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Abstract
Unmanned aerial vehicles (UAVs) and their specialized variants known as unmanned combat aerial vehicles (UCAVs) have 
triggered a profound change in the well-known military concepts and researchers from different disciplines tried to solve 
challenging problems of the mentioned vehicles. Path planning is one of these challenging problems about the UAV or UCAV 
systems and should be solved carefully by considering some optimization requirements defined for the enemy threats, fuel 
or battery usage, kinematic limitations on the turning and climbing angles in order to further improving the task success 
and safety of autonomous flight. Immune plasma algorithm (IP algorithm or IPA) modeling the details of a medical method 
gained popularity with the COVID-19 pandemic has been introduced recently and showed promising performance on solving 
a set of engineering problems. However, IPA requires setting the control parameters appropriately for maintaining a balance 
between the exploration and exploitation characteristics and does not design the particular treatment and hospitalization 
procedures by taking into account the implementation simplicity. In this study, IP algorithm was supported with a newly 
designed and realistic hospitalization mechanism that manages when an infected population member enters and discharges 
from the hospital. Moreover, the existing treatment schema of the algorithm was changed completely for improving the 
efficiency of the plasma transfer operations and removing the necessity of IPA specific control parameters and then a novel 
path planner called hospital IPA (hospIPA) was presented. For investigating the performance of hospIPA on solving path 
planning problem, a set of detailed experiments was carried out over twenty test cases belonging to both two and three-
dimensional battlefield environments. The paths calculated by hospIPA were also compared with the calculated paths of 
other fourteen meta-heuristic based path planners. Comparative studies proved that the hospitalization mechanism making 
an exact discrimination between the poor and qualified solutions and modified treatment schema collecting the plasma being 
transferred by guiding the best solution give a tremendous contribution and allow hospIPA to obtain more safe and robust 
paths than other meta-heuristics for almost all test cases.
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1  Introduction

The recent advances on the microcomputers, remote sensing 
methods, communication technologies and smart munition 
production approaches started a revolution for the design 
and usage concepts of unmanned aerial vehicles (UAVs) and 
unmanned combat aerial vehicles (UCAVs). Even though 
the developed countries have strong air forces containing the 
trained pilots, fighter jets, bombers and helicopters, they also 

allocate defence budgets for producing UAV or UCAV sys-
tems or increasing their task performances and capabilities 
by trying to solve complex problems about these vehicles 
[1]. In order to increase the task performance of a UAV or 
UCAV system, the first and foremost problem that should 
be solved optimally is the path planning. For planning the 
optimal or near optimal paths before the flight of a UAV or 
UCAV being operated, some classical techniques includ-
ing Artificial Potential Field (APF), Probabilistic Road Map 
(PRM), Rapid-Exploring Random Trees (RRT) and well-
known graph based methods such as A*, D* and Voronoi 
diagram were successfully experimented [2]. However, all 
of these path planners have difficulties about trapping local 
minimum solutions and require detailed information for the 
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battlefield in a map format [2]. Because of the mentioned 
limitations of the classical techniques, researchers tried to 
find alternative ways and discovered the potential of meta-
heuristic algorithms to plan UAV paths or solve other com-
plex engineering problems [3–5].

The meta-heuristic algorithms introduced and used with 
the standard or modified implementations for solving path 
planning problem of UAV or UCAV systems inspire from 
the intelligent behaviors of different species such as birds, 
ants, bees, butterflies, moths and wolves or try to model evo-
lutionary mechanisms including natural selection, mutation 
and crossover or guide physical or chemical phenomenons 
such as gravitation, explosion, burning and annealing. How-
ever, the new coronavirus first seen in Wuhan, China at the 
beginning of 2020 and caused a global health crisis altered 
the main focus of researchers from computer and informa-
tion sciences and they investigated how a medical method 
or treatment approach used for the patients infected with the 
coronavirus can be referenced to design and develop modern 
meta-heuristic techniques [6]. Immune Plasma algorithm (IP 
algorithm or IPA) is the first meta-heuristic directly utiliz-
ing from the fundamental steps of a medical method called 
immune or convalescent plasma treatment as the given name 
implies [7]. The promising performance of the standard IPA 
has been validated recently on big data optimization [8], 
radio channel assignment [9], wireless sensor deployment 
[10], neural network training [11], in addition to the UAV 
or UCAV path planning [12]. Even though the standard 
implementation of the IPA shows promising performance 
on different optimization problems, it still requires configur-
ing the control parameters responsible for determining the 
number of donors and receivers subtly or modeling and then 
integrating more detailed treatment procedures. In this study,

•	 A new variant of the IPA called the hospital IPA (hos-
pIPA) was proposed.

•	 The hospIPA integrated a newly designed and realistic 
hospitalization mechanism into the workflow of the IPA 
for controlling when an infected population member will 
enter and discharge from the hospital.

•	 The plasma collection and transfer schema was rede-
signed for hospIPA by aiming at increasing the treatment 
efficiency of the hospitalized individual or individuals.

•	 Moreover, the proposed plasma collection and transfer 
schema removed the necessity of the IPA specific con-
trol parameters determining how many individuals will 
be receivers and how many individuals will be plasma 
donors.

The path planning performance of hospIPA was investi-
gated by using twenty test cases in total belonging to both 
two and three-dimensional battlefield environments. The 
paths obtained by the hospIPA were compared with the 

calculated paths of a set of meta-heuristics including IPA, 
Genetic algorithm (GA) and Particle Swarm Optimization 
algorithm (PSO) based version of GA called GAPSO, Moth 
Flame Optimization (MFO), Salp Swarm algorithm (SSA), 
Pathfinder algorithm (PFA), Stain Bowerbird Optimization 
(SBO), Sine-Cosine algorithm (SCA), Grey Wolf Optimizer 
(GWO) and its hybridization with the Symbiotic Organism 
Search (SOS) known as HSGWO-MSOS, Artificial Eco-
system Optimizer (AEO) and adaptive neighborhood-based 
search enhanced AEO (NSEAEO), a strong implementa-
tion of the Teaching-Learning Based Optimization (TLBO) 
algorithm and finally the comprehensively improved PSO 
for short CIPSO. Comparative studies between hospIPA and 
other meta-heuristic based planners showed that hospIPA 
is capable of calculating more safe, fuel efficient and fly-
able paths for the vast majority of the test cases. While the 
newly designed hospitalization approach allows hospIPA to 
discriminate the poor solutions from the remaining part of 
the population and helps exploring the vicinity of qualified 
solutions more steadily, the proposed treatment schema sig-
nificantly improves the exploitation performance and gives a 
chance to update a poor solution with a candidate better than 
the best solution found until the current cycle. The rest of 
the paper is organized as follows: Mathematical model of the 
path planning problem is explained in Sect. 2. Fundamental 
steps of the IP algorithm are given in Sect. 3. Details of the 
newly proposed hospitalization and treatment procedures are 
mentioned in Sect. 4. Section 5 is devoted to the experimen-
tal and comparative studies. Finally, in Sect. 6, some final 
remarks and future works about the IPA based path planners 
are presented.

1.1 � Related works

One of the first studies that illustrates how a meta-heuristic 
can plan optimal flight path of a UCAV was presented by 
Duan et al. over the Ant Colony Optimization (ACO) algo-
rithm [13]. In another study, Duan et al. introduced a hybrid 
approach by combining ACO and Differential Evolution 
(DE) algorithms and experimented their path planner for a 
single UCAV being operated in a three-dimensional environ-
ment [14]. Ma and Lei related the values being assigned to 
the inertia weight of PSO algorithm with the second order 
oscillation links and second-order oscillating PSO (SOPSO) 
was presented [15]. Xu et al. designed a new Artificial Bee 
Colony (ABC) algorithm in which each employed forager 
searches food sources within the neighborhood of the current 
best solution by using chaotic random numbers and illus-
trated the effectiveness of new path planner against stand-
ard ABC [16]. For a more clear discrimination between the 
food sources of ABC algorithm, Zhang et al. scaled the raw 
fitness values in their path planning technique [17]. Zhang 
et al. also introduced Fitness-scaling Adaptive Chaotic PSO 
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(FAC-PSO) algorithm [18]. Gravitational Search algorithm 
(GSA) was first taken as a base by P. Li and Duan and then 
combined with the memory and social information concepts 
of PSO algorithm [19]. Comparative studies showed that 
proposed GSA performs better than other UAV path plan-
ners depending on default implementation of GSA or PSO 
algorithm [19]. Fu served a PSO algorithm that calculates 
the velocity of each particle by guiding the best particle of a 
previously determined small solution group [20].

