as the domain granularity standard (step 
6–12), this step requires searching for the nearest hit or 
miss for each instance; assuming that the instance space is 
U, the time complexity of this step is O

(
∣ U ∣2

)
 . Next, the 

neighborhood corresponding to the instance is determined 
and the decision-positive region and attribute importance 
are calculated (step 13–21). The time complexity for deter-
mining the neighborhood of each instance is O(n log n) , 

and the time complexities of the calculations of the deci-
sion-positive region and importance are both O(1), so the 
overall time complexity of the calculation of the instance 
domain is O

(
∣ U ∣2 + ∣ U ∣ log ∣ U ∣ +1 + 1

)
= O

(
∣ U ∣2

)
 . 

The time complexity for determining whether the samples 
in the instance neighborhood are consistent is O(n) and, if 
the number of features in the feature space is C, the time 
complexity of steps 6–21 is O

(
∣ C ∣∣ U ∣2

)
 . Therefore, the 

time complexity of Algorithm 1 is O
(
∣ L ∣2 + ∣ C ∣∣ U ∣2

)
.

3.4 � Dynamic multi‑label feature selection 
algorithm based on label importance and label 
correlation

Algorithm 1, similarly to most feature selection algorithms, 
assumes that all candidate features are available to the algo-
rithm before feature selection. In contrast, with flow fea-
tures, all features cannot be collected before learning starts 
because they arrive, dynamically and incrementally, over 
time. Therefore, we propose an online multi-label flow fea-
ture selection algorithm based on Algorithm 1 combined 
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Fig. 2   Flow feature selection 
framework
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with the online flow feature selection framework [51], to 
solve the multi-label flow feature selection problem.

In the multi-label f low feature decision system 
NFDS = ⟨U,C ∪ L, t⟩ , U =

{
x1, x2,… , xn

}
 represents a 

series of non-empty sample sets, C represents the feature set 
corresponding to the sample, L represents the label set, and t 
represents the arrival time of the flow feature. Ft denotes the 
newly arrived feature at time t, and St−1 denotes the reduced 
feature subset reduct at time t.

3.4.1 � Importance analysis

For a newly arrived feature Ft , the first step is to perform 
importance analysis on Ft . The purpose of importance analy-
sis is to evaluate whether Ft is beneficial to the label set L, 
that is, to evaluate the importance of Ft to the whole label 
set L. We define a parameter � to assess the importance of 
Ft and use Eq. 15 to calculate the importance �Ft

(D)� of Ft 
to the entire label set. If 𝛾Ft

(D)� < 𝛿 , we consider Ft to be 
unimportant to the label set L, so Ft is discarded.

3.4.2 � Significance analysis

After the above importance analysis, we believe that Ft is 
important to the label set L. However, we also need to con-
sider the relationship between Ft and the current reduced 
feature set St−1 . The purpose of significance analysis is to 
evaluate the relevance of the newly arrived feature Ft to the 
subset of features at time t, that is, to check whether Ft is 
significant in the current feature subset. Ft is compared with 
the average value Avg� of the importance of each feature in 
the current feature subset St−1

Here we use the iterative method to calculate the average 
Avg�:

where Avg1 = �F1
(D)�.

If �Ft
(D)� ≥ Avg� , the importance of the new feature Ft to 

the label set L is greater than or equal to the average impor-
tance of the already achieved features in St−1 . Therefore, 
we consider Ft to be a significant feature, which should be 
preserved.

3.4.3 � Redundancy analysis

After the above significance analysis, we already know that 
Ft is beneficial to the current St−1 . However, we also need to 
analyze the relationship between Ft and the features in St−1 . 
The purpose of redundancy analysis is to compare the con-
tributions of features Fk and Ft to St−1 in the current reduc-
tion set St−1 . When the contributions of two features are the 
same, they are repeated, and one of them must be discarded.