Wang et al. developed an efficient information sharing 
procedure between the qualified solutions of Firefly algo-
rithm (FA) and presented modified FA for short MFA [21]. 
The UAV path planning performance of MFA was investi-
gated and a detailed comparison with other meta-heuristics 
such as PSO, DE, ACO, GA, a modification of GA named 
stud GA (SGA), Biogeography-based Optimization (BBO), 
Evolutionary Strategies (ES) and Population-based Incre-
mental Learning (PBIL) was given [21]. In another study, 
Wang et al. proposed a three-dimensional path planning 
technique by hybridizing DE and Cuckoo Search (CS) algo-
rithms [22]. The contribution of Wang et al. to the literature 
of meta-heuristic based path planners continued with the 
Bat algorithm (BA) supported by the mutation operator of 
DE [23]. Wang et al. also developed a BA referenced three-
dimensional path planner called improved BA (IBA) and 
compared IBA with basic BA over the visual representa-
tions of the calculated paths [24]. For further improving 
the path planning performance of FA, C. Liu et al. decided 
to adjust the parameter related with the attractiveness of 
fireflies adaptively [25]. Zhu and Duan assisted the BBO 
algorithm with the predator–prey concept and chaos theory 
[26]. The novel implementation of BBO, Chaotic Predator-
Prey BBO (CPPBBO), was employed to plan UAV paths by 
considering the constraints about the yawing angle and total 
flight length [26]. Black Hole (BH) algorithm was guided 
by Heidari and Abbaspour for UCAV path planning [27]. 
Glowworm Swarm Optimization (GSO) was varied by Tang 
and Zhou with the equations coming from PSO and PGSO 
was introduced [28]. Detailed performance investigations 
about PGSO informed that PGSO obtains better paths than 
other methods when the number of segmentation points is 
kept relatively small [28].

Yu et al. tested TLBO for the planning a UAV being oper-
ated in a fixed altitude environment and proved its com-
petitive performance against PSO, DE, ABC and GSO algo-
rithms [29]. The mathematical model of the path planning 
problem was tuned with the difficult constraints about the 
various enemy threats such as anti-air guns, missiles, radars, 
terrain and non-flight zones, turning angle, climbing or glid-
ing slope, flight altitude and total length by Zhang and Duan 
and they used a DE algorithm with � level comparison based 
constraint-handling approach [30]. Zhou et al. designed a 
hybrid path planner by using Wolf Colony Search (WCS) 

and Complex method [31]. Duan and Qiao solved path plan-
ning problem with Pigeon-Inspired Optimization (PIO) algo-
rithm [32]. B. Li et al. presented Balance-Evolution Strategy 
ABC algorithm for short BE-ABC in which trial counters are 
controlled when generating candidate solutions [33]. Zhang 
and Duan integrated the predator–prey concept into the PIO 
algorithm and tried to plan UCAV paths in a battlefield for 
which danger zones move dynamically [34]. The search-
ing strategy of PSO algorithm using a kind of memory and 
mutation operator of GA that provides an extra support for 
avoiding solutions matched with the local optimums were 
referenced by Yongbo Chen et al. and a variant of the Cen-
tral Force Optimization (CFO) was announced for planning 
of a rotary wing vertical take-off and landing (VTOL) sys-
tem [35].

Zhou et al. utilized from the quantum gates for improving 
the performance of Wind Driven Optimization (WDO) algo-
rithm and developed quantum WDO (QWDO) [36]. How 
the standard GWO performs on planning UAV paths was 
analyzed by Zhang et al. with two-dimensional battlefields 
[37]. The path planning capabilities of PSO algorithm was 
further improved by Liu et al. with adaptive sensitivity deci-
sion area method in which the high potential particles are 
determined and other candidates are removed to overcome 
the difficulties about the premature convergence [38]. In 
addition to this, Liu et al. addressed the defects of standard 
PSO algorithm to do with the trapping local optimums and 
slow convergence by Spatial Refined Voting Mechanism 
(SRVM) [39]. They further managed the possible collision 
with a newly introduced spatial-temporal collision avoid-
ance technique when planning multiple UAVs by employ-
ing the mentioned PSO variant [39]. Luo et al. changed the 
representation of solutions in BA with quantum encoding 
and replaced the existing update and mutation models with 
quantum rotation gate and quantum not gate for a new path 
planner [40]. Q. Zhang et al. referenced Collection Deci-
sion Optimization algorithm (CDOA) and investigated its 
performance as a path planner [41].

Alihodzic et al. focused to solve path planning problem 
with Elephant Herd Optimization (EHO) algorithm [42]. 
In another study, Alihodzic et al. determined the number 
of sparks and exploitation amplitude of Fireworks (FW) 
algorithm when designing a UCAV path planner [43]. Miao 
et al. combined advantageous sides of Simplex method and 
SOS and provided a rich set of experimental results about 
their technique for battlefields with static and random enemy 
threats [44]. Dolicanin et al. announced a Brain Storm Opti-
mization (BSO) algorithm based path planner [45]. Pan et al. 
decided to adjust the fraction probability and scaling factor 
of CS algorithm with the sequences of Circle-type Chaotic 
Map and illustrated the better path planning capabilities of 
the mentioned CS implementation [46]. The valuable con-
tribution of Pan et al. is not only limited with the CS based 
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path planner. Pan et al. also utilized from Whale Optimi-
zation algorithm (WOA) after remodeling the encircling 
or searching procedures [47]. Another study successfully 
completed by Pan et al. was devoted to the development of 
CIJADE that brings together strong properties of two DE 
variants called CIPDE and JADE [48]. Position update pro-
cedure of BA was altered by Lin et al. with the guidance of 
APF [49]. They also used optimal success rate and chaos 
theory for further improving the local search performance 
of their path planner [49]. Qu et al. assumed that the mem-
bers of GWO are the train agents of Reinforcement Learning 
(RL) and RLGWO was offered for calculating UAV paths 
[50]. The promising performance of GWO became source of 
inspiration to Qu et al. for another study in which GWO and 
SOS are coupled to develop a planner known as HSGWO-
MSOS [51].

Yi et al. regenerated a set of low quality solutions in 
Monarchy Butterfly Optimization (MBO) with quantum 
operations and quantum inspired MBO (QMBO) was intro-
duced [52]. Wu et al. reported an intelligent initialization 
schema by considering the physical limitations of the UAV 
being planning for ABC algorithm [53]. A Flower Pollina-
tion algorithm (FPA) guided path planner was declared by 
Yang Chen et al. and compared with the well-studied tech-
niques including A*, APF and RRT [54]. After a detailed 
comparison between the path planning performances of 
BA, ABC, DE, FA, GWO, PSO, WOA, CS, a recent vari-
ant of MBO known as GSMBO, Harmony Search (HS) and 
Spider Monkey Optimization (SMO), Zhu et al. concluded 
that SMO plans more safe paths [55]. The performance of 
SMO tried to be further improved by Zhu et al. and Coop-
eration Co-evolution SMO (CESMO) was developed [56]. 
In order to plan a UAV path for a battlefield containing spe-
cifically designed enemy weapons and climate effects, Zhou 
et al. offered improved BA (IBA) [57]. Wu et al. serviced 
the Zaslavskii chaos map and a path planner called chaotic 
PSO was presented [58]. H. Xu et al. changed the critical 
stages of GSA by using adaptive alpha-adjusting strategy 
and Cauchy mutation for optimizing the interactions with 
enemy threats, reducing the total flight length and turning 
angles of a UAV [59].

Jiang et al. nearly fixed all details about the workflow 
of GWO by designing an efficient communication mecha-
nism and �-level comparison for handing constraints [60]. 
The higher number of waypoints can increase the sensitiv-
ity of the calculated paths. However, increasing the number 
of segmentation points or waypoints bring extra difficulty 
and computational burden to the path planning problem. 
Jarray et al. tried to handle the mentioned complexity by 
integrating Cooperative Co-evolution mechanism that 
depends on splitting the decision variables or parameters 
of the problem into subgroups for solving them indepen-
dently into parallel GWO algorithm [61]. Du et al. tried to 

address some troublesome stages of Chimp Optimization 
algorithm (ChOA) by inspiring mathematical models of 
Monkey algorithm and improved ChOA for short IChOA 
was designed [62]. The performance of IChOA was inves-
tigated over the numerical benchmark functions in addition 
to the three-dimensional UAV path planning problem [62]. 
Wang et al. concerned with the exploration capability and 
convergence speed of Mayfly algorithm (MA) and devel-
oped modified MA (modMA) in which exponent decreas-
ing inertia weight strategy, adaptive Cauchy mutation and 
enhanced crossover operation are combined together [63]. 
Some experiments using two battlefields with eight and 
ten enemy threats showed that modMA is not only better 
than MA but also more stable than PSO, GWO and Butter-
fly Optimization algorithm (BOA) [63]. Niu et al. replaced 
commonly used neighborhood topologies such as star and 
ring with an approach called adaptive neighborhood search 
for their AEO based path planner [64]. Also, they improved 
the decomposition stage of AEO with a dynamic method 
selection technique and integrated quadratic interpolation 
for further enhancing the search capability [64]. The new 
AEO algorithm referenced path planner named NSEAEO 
was compared with the GA and PSO variants, an improved 
version of TLBO (ECTLBO), GA, HSGWO-MSOS, MFO, 
SSA, SBO, SCA, PFA in addition to the AEO over two and 
three-dimensional battlefield scenarios [64]. The investi-
gations about the capabilities of AEO based path planners 
were continued by Niu et al. and they designed an adaptive 
mechanism that controls the distance between the current 
optimal and newly generated candidate solution and inte-
grated it into the workflow of AEO algorithm [65]. Five 
complex three dimensional scenarios were generated to 
evaluate the performance of recent AEO on the path plan-
ning and experimental studies proved that the modifications 
significantly improve the search characteristics and allow to 
obtain better solutions than the solutions of GA, PSO, GWO, 
WOA, AEO, HSGWO-MSOS, IChOA and improved adap-
tive GWO (AGWO) based path planners [65].

The battlefield model was tried to be simplified with a 
creative idea of Jia et al. when solving path planning prob-
lem by executing their special PSO algorithm [66]. The 
specialized PSO algorithm or DLCRPSO utilized from a 
rotation strategy that improves the search efficiency for high-
dimensional space [66]. Search and Rescue (SAR) optimiza-
tion algorithm was combined with a heuristic crossover (HC) 
strategy that adjusts the range for improving the efficiency 
of candidate generation mechanism by C. Zhang et al. and 
HC-SAR was introduced [67]. Comparative studies between 
HC-SAR and other path planners based on SAR, DE, SSA, 
Ant Lion Optimizer (ALO) and Squirrel Search algorithm 
(SSA) showed that HC-SAR can serve as a consistent UAV 
path planner [67]. Ait-Saadi et al. used Simulated Anneal-
ing (SA) and Singer chaotic map with Aquila Optimization 
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(AO) algorithm for developing Chaotic Aquila Optimization 
Simulated Annealing (CAOSA) and tested it on solving both 
two and three-dimensional UAV path planning problem [68]. 
Another GWO based path planner was announced by Yu 
et al. for which the characteristics of alpha, beta and delta 
wolves are changed in a manner that they search around the 
alpha wolf and the characteristics of the omega wolves are 
changed in a manner that they search around the best three 
wolves for enriching the exploitation [69]. Chowdhury and 
De introduced a GSO algorithm based path planner known 
as Reverse GSO (RGSO) in which the movements between 
the solutions represented with different glowworms are 
adjusted by checking the luciferin values of them [70].

Chen et al. first replaced the Cartesian coordinate sys-
tem with a spherical coordinate system in which some con-
straints about the angle and velocity of a UAV are handled 
more clearly when planning a flight path [71]. They also 
introduced a mechanism called Truncated Mean Stabili-
zation (TMS) for maintaining the population diversity by 
replacing some solutions with a newly determined one. The 
modernized BA that uses spherical coordinate system and 
TMS approach was named TMS-SBA by Chen et al. and 
tested for calculating paths in four different battlefield sce-
narios [71]. The potential of changing the Cartesian coordi-
nate system to realize the characteristics of a UAV or UCAV 
was also utilized by Huang et al. for designing a new PSO 
algorithm based path planner, Adaptive Cylinder Vector 
PSO with DE (ACVDEPSO), and ACVDEPSO was experi-
mented in three-dimensional environments generated with 
the Digital Elevation Model (DEM) maps [72]. Hu et al. 
improved the overall optimization performance of the stand-
ard Honey Badger algorithm (HBA) by invoking Bernoulli 
shift map for initialization of the population, piecewise opti-
mal decreasing neighborhood for stabilizing the unbalanced 
convergence characteristics and finally horizontal crossing 
with strategy adaptation for the generation of new candidates 
[73]. They tested new HBA variant to plan UAV paths in 
different battlefield environments containing only circular 
or irregular obstacles [73].

2 � Mathematical model of path planning 
problem

The calculation of a path for a UAV, UCAV or other similar 
aerial vehicle requires a strong mathematical description 
about the different enemy threats, their sensing, detecting 
or shooting capabilities, fuel consumption or battery usage 
and finally kinematic constraints on the turning and climb-
ing maneuvers. In addition to the mathematical descriptions 
of the enemy threats, fuel or battery usage and kinematic 
constraints, a model that defines how a path can be gener-
ated and a score calculation schema for deciding which path 

is more better should also be supplied. Given that a UAV 
or UCAV starts flight from the point Ps = (xs, ys, zs) to find 
or destroy a target located at the point Pt = (xt, yt, zt) and a 
reference line between the Ps and Pt is drawn by considering 
the xy-plane.

When the operations to do with the drawing of a refer-
ence line are completed, it is divided equally into D + 1 seg-
ments by using D segmentation points [64]. Each segmenta-
tion point on the reference line is actually responsible for 
intersecting with a unique line that is perpendicular to the 
reference line. If the lines, each is perpendicular to the ref-
erence line and intersects only one segmentation point, are 
organized, a set of lines showed as L = {L1, L2,… , LD−1, LD} 
can be obtained. The set L in which L1 corresponds to the 
vertical line passing through the first segmentation point, L2 
corresponds to the vertical line passing through the second 
segmentation point, and so on opens a gate for the subse-
quent operations of the path planning. If only one point on 
each line in the set L is selected and then combined with the 
Ps and Pt by guiding that the Ps is the start point and Pt is the 
target point, a set of points or P = {Ps,P1,… ,PD,Pt} and 
an implicit path after connecting sequential pair of points in 
set P with a line segment are generated [64].

The method lying behind the definition of a UAV or 
UCAV path through the set L and set P depends on strong 
mathematical and geometrical backgrounds. All the lines 
in the set L require correct equations that satisfy the pre-
requisites about the segmentation points and reference line 
between Ps and Pt . Also, it must be guaranteed that each 
point of the set P is selected in a manner that the point Pi is 
on the line Li where i ranges from 1 to D and huge amount of 
computational burden arises. In order to reduce the computa-
tional effort about the sets of lines and points, an appropriate 
coordinate system transformation that converts the reference 
line into the horizontal axis of the new coordinate system by 
referencing Eq. (1) can be used [64]. In Eq. (1), xk , yk and 
zk represent the x-axis, y-axis and z-axis values of point Pk 
located at the original coordinate system, while x́k , ýk and 
źk represent the x́-axis, ý-axis and ź-axis values of point Ṕk 
and Ṕk corresponds the transformed counterpart of point Pk 
for the new coordinate system. Finally, � is matched with the 
angle of rotation and calculated as arctan((yk − ys)∕(xk − xs))

.