F o r  t w o  f e a t u r e s  Ft  a n d  Fk  ,  i f 
SIG

(
Ft, St−1,D

)�
= SIG

(
Fk, St−1,D

)�
,Ft and Fk have the 

same degree of contribution to St−1 . Therefore, we compare 
�Fk

(D)� and �Ft
(D) . If �Fk

(D)� ≥ �Ft
(D)� , we preserve Fk and 

discard Ft ; if 𝛾Fk
(D)� < 𝛾Ft

(D)� , we preserve Ft and discard 
Fk.

The flow feature selection framework, illustrated in Fig. 2, 
is based on online importance analysis, significance analysis, 
and redundancy analysis. In this framework, a training set 
with known feature sizes is used to simulate flow features, 
and each flow feature is generated from the candidate feature 
set. In the framework shown in Fig. 2, we propose a dynamic 
multi-label feature selection algorithm that considers label 
importance and label correlation (Algorithm  2), which 
incorporates the above three types of analysis. 

(17)Avg� = Avg�−1 +
�Fi

(D)� − Avg�−1

∣ Fi ∣
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Algorithm 2   Dynamic Multi-label Feature Selection Algorithm Based on Label Importance and Label Correlation 
(DMFS-LILC).

Table 1   Dataset introduction Dataset Instances Features Labels Training Test Card Density

Arts 5000 462 26 2000 3000 1.6360 0.0629
Birds 645 260 20 322 323 1.470 0.074
Business 5000 438 30 2000 3000 1.588 0.053
CAL500 502 68 174 251 251 26.044 0.150
Computer 5000 681 33 2000 3000 1.509 0.046
Emotion 593 72 6 391 202 1.869 0.311
Health 5000 612 32 2000 3000 1.662 0.052
Scene 2317 294 6 1211 1196 1.074 0.179
Yeast 2417 103 14 1499 918 4.238 0.303
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The main computation performed by Algorithm 2 is the 
computation of dependencies between features. At time 
t, St−1 is the number of features in the currently selected fea-
ture set. Algorithm 2 assesses whether the new feature Ft , 
arriving at time t, needs to be retained and decides how to 
retain it. The entire process is an online selection problem 
that comprises three main parts: importance analysis, signifi-
cance analysis, and redundancy analysis, which are marked 
in Algorithm 2. The feature calculation performed by the 
algorithm is taken from Algorithm 1, and the time complex-
ity of the selection of a single feature is O(∣ U ∣ log ∣ U ∣) . 

In the best case, online selection can obtain the best sub-
set immediately, so the time complexity is O

(
∣ L ∣2 + 

∣ L ∣∣ U ∣ log ∣ U ∣) . However, in most cases, Algorithm 2 is 
neither simple nor optimistic, and it needs to be updated 
online for St Because the time complexity of the St update 
depends on the calculation of feature dependencies, in the 
worst case it is necessary to go through all selected features 
to process Ft , and therefore the worst-case time complexity 
is O

(
∣ L ∣2 + ∣ St−1 ∣∣ L ∣∣ U ∣ log ∣ U ∣

)
.

Table 2   Comparison of average 
precision ( ↑ ) of eight feature 
selection algorithms

Datasets MDDMspc MDDMproj PMU RF_ML NRPS MFSF SMFS-LILC DMFS-LILC

ARTS 0.5003 0.4849 0.4955 0.4862 0.5062 0.5109 0.5082 0.5147
Birds 0.5818 0.5821 0.6894 0.6559 0.6785 0.6834 0.6886 0.6987
Business 0.8702 0.8698 0.8721 0.8729 0.8758 0.8736 0.8719 0.8855
Cal500 0.4791 0.4791 0.4779 0.4792 0.4826 0.4920 0.4989 0.4989
Computer 0.6347 0.6225 0.6312 0.6285 0.6485 0.6495 0.6446 0.6585
Emotion 0.7730 0.7300 0.7346 0.7553 0.7786 0.7786 0.7814 0.8002
Health 0.6607 0.6653 0.6797 0.6699 0.6981 0.6880 0.6938 0.6957
Scene 0.7336 0.7255 0.7899 0.7674 0.8037 0.8062 0.8356 0.8378
Yeast 0.7278 0.7084 0.7478 0.7432 0.7519 0.7551 0.7607 0.7581
AVERAGE 0.6624 0.6520 0.6798 0.6732 0.6915 0.6930 0.6982 0.7053