One of the first advantages coming with the mentioned 
coordinate transformation is about the x́-axis values of the 
corresponding points in the set P. Because of each line in the 
set L is vertical to the reference line or horizontal axis of the 

(1)
⎡⎢⎢⎣

x́k
ýk
źk

⎤⎥⎥⎦
=
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cos(𝜃) sin(𝜃) 0

−sin(𝜃) cos(𝜃) 0

0 0 1
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×
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xk − xs
yk − ys
zk

⎤⎥⎥⎦
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new coordinate system and the distance between the subse-
quent pair of lines is equal, x́-axis value of any point on the 
line Ĺi where Ĺi shows the counterpart of Li in the set L for 
new coordinate system can be calculated as i|PsPt |∕(D + 1) . 
If the ý-axis values of the points on the lines in set L are 
selected and they are brought together with the vertical axis 
values of the transformed start and target points such as 
{ýs, ý1, ý2,… , ýD−1, ýD, ýt} , path planning can be turning into 
a D-dimensional optimization problem that requires minimi-
zation of difficult objectives about enemy threats, battery or 

fuel consumption measured over total flight length, turning 
and climbing angles. In Fig. 1, how the set of lines and set of 
points are utilized to represent a path and transitions between 
the initial and original coordinate systems are carried out is 
illustrated over a battlefield with four enemy threats.

A relatively small modification on one of the guessed 
points in the set P can cause a dramatic change for the cor-
responding path and a quality or score calculation schema 
taking into account the enemy threats and their properties, 
fuel or battery consumption, turning and climbing angles 

Fig. 1   A three-dimensional 
battlefield (a), xy-plane (b), 
transformed counterpart (c), 
determined paths (d) and their 
provisions to the original bat-
tlefield (e)–(f)

(a)

ps

z

y pt

x
(b)

y' L'1 L'2 L'3 L'D - 1 L'DL'D - 2

x'

z

y

x

y

x

L 1

L 2

L 3

L D - 1
L D

L D - 2

θ

ps

pt

y

x

L 1

L 2

L 3

L D - 1
L D

L D - 2

(c) (d)

(e)

z

y

x
(f)

y



International Journal of Machine Learning and Cybernetics	

should be used to understand the appropriateness of a path 
and make a discrimination between more than one candi-
dates as described in Eq. (2) [64]. In Eq. (2), Ct is used on 
behalf of the cost of all enemy threats and it is calculated by 
taking the integral of wt from 0 to � where � shows the total 
length of the discovered path. Similarly, Cf  is used on behalf 
of the cost of fuel or battery consumption of UAV or UCAV 
system and calculated by taking the integral of wf  from 0 
to � . While Cs represents the cost of kinematic limitations 
of considered aerial vehicle, it has two different parts one 
of which is related with the turning angles and the other is 
related with the climbing angles. Also, it should be noticed 
that Ct , Cf  and Cs are weighted with �t , �f  and �s whose sum 
is equal to 1 for adjusting their contributions on the total 
path cost showed as C.

The integral calculations to do with the Cf  can be simplified 
by executing an accurate approximation. Because of the fuel 
consumption or battery usage of a UAV or UCAV is directly 
proportional to the length of path, wf  can be replaced with 
a constant such as 1 [64]. An accurate but more detailed 
approximation can also help the integral calculations about 
Ct . Given that Pi and Pj are two adjacent points in the set 
P and the length of line segment between these points is 
found as Lij . Also, it is noted that the line segment of length 
Lij is divided into ten equal subsegments with the help of 
nine subsegmentation points and then the first, third, fifth, 
seventh and ninth subsegmentation points are selected and 
called as 0.1, 0.3, 0.5, 0.7, 0.9 subsegmentation points. If the 
line segment of length Lij is in the effect range of kth enemy 
threat with the grade tk , the cost of considered enemy threat 
for the line segment between Pi and Pj or Ct,(ij),k is found by 
using Eq. (3) [64]. While the Euclidean distance between 
0.1 subsegmentation point and the center of the kth enemy 
threat is represented with d4

0.1,i,k
 in Eq. (3), the Euclidean dis-

tances between the other selected segmentation points and 
the center of the kth enemy threat are showed with d4

0.3,i,k
 , 

d4
0.5,i,k

 , d4
0.7,i,k

 and d4
0.9,i,k

 for the same equation. After calculat-
ing the cost of each enemy threat for all of the line segments 
and then summing them, Ct is approximated successfully.

For tracking the calculated path, a UAV or UCAV should 
perform different maneuvers that necessitate aggressive 

(2)C = �tCt + �f Cf + �sCs = �t ∫
�

0

wtd� + �f ∫
�

0

wf d� + �s

(
D∑
j=1

∅j +

D+1∑
j=1

Ψj

)

(3)

Ct,(ij),k =
Lijtk

5

(
1

d4
0.1,i,k

+
1

d4
0.3,i,k

+
1

d4
0.5,i,k

+
1

d4
0.7,i,k

+
1

d4
0.9,i,k

)

turning and climbing with variable angles. However, a UAV 
or UCAV system has certain limitation about the turning and 
climbing angles and they should be considered when the 
overall path quality is calculated. Assume that three subse-
quent points such as Pj , Pj+1 and Pj+2 are selected from the 
set P and two vectors such as ���������⃗pjpj+1 and �������������⃗pj+1pj+2 are gener-
ated by referencing these points. When Pj , Pj+1 and Pj+2 are 
the first three points of set P, they correspond to Ps , P1 and 
P2 . In a similar manner, when Pj , Pj+1 and Pj+2 are the last 
three points of set P, they correspond to PD−1 , PD and Pt . 
The calculation of turning angle or ∅j by considering the 
Pj , Pj+1 and Pj+2 points and ���������⃗pjpj+1 and �������������⃗pj+1pj+2 vectors can 
be made with Eq. (4). If the absolute value of the ∅j is less 
than or equal to the maximum angle or ∅max of the UAV 
being operated, the effect of turning with the angle of ∅j is 

simply ignored for the Cs . Otherwise, absolute value of the 
calculated turning angle is summed with the absolute values 
of other turning angles violating the constraint about the 
maximum turning angle.

For calculating the climbing angle, subsequent points taken 
from set P and some vectors are needed. Assume that two 
subsequent points namely Pj and Pj+1 are selected from set 
P and ���������⃗pjpj+1 is the vector generated by referencing these 
points. When Pj and Pj+1 are the first two points of set P, they 
correspond to Ps and P1 . In a similar manner, when Pj and 
Pj+1 are the last two points of set P, they correspond to PD 
and Pt respectively. The calculation of climbing angle or Ψj 
by considering Pj , Pj+1 points and ���������⃗pjpj+1 vector can be made 
with Eq. (5). If the absolute value of Ψj − Ψj−1 operation is 
less than or equal to the maximum climbing angle or Ψmax 
of the UAV, the effect of climbing is simply ignored for the 
Cs . Otherwise, the absolute value of Ψj − Ψj−1 operation is 
summed with the absolute values of other climbing angle 
calculations violating the constraint about the maximum 
climbing angle. The whole symbols used for the descrip-
tion and formulation of the path planning problem can be 
accessed in Table 1.

(4)∅j = arctan

�‖���������⃗pjpj+1 × �������������⃗pj+1pj+2‖
���������⃗pjpj+1 ⋅ �������������⃗pj+1pj+2

�

(5)Ψj = arctan

�
Zj+1 − Zj

‖���������⃗pjpj+1‖

�
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3 � Immune plasma algorithm

The immune system tries to protect a host by increasing the 
amount of plasma cells and their synthesis products also 
called antibodies. Antibodies are actually a type of proteins 
and can circulate in the blood as free-floating forms [74, 75]. 
When an antibody detects an antigen for which the antibod-
ies are produced specially, it binds that antigen with the pur-
pose of inactivating antigen functionalities. However, some 
persons who suffering from the immune system disorders 
have several difficulties for synthesizing remarkable amount 
of antibodies and when they are infected, hospitalization 
and intense care can be needed [74, 75]. In order to help the 
treatment operations of a critical person, the antibody rich 
part of the blood donated by an individual recovered previ-
ously can be utilized successfully.

The immune or convalescent plasma treatment is one of the 
strong medical methods guiding the fact that the antibodies 
can be transferred from the recovered individual or individu-
als to the critical patients or receivers and its efficiency was 
proven against the great influenza of 1918 pandemic more than 
a century ago and the recent global COVID-19 crisis [75, 76]. 
When the details of the immune or convalescent plasma treat-
ment is controlled carefully, it is seen that there is an obvious 
analogy with the main operations known as exploration and 
exploitation of a meta-heuristic algorithm. By considering the 
mentioned analogy, Aslan introduced a new intelligent opti-
mization technique called IP algorithm or for short IPA [7]. 
In IP algorithm, each person or individual of the population 
represents a possible solution of the optimization problem 
being solved. An infection can spread easily among the mem-
bers of population and their immune responses are calculated 

according to the objective or cost function of the problem. 
While an individual with small objective function value cor-
responds to a qualified solution for a minimization problem, 
an individual with high objective function value corresponds 
to a qualified solution for a maximization problem [7]. Some 
individuals representing poor solutions are labeled as receiv-
ers and tried to be treated with the plasma taken from other 
individuals that are selected as donors because of their high 
quality immune responses. The mathematical models used by 
IP algorithm for distributing infection in the population, select-
ing receiver and donor individuals, applying plasma treatment 
and controlling the immune memories of donors were stated 
in the following subsections.

3.1 � Initializing the members of population

Population based meta-heuristics such as IP algorithm starts 
the search operations by generating a set of solutions ran-
domly. Given that IP algorithm with the population of size PS 
is employed for solving a D-dimensional optimization prob-
lem, kth individual also termed as xk can be initialized by using 
Eq. (6) [7]. In Eq. (6), xkj is matched with the jth parameter for 
which the lower and upper bounds are xmin

j
 and xmax

j
 . Also, it 

should be noticed that rand(0, 1) is a random number taking 
its value between 0 and 1.

3.2 � Infecting the members of population

In an infection cycle of IP algorithm, there is a stage that is 
responsible for distributing infection from one individual to 
another with Eq. (7) where xk is the individual being infected 
by the randomly selected xm individual [7]. Moreover, it should 
be noted that xkj and xmj are the jth parameters of them and the 
j index is determined randomly from the set {1, 2,… ,D} . For 
representing the infectious xk individual, a temporary solution 
or xinf

k
 is used in the same equation. All of the parameters 

belonging to xinf
k

 are equal to the corresponding parameters of 
xk except the jth one and the newly calculated jth parameter of 
x
inf

k
 is symbolized with xinf

kj
.

The infection triggers the immune system of xk individual 
and a special response in terms of antibodies is given. In 
order to evaluate the immune response of the infectious xk 
individual or amount of synthesized antibodies, the value of 
the objective function f is utilized. If the immune response of 
the infectious xk individual or f (xinf

k
) is less than the antibody 

amount of the same individual before the infection or f (xk) 
by considering a minimization problem, it is decided that xk 

(6)xij = xmin

j
+ rand(0, 1)(xmax

j
− xmin

j
)

(7)x
inf

kj
= xkj + rand(−1, 1)(xkj − xmj)

Table 1   Used symbols and their descriptions for path planning

Symbols Description

D Number of segmentation points or parameters
Ps,Pt Start and target points
L,Li Line set and its ith member
P,Pi Point set and its ith member
� Rotation angle for coordinate transformation
Ĺi Counterpart of Li for new coordinate system
C Total cost of path
Cf Cost of fuel consumption
Ct Cost of enemy threats
Cs Cost of turning and climbing maneuvers
�f , �t, �s Weighting factors for Cf ,Ct and Cs

� Total length of path
Lij Length of line segment between Pi and Pj points
∅j Cost of turning for Pj , Pj+1 and Pj+2 points
Ψj Cost of climbing for Pj and Pj+1 points
∅max,Ψmax Maximum turning and climbing angles
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individual is capable of handling infection and its immune 
memory is re-organized for a quick response to the similar 
infection as in Eq. (8) [7]. Otherwise, xk individual and its 
jth parameter are left unchanged.

3.3 � Applying plasma treatment

The second stage of an infection cycle in IPA is related with 
the selection of receivers and donors and then the applica-
tion of plasma treatment. IP algorithm decides how many 
individuals will be receiver and how many individuals will 
be donors by introducing two control parameters called num-
ber of receivers or NoR and number of donors or NoD [7]. 
When IPA reaches the second stage of an infection cycle, it 
first sorts the individuals of the population by considering 
their objective function values in ascending order and then 
labels the last NoR individuals as critical patients or receiv-
ers and selects the first NoD individuals as plasma donors 
[7]. After determining the receiver and donor individuals, 
IPA starts plasma treatment. Given that xrcv

k
 is the kth 

receiver from the receiver set of size NoR and xdnr
m

 is the 
randomly selected donor from the donor set of size NoD. For 
the transfer of a dose of plasma from the xdnr

m
 to the xrcv

k
 , a 

mathematical model as detailed in Eq. (9) where j is selected 
sequentially from the set {1, 2,… ,D} is used [7]. In Eq. (9), 
x
rcv−p

k
 is matched with the plasma transferred counterpart of 

xrcv
k

 and jth parameters of them are xrcv
kj

 and xrcv−p
kj

 . If the 
f (x

rcv−p

k
) is better than the f (xdnr

m
) and proves the efficiency 

of treatment, xrcv
k

 is updated with the parameters of xrcv−p
k

 and 
second dose of plasma is prepared. Otherwise, xrcv

k
 is updated 

with the parameters of xdnr
m

 and treatment is completed for 
xrcv
k

 [7].

The second or subsequent dose of plasma is transferred 
to xrcv

k
 by using the mathematical model introduced for 

the transfer of first dose. However, in order to decide that 
whether the treatment will be continued with the third or 
subsequent dose of plasma or not, a comparison between the 
objective function values of xrcv−p

k
 and xrcv

k
 is carried out [7]. 

If the objective function value of xrcv
k

 immediately after the 
second dose of plasma or f (xrcv−p

k
) is better than the objec-

tive function value of xrcv
k

 before the second dose of plasma 
or f (xrcv

k
) , xrcv

k
 is updated with the parameters of xrcv−p

k
 and 

third dose of plasma is prepared. Otherwise, the treatment 
of xrcv

k
 is completed and the next receiver is selected if exists 

for starting the plasma transfer operations.

(8)xkj =

{
x
inf

kj
, if f (x

inf

k
) < f (xk)

xkj, otherwise

}

(9)x
rcv−p

kj
= xrcv

kj
+ rand(−1, 1)(xrcv

kj
− xdnr

mj
)

3.4 � Updating immune memories of donors

The immune response or amount of synthesized antibod-
ies by an individual who recovers shortly before and helps 
critical individuals for the treatment can change as time goes 
by or with the frequency of encountering to the same of 
similar infection. If the frequency of encountering to the 
infection increases with time, the immune memory recog-
nizes the intruder quickly and a strong response in terms of 
synthesized antibodies is given. For integrating this type of 
mechanism into the workflow of the IPA, the ratio between 
tcr and tmax and a random number generated between 0 and 
1 were utilized [7]. While tcr shows the current evaluation 
number and it is incremented by one for each request to 
the procedure calculating the objective function value, tmax 
demonstrates the maximum evaluation number and IPA ter-
minates when tcr becomes equal to tmax . If the ratio between 
tcr and tmax is less than the generated random number, it is 
decided that the immune memory of the mth donor individ-
ual or xdnr

m
 still continues to learn details about the intruder 

causing infection and an entire re-initialization as in Eq. (6) 
is applied [7]. Otherwise, the immune memory of the xdnr

m
 

is changed slightly by using Eq. (10) where j index ranges 
from 1 to D [7]. As easily seen from the decision mechanism 
about how the donor individual is updated, the probabil-
ity of execution Eq. (10) gets higher while the IPA reaches 
termination and allows a donor for protecting its memory 
partially.