Table 3   Comparison of 
ranking loss ( ↓ ) of eight feature 
selection algorithms

Datasets MDDMspc MDDMproj PMU RF_ML NRPS MFSF SMFS-LILC DMFS-LILC

Arts 0.1552 0.1588 0.1546 0.1538 0.1525 0.1530 0.1519 0.1474
Birds 0.1613 0.1666 0.1426 0.1503 0.1465 0.1321 0.1302 0.1267
Business 0.0416 0.0419 0.0405 0.0420 0.0401 0.0408 0.0405 0.0398
CAL500 0.1918 0.1918 0.1910 0.1902 0.1896 0.1903 0.1854 0.1839
Computer 0.0934 0.0962 0.0946 0.0921 0.0890 0.0890 0.0917 0.0898
Emotion 0.2130 0.2315 0.2164 0.1866 0.1834 0.1794 0.1726 0.1686
Health 0.0685 0.0671 0.0659 0.0633 0.0631 0.0621 0.0635 0.0627
Scene 0.1084 0.1190 0.1104 0.1042 0.1036 0.1021 0.0976 0.0976
Yeast 0.1830 0.1938 0.1811 0.1828 0.1794 0.1756 0.1705 0.1733
AVERAGE 0.1351 0.1407 0.1330 0.1295 0.1275 0.1249 0.1227 0.1211

Table 4   Comparison of 
coverage ( ↓ ) of eight feature 
selection algorithms

Datasets MDDMspc MDDMproj PMU RF_ML NRPS MFSF SMFS-LILC DMFS-LILC

Arts 0.1552 0.1588 0.1546 0.1538 0.1525 0.1530 0.1519 0.1474
Birds 0.1613 0.1666 0.1426 0.1503 0.1465 0.1321 0.1302 0.1267
Business 0.0416 0.0419 0.0405 0.0420 0.0401 0.0408 0.0405 0.0398
CAL500 0.1918 0.1918 0.1910 0.1902 0.1896 0.1903 0.1854 0.1839
Computer 0.0934 0.0962 0.0946 0.0921 0.0890 0.0890 0.0917 0.0898
Emotion 0.2130 0.2315 0.2164 0.1866 0.1834 0.1794 0.1726 0.1686
Health 0.0685 0.0671 0.0659 0.0633 0.0631 0.0621 0.0635 0.0627
Scene 0.1084 0.1190 0.1104 0.1042 0.1036 0.1021 0.0976 0.0976
Yeast 0.1830 0.1938 0.1811 0.1828 0.1794 0.1756 0.1705 0.1733
AVERAGE 0.1351 0.1407 0.1330 0.1295 0.1275 0.1249 0.1227 0.1211
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4 � Experiment

4.1 � Datasets and experimental design

To validate the performance of our proposed algorithms, 
we used nine benchmark datasets from various applica-
tion domains as our experimental data [27, 58]. The Arts, 
Business, Computer, Health, and Scene datasets are all 
from Yahoo and are widely used for web text classifi-
cation. The Birds dataset identifies classes of birds by 
recordings of their calls. It contains 645 sound samples, 
260 features extracted from the sound recordings, and 20 
labels. (One of the samples, with nonexistent labels, rep-
resents background noise.) The Cal500 dataset is a data-
set of 500 English songs. The Emotions dataset is also a 
music dataset, which consists of 593 music samples, each 
belonging to one of six classes. The Yeast dataset is used 
to predict functional classes of yeast genes and consists of 
2417 samples, each representing a gene and 14 actionable 
tags. Table 1 shows standard statistics for the nine multi-
label datasets: the number of samples, number of features, 
number of labels, number of samples in the training set, 
number of samples in the test set, label cardinality, and 
label density.

In our experiments, we compared our proposed algo-
rithms with several multi-label feature selection algorithms, 
including MDDM, PMU, RF-ML, NRPS [59], and MFSF 
[60], all of which reflect the effectiveness of feature selection 
from different perspectives.