4 � Details of hospitalization mechanism 
for immune plasma algorithm

As stated previously, the standard implementation of the 
IP algorithm completes the treatment of an xrcv

k
 individual 

if the first dose of plasma does not improve the antibody 
response of xrcv

k
 as better as the antibody response of xdnr

m
 

donor. Moreover, when the IP algorithm decides that the 
treatment of xrcv

k
 is ended immediately after the first dose 

of plasma from the xdnr
m

 donor individual, the xrcv
k

 is updated 
with the corresponding parameters of xdnr

m
 for guaranteeing 

that at least one dose of plasma is transferred. Even though 
the idea lying behind the existing treatment schema of IPA 
ensures that the quality of the solution represented by a 
receiver individual becomes equal or better than the quality 
of the solution represented by the selected donor, it requires 
subtle configuration of the NoR and NoD parameters in order 
to maintain the population diversity while increasing the 
qualities of the existing solutions.

(10)xdnr
mj

= xdnr
mj

+ rand(−1, 1)xdnr
mj
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Algorithm 1   Distribution of infection by considering hospitalization

For further improving the performance of IPA and remov-
ing the necessity of both requirement and configuration of 
NoR and NoD parameters, a more efficient and realistic 
model by considering that a receiver or receivers can stay 
in a hospital rather than simply discharging them if the first 
dose of plasma does not generate the expected effect can 
be designed. At the end of the stage related with the distri-
bution of infection in each cycle, the worst solution of the 
non-hospitalized individuals is first assumed as the patient 
and added to the set of hospitalized solutions or receivers. 
All of the hospitalized individuals are treated by transfer-
ring plasma. If the transferred dose of plasma gives a tre-
mendous contribution to the antibody amount of a receiver 
individual, it is discharged from the hospital and becomes 
ready for the interaction of other healthy individuals in the 
next cycle. Otherwise, the mentioned receiver is isolated 
from other healthy individuals and stays at the hospital for 
the treatment operations of the subsequent cycle. When the 
number of hospitalized individuals or receivers is equal to 
PS − 1 for a population of size PS, it is easily understood that 
there is only one healthy individual and the operations to do 
with the distribution of infection are skipped. On the other 
hand, if the number of hospitalized individuals or receiv-
ers is not equal to PS − 1 , non-hospitalized individuals still 
interact with each other and distribution of infection between 
these individuals can continue. In order to understand that 

how the discrimination between the hospitalized and non-
hospitalized individuals is carried out when distributing the 
infection, Alg. (1) given can be examined.

Because of the newly introduced hospitalization mecha-
nism adjusts the number of receivers dynamically for each 
cycle, an improved plasma treatment schema that is able 
to successfully handle the varying composition and num-
ber of receivers should be designed. Assume that xbest is 
the best solution found so far and xdnr is the most qualified 
solution in the current population. For obtaining plasma 
being used for the treatment of hospitalized individuals, 
the mathematical representation given in Eq. (11) can be 
employed. While xpls−t

j
 represents the newly determined jth 

parameter of the xpls and xpls corresponds to the plasma 
initialized with xbest , xdnr

j
 shows the jth parameter of the 

xdnr individual. If the newly calculated jth parameter or 
x
pls−t

j
 of the xpls improves the overall quality of the col-

lected plasma, a greedy selection between xpls−t
j

 and xpls
j

 is 
executed. After controlling all of D different parameters 
sequentially and applying greedy selection between the 
new and existing ones, xpls that is at least equal to or better 
than the xbest is obtained and ready to the usage for the 
treatment operations.

 

(11)x
pls−t

j
= x

pls

j
+ rand(−1, 1)(xdnr

j
)
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Algorithm 2   Treatment of the hospitalized individuals

The default workflow of the IP algorithm uses the 
selected donor as the source of plasma and the treatment 
is modeled in a manner that each parameter of a receiver 
is changed with the information provided by its donor. 
However, in order to utilize from the information provided 
by the donor or collected plasma, some parameters of the 
receiver should be set to the corresponding parameters of 
the donor or collected plasma directly while the remaining 
ones are changed appropriately. A more efficient transfer 
approach that focuses on increasing the positive contribu-
tion of the treatment can be formulated as in Eq. (12). In 
Eq. (12), jrand is used on behalf of a random number gener-
ated between 1 and D and it is compared with the j index 
chosen sequentially from the set {1, 2,… ,D} . If the jrand 

is found equal to the current value of j index, jth parameter 
of the xrcv−p

k
 or xrcv−p

kj
 is calculated again with the help of 

corresponding parameter of xpls . Otherwise, xrcv−p
kj

 is set to 
the jth parameter of the xpls or xpls

j
 for a direct utilization 

from the valuable information provided by the xpls . When 
the transfer of plasma to the xrcv

k
 is completed and the anti-

body level of xrcv
k

 immediately after the treatment calcu-
lated as f (xrcv−p

k
) is determined, a simple comparison 

between f (xrcv−p
k

) and the antibody level of xpls also calcu-

lated as f (xpls) is carried out. If f (xrcv−p
k

) is better than 
f (xpls) , xrcv

k
 is updated with the xrcv−p

k
 and xrcv

k
 is discharged 

from the hospital. Otherwise, xrcv
k

 continues to stay at hos-
pital and waits the treatment operations of the next cycle. 
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The details of the proposed treatment schema for the hos-
pitalized individuals are presented in Alg. (2).

The IP algorithm that integrates the hospitalization mecha-
nism into the workflow of it to dynamically determine the 
number of individuals who will be treated as receivers and 
the specialized plasma generation and transfer schema is 
named hospital IPA for short hospIPA. In the hospIPA, there 
is no need to the NoR and NoD parameters and their sub-
tle adjustments. Because of the hospitalized individuals are 
not allowed to interact with the non-hospitalized individu-
als, the vicinity of the qualified solutions represented by the 
non-hospitalized individuals is explored more successfully. 
Also, it should be noticed that the treatment schema of a 
hospitalized or receiver individual is re-designed completely 

(12)

x
rcv−p

j
=

{
x
pls

j
, if j ≠ jrand

xrcv
j

+ rand(−1, 1)(xrcv
j

− x
pls

j
), otherwise

}

for handling the difficulty of dynamically determined set 
of receivers and increasing the effectiveness of plasma 
collection and transfer operations. When the operations 
related with the collection of plasma and its transfer to the 
receiver or receivers are carried out, hospIPA gets a chance 
of exploiting the solutions corresponding to the xbest , xdnr 
and xpls implicitly. In Fig. 2, a hypothetical scenario with 
ten individuals was illustrated to describe the hospitalization 
mechanism and treatment schema of the hospIPA.

5 � Experimental studies

The quality of a path being calculated by hospIPA changes 
according to the values of the algorithm specific control 
parameters, properties of the battlefields, enemy threats 
and finally number of segmentation points. Moreover, extra 
mechanisms executed by hospIPA effect the execution time 

Fig. 2   A pictorial description 
of fundamental operations in 
hospIPA

1. Assume that the infection distributes between the indivi- 

duals indexed as 1, 3, 5, 6, 7, 8, 9 and 10 and then it is 

decided that the individual indexed as 8 is hospitalized.  

88
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2. The individual indexed as 8 is hospitalized and stays together with the 

previously hospitalized individuals for the plasma treatment. As seen that 

the individuals with indexes 2 and 4 were hospitalized in the past cycles.   

5

xdnr xbest

3. The individual indexed as 5 becomes 

the donor and helps the plasma collec-

tion with the best solution found so far.   

4. All of the hospitalized individuals are tried to be treated with the transferred plasma. When 

the plasma treatment is completed, it is seen that the individuals indexed with 2 and 8 recover 

and they are ready for discharging from the hospital.   

2

5. While the individual with index 4 is still 

hospitalized, the individuals with indexes 2 

and 8 are discharged.   

6. The individuals indexed as 2 and 8 join to the set of non-hospitalized individuals and 

hospIPA starts another cycle with nine non-hospitalized individuals.   