The experiments used five evaluation criteria, namely 
average precision (AP), ranking loss (RL), coverage (CV), 
one-error (OE), and Hamming loss (HL), to evaluate the per-
formance of all multi-label feature selection algorithms [61]. 
These five criteria were designed to evaluate performance 
from different perspectives, and there are usually several 
algorithms that achieve the best performance with respect to 
all these criteria at the same time. Finally, the performance 
of all algorithms was evaluated using the MLKNN ( K = 10 ) 
classifier [62].

Because each sample of the multi-label data corre-
sponds to a set of labels, the evaluation method for multi-
label data is more complicated than that for traditional sin-
gle-label data. The set T = {(xi, yi) ∣ 1 ≤ i ≤ N} represents 
a given test set, where yi ⊆ L is the correct label subset and 
Y ′
i
⊆ L represents the binary label vector predicted by the 

multi-label classification algorithm.
Average precision (AP): AP is the average fraction of 

labels ranked higher than a specific label � ∈ yi . A larger 

Table 5   Comparison of 
one-error ( ↓ ) of eight feature 
selection algorithms

Datasets MDDMspc MDDMproj PMU RF_ML NRPS MFSF SMFS-LILC DMFS-LILC

Arts 0.6635 0.6761 0.6484 0.6757 0.6588 0.6573 0.6355 0.6187
Birds 0.5511 0.6009 0.4619 0.4728 0.4338 0.4419 0.4365 0.4025
Business 0.1302 0.1307 0.1256 0.1280 0.1247 0.1263 0.1225 0.1196
Cal500 0.1474 0.1474 0.1195 0.1195 0.1172 0.1160 0.1076 0.1076
Computer 0.4574 0.4624 0.4460 0.4454 0.4453 0.4431 0.4320 0.4202
Emotion 0.3619 0.3700 0.3732 0.3453 0.3218 0.3218 0.3218 0.3020
Health 0.4378 0.4254 0.4193 0.4336 0.4013 0.3947 0.4013 0.4080
Scene 0.3067 0.2988 0.3928 0.3015 0.2736 0.2625 0.2642 0.2642
Yeast 0.2558 0.2534 0.2436 0.2481 0.2366 0.2460 0.2386 0.2366
AVERAGE 0.3680 0.3739 0.3589 0.3522 0.3348 0.3344 0.3289 0.3199

Table 6   Comparison of 
Hamming loss ( ↓ ) of eight 
feature selection algorithms

Datasets MDDMspc MDDMproj PMU RF_ML NRPS MFSF SMFS-LILC DMFS-LILC

Arts 0.0616 0.0622 0.0615 0.0627 0.0612 0.0623 0.0602 0.0584
Birds 0.0632 0.0637 0.0587 0.0607 0.0605 0.0657 0.0611 0.0576
Business 0.0409 0.0410 0.0272 0.0342 0.0267 0.0336 0.0277 0.0273
Cal500 0.1376 0.1376 0.1334 0.1366 0.1226 0.1229 0.1004 0.1004
Computer 0.0415 0.0413 0.0405 0.0415 0.0402 0.0401 0.0407 0.0388
Emotion 0.2480 0.2517 0.2421 0.2426 0.2476 0.2476 0.2324 0.2294
Health 0.0455 0.0441 0.0440 0.0463 0.0446 0.0443 0.0422 0.0415
Scene 0.1347 0.1384 0.1285 0.1400 0.1219 0.1184 0.1231 0.1074
Yeast 0.2170 0.2179 0.2075 0.2064 0.2104 0.2128 0.1983 0.2004
AVERAGE 0.1100 0.1109 0.1048 0.1079 0.1040 0.1053 0.0985 0.0957
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value of AP corresponds to a better prediction perfor-
mance of the whole classifier.

where ri(�) denotes the rank of the corresponding label 
l ∈ L after the given sample xi is predicted by the learning 
algorithm.

(18)AP =
1

N

N∑

i=1

1

∣ yi ∣

∑

�∈yi

∣
{
� � ∈ yi∶ ri

(
� �
)
≤ ri(�)

}
∣

ri(�)

Hamming loss (HL): HL indicates the number of times 
a sample-label instance is misclassified.

where ⊕ denotes the XOR operation; a smaller value of HL 
corresponds to a better result.

(19)HL =
1

N

N∑

i=1

∣ Y �
i
⊕ yi ∣

M

Fig. 3   Spider web diagrams for stability analysis
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Ranking loss (RL): RL indicates how many irrelevant 
tags are ranked higher than relevant tags. RL is the aver-
age probability of an item that is not in the set of relevant 
labels being ranked (in the resultant ranking) among items 
that are in the set of relevant labels.

where �i denotes the real-valued likelihood between the label 
value of xi and each li ∈ L after classification by the multi-
label classifier, and yl denotes the complementary set of yi . 
A smaller value of RL corresponds to a better result.

Coverage (CV): CV evaluates how many steps are 
needed, on average, to traverse the list of labels in such 
a manner that all the ground-truth labels of the instance 
are covered.

where rank(�) denotes the rank of � . If 𝜆1 > 𝜆2 , then 
rank

(
𝜆1
)
< rank

(
𝜆2
)
 . A smaller value of CV corresponds 

to a better result.
One-error (OE) : OE is the probability that the label 

ranked first in the output result does not belong to the actual 
label set.

where [∣ � ∣] =

{
1,� is true

0,� is false
 . A smaller value of OE cor-

responds to a better result.
Of these evaluation criteria, AP,CV,OE , and RL focus 

on the label ranking performance of each instance, whereas 
HL focuses on the label set prediction performance of each 
instance.

(20)

RL =
1

N

N∑

i=1

1

∣ yi ∣∣ ȳl ∣
∣
{(

𝜆1, 𝜆2
)
∣ 𝜆1 ≤ 𝜆2,

(
𝜆1, 𝜆2

)
∈ yi × yl

}

(21)CV =
1

N

N∑

i=1

max
�∈yi

rank(�) − 1

(22)QE =
1

N

N∑

i=1

[[
argmaxyi⊆Lf

(
xi, yi

)]
∉ Y �

i

]

4.2 � Experimental results

4.2.1 � Evaluation of predictive performance of algorithms

We compared the two proposed algorithms-the static multi-
label feature selection algorithm (SMFS-LILC) and dynamic 
multi-label feature selection algorithm (DMFS-LILC)-with 
MDDMproj, MDDMspc, PMU, RF-ML, NRPS, and MFSF 
with respect to predictive classification performance. The 
first four of these are widely used multi-label classification 
algorithms, and the last two are multi-label feature selec-
tion algorithms proposed in the past two years that combine 
NRS with flow features. To ensure comparable results, the 
features obtained by all algorithms were ranked, and the final 
feature subset of all algorithms contained the same num-
ber of features as the final feature subset of DMFS-LILC. 
Because all algorithms in the comparison use the results of 
feature selection as the result of feature ranking, we present 
in Tables 2, 3, 4, 5 and 6 the detailed experimental results for 
all algorithms on each classification dataset. Each evaluation 
criterion is labeled by “ ↓ ” to mean “smaller is better” or “ ↑ ” 
to mean “larger is better”. In addition, the best predictive 
classification performance, with respect to each evaluation 
criterion, is shown in bold, the second-best performance is 
underlined , and the average performance of each algorithm 
is shown in italics.

The experimental results, shown in Tables 2, 3, 4, 5 and 
6, are as follows: 

(1)	 With respect to AP, DMFS-LILC outperformed the 
existing algorithms on all seven datasets, whereas 
SMFS-LILC achieved suboptimal performance on five 
datasets. The two proposed algorithms achieved good 
performance on all multi-label datasets in the experi-
ment.

(2)	 With respect to RL, OE, and HL, DMFS-LILC 
achieved the best performance on six multi-label data-
sets. In addition, it achieved second-best or close to 
second-best performance on the remaining datasets. 
With respect to RL and HL, the predictive classification 
performance of DMFS-LILC was also very close to the 
optimal performance of another existing algorithm on 
the multi-label datasets. The performance achieved by 
DMFS-LILC was close to the optimal performance. 
In contrast, SMFS-LILC achieved suboptimal perfor-
mance on five datasets and optimal performance on two 
datasets, with respect to RL. In particular, with respect 
to OE, SMFS-LILC achieved suboptimal performance 
on all datasets.