44 HH

Table 2   Details of battlefields 
used for fixed altitude path 
planning

Sc Threat centers Threat radius Threat grade Start-Target point

1 (12,48),(24,33),(27,58),(30,70),
(55,80),(59,52),(70,34),(70,65)

12,9,9,10,
9,10,12,7

1,12,3,2,
7,9,13,5

(10,15)
(80,75)

2 (20,70),(25,19),(25,39),(45,20),
(47,41),(50,61),(70,53),(75,74),(78,20)

20,9,9,9,
9,9,9,9,20

7,5,5,5,
5,5,5,5,7

(5,5)
(95,95)

3 (10,50),(20,20),(30,42),(30,80),(50,55),
(60,10),(60,80),(65,38),(75,65),(90,80)

10,9,8,10,10,
10,10,11,8,10

8,6,5,4,7,
6,7,6,8,10

(10,0)
(80,100)
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and convergence performance of the same algorithm. For 
a more organized investigations about the path planning 
performance of hospIPA, the whole experimental studies 
were divided into four subsections. While the first and sec-
ond subsections were devoted to the tests and comparative 
studies for the two and three-dimensional battlefield sce-
narios, some results about the execution times of hospIPA 

were shared in the third subsection. Finally, the convergence 
characteristics of hospIPA and statistical significance of its 
solutions were evaluated in the fourth subsection.

Table 3   Results of hospIPA 
with varying PS values for 
Scenario-1

Bold values show the better results

D PS

30 40 50 75 100

10 Best 38.394 38.378 38.366 38.367 38.392
Worst 50.915 38.443 38.403 38.435 38.431
Mean 39.657 38.403 38.386 38.411 38.409
Std 3.817 0.023 0.016 0.025 0.017

15 Best 38.256 38.262 38.283 38.278 38.306
Worst 38.335 55.448 62.381 55.472 50.426
Mean 38.285 41.709 43.107 41.744 40.362
Std 0.028 6.987 9.802 6.981 4.578

20 Best 38.245 38.259 38.296 38.443 38.359
Worst 38.350 56.749 47.276 56.419 59.664
Mean 38.290 39.563 39.250 49.477 44.374
Std 0.038 4.672 2.722 7.153 6.921

25 Best 38.363 38.401 38.472 38.533 49.943
Worst 46.183 63.416 77.490 82.181 63.363
Mean 41.732 45.365 61.429 58.621 55.508
Std 3.852 8.956 12.009 16.920 5.172

Table 4   Results of hospIPA 
with varying PS values for 
Scenario-2

Bold values show the better results

D PS

30 40 50 75 100

10 Best 57.584 57.785 57.559 57.644 57.698
Worst 63.757 61.398 63.962 60.526 60.298
Mean 60.632 59.123 60.316 58.356 59.276
Std 2.580 1.728 2.544 1.219 1.264

15 Best 54.412 54.215 54.195 54.211 56.364
Worst 58.646 58.367 58.573 56.448 60.634
Mean 56.493 56.200 56.204 55.365 58.323
Std 1.132 1.541 1.503 1.064 1.374

20 Best 53.813 53.756 53.677 53.998 53.767
Worst 64.771 57.127 64.403 64.728 57.217
Mean 55.374 54.944 56.904 56.253 54.304
Std 3.751 1.170 4.950 3.083 1.164

25 Best 53.648 53.744 53.595 53.721 53.686
Worst 63.181 63.156 60.563 64.823 62.755
Mean 55.984 56.352 55.405 55.721 57.713
Std 2.722 2.611 2.209 2.816 2.200
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5.1 � Planning paths for two‑dimensional battlefields 
with hospIPA

The path planning performance of hospIPA after assuming 
that the altitude is fixed was investigated over three different 
battlefield scenarios each has four test cases generated by 
setting the number of segmentation points or D as 10, 15, 20 
and 25. An enemy threat in a battlefield used for experiments 
is represented with a circle and the location of the circle 
center and radius are decided previously. Moreover, grades 
were assigned to the enemy threats for defining danger lev-
els of them. The details about the battlefields and included 
enemy threats were given in Table 2 [64]. Because of only 
the population size or PS is adjustable for hospIPA, each test 
case was experimented by setting PS to 30, 40, 50, 75 and 
100. A run of hospIPA that is terminated when the evalu-
ation counter reaches to 6000 was repeated 30 times with 
random seeds and the best solution and its objective function 
value found at the end of a run were recorded [64]. By using 
the recorded objective function values, the best, worst, mean 
best objective function values and standard deviations were 
determined and then summarized in Table 3 for Scenario-1, 
Table 4 for Scenario-2 and finally Table 5 for Scenario-3.

The results given in Tables 3, 4, 5 provide important 
information about the relatively stable and consistent per-
formance of hospIPA. When the value being assigned to PS 
parameter is increased, a population based meta-heuristic 
can discover the search space more efficiently at the initial 
stage of a run and start subsequent operations with a set 
of solutions providing required diversities. However, the 
number of function evaluations spent per cycle, iteration 

or generation is directly proportional to the population size 
and a meta-heuristic terminates more quickly when its popu-
lation size is set to higher values without executing algo-
rithm specific search processes. On the other hand, when 
the population is configured with a small set of solutions, 
algorithm continues to search more longer and the prob-
ability of finding qualified solutions is boosted intrinsically. 
Even though the small set of solutions brings some advan-
tages to the considered algorithm by allowing it for showing 
exclusive exploration and exploitation characteristics, the 
diversity of solutions can not be enough to represent the 
different regions of the space and convergence problems can 
arise from one run to another. As stated earlier, hospIPA 
hospitalizes the critical individuals corresponding to poor 
solutions of the problem and decreases the number of active 
individuals being used in the subsequent cycle. By execut-
ing this type of mechanism, hospIPA becomes capable of 
managing a population containing huge number of members. 
If hospIPA starts its optimization with a population contain-
ing a small number of members, the hospitalization mecha-
nism can also decrease the solution diversity, but it should 
be noticed that hospIPA discharges some patients whose 
treatments conclude successfully and adjusts the number of 
active individuals dynamically. Also, hospIPA utilizes from 
a specialized treatment schema where the plasma being used 
for the patients is collected at the beginning of the second 
main stage in order to explore the neighborhood of the best 
solution discovered so far with the help of the the best solu-
tion of the current population and then transferred subtly to 
improve the exploitation characteristics of the algorithm.

Table 5   Results of hospIPA 
with varying PS values for 
Scenario-3

Bold values show the better results

D PS

30 40 50 75 100

10 Best 49.772 49.772 49.772 49.771 49.779
Worst 49.797 49.785 49.796 49.786 49.789
Mean 49.776 49.776 49.781 49.776 49.785
Std 0.009 0.004 0.010 0.004 0.004

15 Best 49.763 49.756 49.750 49.763 49.769
Worst 49.815 49.851 49.957 49.872 49.850
Mean 49.779 49.785 49.785 49.815 49.801
Std 0.016 0.034 0.062 0.042 0.029

20 Best 49.789 49.786 49.825 49.867 49.945
Worst 49.927 50.075 50.383 50.213 52.334
Mean 49.845 49.915 49.964 50.011 50.732
Std 0.055 0.113 0.176 0.088 0.900

25 Best 49.878 49.932 50.103 49.869 50.045
Worst 62.445 55.805 53.399 57.162 52.150
Mean 50.831 50.611 52.194 51.529 50.860
Std 3.158 1.443 1.078 2.151 0.689
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The stable performance of hospIPA was validated over 
the results given in Tables 3, 4, 5 for varying PS param-
eter values. However, when the results of these tables are 
analyzed carefully, a subtle detail about the relationship 
between the PS, battlefield scenarios and their test cases 
getting intrinsically difficult with the higher values of D can 
also be detected. While hospIPA obtains slightly better paths 
for the test cases of Scenario-1 and Scenario-3 by setting the 
PS to 30 compared to the paths of the same algorithm by 
setting the PS to 40, 50, 75 or 100, it requires more than 30 
individuals for planning more qualified paths related with 
the test cases of Scenario-2. The optimal paths being calcu-
lated for the test cases of Scenario-1 and Scenario-3 contain 
less maneuvers than the optimal paths being calculated for 
the test cases of Scenario-2 and setting PS to a small con-
stant such as 30 allows hospIPA utilizing from specialized 
operations more and finding fine-tuned paths for a UAV or 
UCAV. If a test case similar to the test cases of Scenario-2 
includes optimal path or paths with challenging maneuvers, 
assigning higher values to the PS increases the probability of 
obtaining initial solutions satisfying mentioned maneuvers 

partially or near fully. By combining the benefits of starting 
optimization with a huge number of initial solutions, newly 
designed hospitalization mechanism and treatment schema, 
it is seen that hospIPA calculates better paths for the test 
cases of Scenario-2 when its PS parameter is determined as 
50, 75 or 100. For a visual representation of the battlefields 
and the paths found by hospIPA with 30 individuals, Figs. 3, 
4, 5 can be controlled.