(3)	 With respect to CV, DMFS-LILC significantly outper-
formed all existing algorithms on at least five multi-
label datasets. Although SMFS-LILC performed worse 
than MFSF and (on some datasets) DMFS-LILC per-

Table 7   Friedman test ( k = 8,N = 9) summary of F
F
 value and criti-

cal value of each evaluation criterion on � = 0.10

Evaluation metric F
F

Critical value 
( � = 0.10)

Average precision 21.567 1.82
Coverage 23.4273
Hamming loss 11.7293
One-error 14.716
Ranking loss 25.0716
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formed worse than the existing algorithms, the CV 
achieved by DMFS-LILC and SMFS-LILC was not 
very different from that of the two existing algorithms 
that performed better. In addition, on the datasets 
on which performance was less good, the results of 
DMFS-LILC were still good. In addition, SMFS-LILC 
achieved suboptimal performance on five datasets. In 
summary, DMFS-LILC and SMFS-LILC did not per-
form significantly better than existing algorithms with 
respect to the CV evaluation criterion.

(4)	 In general, with respect to all the criteria, the average 
classification performance of DMFS-LILC was signifi-
cantly better than that of all existing algorithms, and 
SMFS-LILC was the second best with respect to aver-
age performance. These experimental results show that 
DMFS-LILC and SMFS-LILC achieved better perfor-
mance than the existing algorithms.

Because of differences in the data types and other aspects 
of the evaluation criteria, prediction performance is 
expected to vary. To clearly assess the differences between 
the algorithms, the prediction performance was normal-
ized to [0.1, 0.5], following [63]. Figure 3 shows the sta-
bility indicators of the normalized AP, HL, RL, CV, and 

OE. Each corner of the spider graph in Fig. 3 represents 
a different dataset and each colored line represents a dif-
ferent algorithm.

If the area of the graph composed of lines of a specific 
color is large and its shape is similar to a regular nonagon, 
the performance and stability of the corresponding algo-
rithm are good. A stability value of approximately 0.5 is 
considered to be a good value. From Fig. 3, the following 
observations can be made: 

(1)	 With respect to AP, DMFS-LILC achieved the best sta-
bility because its shape closely approximates a regular 
nonagon and has the largest enclosed area.

(2)	 With respect to RL, OE, and HL, DMFS-LILC main-
tained stability on at least six datasets.

(3)	 With respect to CV, the nonagons of DMFS-LILC and 
SMFS-LILC are similar to those of NRPS and MFSF. 
Therefore, their performance advantages over the exist-
ing algorithms are not as obvious as for other evalua-
tion criteria.

(4)	 For all the evaluation criteria, the shapes of DMFS-
LILC and SMFS-LILC have areas that are larger than, 
or similar to, those of the existing algorithms, and they 
are closer to regular nonagons. In fact, a comprehensive 

Fig. 4   Bonferroni-Dunn test of SMFS-LILC and DMFS-LILC in comparison with existing algorithms
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analysis of the results indicates that the performance 
and stability of the SMFS-LILC algorithm are second 
best, whereas the stability of DMFS-LILC is optimal.

4.2.2 � Statistical test

Because some experimental results are quite similar, statistical 
tests can be used to verify whether these results differ signifi-
cantly. We used the Friedman test to systematically analyze the 
differences between the results of the algorithms in the com-
parison. This is a widely accepted method of statistically com-
paring the results of multiple algorithms for significant differ-
ences across many datasets [64]. The method is as follows. 
Given k algorithms and N multi-label datasets, Rj =

1

N

∑N

i=1
r
j

i
v 

represents the average rank of the jth algorithm on all datasets, 
where rj

i
 is the rank of algorithm j on the ith dataset. Under 

the null hypothesis (where it is assumed that the classification 
performance of all algorithms under each evaluation criterion 
are equal, that is, the ranks of all algorithms are equal), the 
Friedman test is defined as

where FF follows an F-distribution with (k − 1) and 
(k − 1)(N − 1) degrees of freedom. Table 7 summarizes 
the FF values and the corresponding critical values of each 
evaluation criterion after the Friedman test statistics [65].

As shown in Table 7, the null hypothesis is clearly rejected 
for all evaluation criteria with a significance level of � = 0.10 . 
Next, we used a post-hoc test to further determine the differ-
ences in the statistical performance of the various algorithms. 
Because our purpose was to compare the performance of the 
two proposed methods with that of the other algorithms, the 
Bonferroni–Dunn test was used [66]. The performance of two 
compared algorithms is considered to be significantly different 
if the distance between the average ranks of the two algorithms 
exceeds the following critical difference (CD).

For the Bonferroni–Dunn test, at a significance level of 
� = 0.01 , we have q� = 2.450, so we obtain CD� = 2.8290.

To visualize the relative performance of SMFS-LILC and 
DMFS-LILC compared with that of the other six algorithms, 
we plotted the CD for each evaluation criterion, with the 
average ranking of each compared algorithm on the axis. 
We consider the rightmost algorithm to be the best, so the 
lowest ranking on the axis is on the right. The CD plots for 
all evaluation criteria are shown in Fig. 4.

From Fig. 4 we can observe the following: 

(23)

FF =
(N − 1)�2

F

N(k − 1) − �2
F

, where �2
F
=

12N

k(k + 1)

(
k∑

i=1

R2
i
−

k(k + 1)2

4

)

(24)CD� = q�

√
k(k + 1)

6N
.

(1)	 SMFS-LILC and DMFS-LILC are significantly better 
than MDDMspc, MDDMproj, RF-ML, and MFSF with 
respect to all evaluation criteria. In particular, DMFS-
LILC has obvious advantages compared with them.

(2)	 SMFS-LILC is statistically superior to, or at least com-
parable to, MFSF and NRPS with respect to all evalu-
ation criteria, and DMFS-LILC also shows significant 
advantages over those algorithms, with respect to some 
criteria.

(3)	 Although the classification performance of SMFS-
LILC and MFSF is comparable, the average classifica-
tion performance of DMFS-LILC in Tables 2, 3, 4, 5 
and 6 is significantly better than that of the other algo-
rithms in the comparison. In summary, DMFS-LILC 
has significantly stronger performance than the other 
algorithms.

5 � Conclusion

In this paper, we propose an NRS model based on label 
importance and label correlation. We first define a new 
neighborhood particle by the mean nearest neighborhood 
method, to better correlate the information between features 
of multiply labeled data, and solve the problem of neighbor-
hood granularity caused by such data. The feature correlation 
weights are then obtained by calculating the mutual infor-
mation between features, and the new neighborhood lower 
bound approximation is combined with the feature weights 
to obtain a new feature subset importance model. On the 
basis of this model, we propose a new static forward greedy 
algorithm (SMFS-LILC) for multi-label feature selection. In 
addition, we propose a dynamic feature selection algorithm 
(DMFS-LILC), based on SMFS-LILC, to evaluate features 
that arrive incrementally over time by importance analysis, 
significance analysis, and redundancy analysis to solve the 
multi-label stream feature problem. Experimental results 
showed that our algorithms are competitive with existing 
commonly used algorithms. However, the time complexity 
of the proposed algorithms is relatively high, compared with 
that of state-of-the-art multi-label feature selection methods. 
Therefore, in future work, we hope to reduce the computa-
tion time of the algorithm. Furthermore, by solving multi-
label problems using label importance and label correlation, 
or by handling features and labels by mutual information 
methods, these methods can also be extended to the feature 
selection problem of label distribution.

Data Availability  The datasets supporting Table 1 are publicly avail-
able in Mulan Library at https://​mulan.​sourc​eforge.​net/​datas​ets.​html. 
The data in Tables 2, 3, 4, 5 and 6 was generated through the code in 
this article using the datasets in Table 1. The code is available from the 
corresponding author by request.

https://mulan.sourceforge.net/datasets.html
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