The quality evaluation of the discovered paths by hos-
pIPA should be made over a comparison with other meta-
heuristic based planners. For this purpose, a set of compara-
tive studies between hospIPA and standard implementations 
of IPA, GA, MFO, SSA, PFA, SBO, SCA, GWO, AEO 
and improved variants of some of them such as GAPSO, 
ECTLBO, HSGWO-MSOS, CIPSO and NSEAEO was car-
ried out. In order to guarantee that the comparative studies 
between hospIPA and other techniques are performed under 
the same conditions, each test case in Scenario-1, Scenario-2 
and Scenario-3 was experimented 30 times by setting the 
population size to 30 and maximum evaluation number to 
6000 and obtained results were presented in Tables 6, 7, 8. 

Fig. 3   The best and worst paths 
found by hospIPA for Sce-
nario-1 with D equal to 10 (a), 
15 (b), 20 (c) and 25 (d)
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The first and foremost thing that can be extracted from the 
mentioned tables is the promising performance of hospIPA 
against its competitors. While hospIPA is determined as the 
best path planner among other algorithms with the aver-
age ranks equal to 1.750 for the Scenario-1 and Scenario-2, 
its superiority becomes more apparent for Scenario-3 and 
hospIPA is also determined as the best planner among other 
algorithms with the average rank equal to 1.000. Another 
important conclusion that can be extracted from Tables 6, 7, 
8 is about that the performance of hospIPA increases gener-
ally compared to the other tested meta-heuristics when the 
number of segmentation points is chosen high enough. If the 
number of segmentation points is chosen high for the sensi-
tivity, finding an optimum or near optimum path gets more 
difficult. However, the difficulty of path planning stemmed 
from the higher values of the number of segmentation points 
is handled successfully by hospIPA and its plasma genera-
tion and transfer schema. Because of the plasma generation 
depends on improving each parameter of the best solution 
with the help of selected donor, if the number of segmen-
tation points is set to a relatively high value, collecting 

plasma that is qualifiable than the considered best solution 
and donor individual can be more probable. Nevertheless, it 
should be noticed that the cost of plasma generation in terms 
of consumed function evaluations rises and hospIPA can 
terminate without repeating its operations adequately. The 
mentioned drawback of hospIPA shows its effect on the path 
planning capabilities and hospIPA lags behind only NSE-
AEO and gets ranked as the second best technique for the 
test cases of Scenario-1 and Scenario-2 with D equal to 25.

5.2 � Planning paths for three‑dimensional 
battlefields with hospIPA

The investigations about the path planning performance of 
hospIPA are continued with the experiments by using three-
dimensional battlefield scenarios that are called Scenario-4 
and Scenario-5. The Scenario-4 and Scenario-5 represent 

Fig. 4   The best and worst paths 
found by hospIPA for Sce-
nario-2 with D equal to 10 (a), 
15 (b), 20 (c) and 25 (d)
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an enemy threat with a cylinder whose center, radius and 
height are known as detailed in Table 9 [64]. The test cases 
generated by assigning 10, 15, 20 and 25 constants to D for 
Scenario-4 and Scenario-5 were solved with hospIPA. The 
PS parameter of hospIPA was set to 30, 40, 50, 75 and 100 
and 30 independent runs were carried out after determin-
ing maximum evaluation number as 6000. The best, worst, 
mean best objective function values and standard deviations 
of 30 independent runs were summarized in Table 10 for 
Scenario-4 and Table (11) for Scenario-5. From the results 
given in Table (10) and Table 11, it is seen that hospIPA is 
capable of protecting previously proven stable performance 
especially for the 10 and 15 dimensional cases of the consid-
ered scenarios. However, when the number of segmentation 
points is increased and determined as 20 and 25, hospIPA 
requires selection of PS parameter more carefully. The exist-
ence of z-coordinate and the higher number of segmenta-
tion points bring additional complexity to the path planning 
problem and hospIPA should iterate more by starting the 
search with relatively small PS values such as 30 or 40. If 
hospIPA iterates more by starting the search with relatively 

small PS values, the discrimination between the hospital-
ized and non-hospitalized individuals is carried out quickly. 
Moreover, repeating the plasma collection operations for 
each iteration allows hospIPA to explore the vicinity of the 
best solution and find more qualified plasma being used for 
the treatment of hospitalized individuals. The best and worst 
paths found by hospIPA with PS equal to 30 are depicted in 
Figs. 6, 7 for a pictorial investigations about the tested three-
dimensional battlefields their and maneuver requirements.

In order to decide that whether the promising perfor-
mance of hospIPA for the fixed altitude battlefield scenar-
ios against other meta-heuristic based path planners is also 
achieved on the three-dimensional battlefield scenarios or 
not, a comparison between hospIPA and IPA, GA, MFO, 
SSA, PFA, SBO, SCA, GWO, AEO, GAPSO, ECTLBO, 
HSGWO-MSOS, CIPSO and NSEAEO was made again. 
Each test case in Scenario-4 and Scenario-5 was solved 
30 times with hospIPA and other mentioned meta-heuris-
tic algorithms by assigning 30 and 6000 constants to the 
population size and maximum evaluation number and then 

Fig. 5   The best and worst paths 
found by hospIPA for Sce-
nario-3 with D equal to 10 (a), 
15 (b), 20 (c) and 25 (d)
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Table 9   Details of battlefields 
used for three-dimensional path 
planning

Sc Threat centers Threat radius Threat height Threat grade Start-Target point

4 (23,60),(30,15),(45,27),(50,75),
(60,10),(70,85),(78,62),(90,80)

11,9,10,11,
10,8,8,7

120,80,140,110,
130,100,144,160

8,10,8,11,
8,7,4,9

(0,0,10)
(100,90,75)

5 (25,15),(25,80),(39,40),(45,70),
(55,10),(70,80),(75,50),(85,25)

10,10,8,9,
12,7,11,11

80,60,100,120,
130,140,80,90

10,8,5,11,
3,6,13,4

(0,0,0)
(80,75,50)

Table 10   Results of hospIPA 
with varying PS values for 
Scenario-4

Bold values show the better results

D PS

30 40 50 75 100

10 Best 60.396 60.391 60.387 60.393 60.380
Worst 60.428 60.430 66.226 60.463 60.414
Mean 60.411 60.405 61.377 60.419 60.401
Std 0.012 0.016 2.205 0.027 0.016

15 Best 60.477 60.532 60.524 60.522 60.549
Worst 69.564 61.843 69.558 61.923 60.591
Mean 62.201 60.766 62.402 60.791 60.567
Std 3.381 0.490 3.304 0.517 0.015

20 Best 60.436 60.386 60.437 60.581 60.463
Worst 61.698 61.725 68.445 62.273 61.962
Mean 60.703 60.848 62.083 61.348 61.324
Std 0.505 0.597 2.935 0.661 0.665

25 Best 60.526 60.485 60.558 60.522 60.776
Worst 73.029 62.008 61.855 62.970 78.807
Mean 62.658 60.690 61.097 61.155 63.344
Std 3.549 0.451 0.503 0.685 4.385

Table 11   Results of hospIPA 
with varying PS values for 
Scenario-5

Bold values show the better results

D PS

30 40 50 75 100

10 Best 49.203 49.241 49.236 49.185 49.185
Worst 52.350 49.296 49.417 49.256 49.882
Mean 50.168 49.263 49.320 49.216 49.416
Std 1.453 0.022 0.071 0.030 0.299

15 Best 49.129 49.141 49.149 49.160 49.186
Worst 53.674 49.234 53.508 49.266 53.486
Mean 49.905 49.171 50.069 49.187 49.824
Std 1.714 0.032 1.383 0.039 1.462

20 Best 49.121 49.152 49.146 49.147 49.342
Worst 52.523 52.604 49.526 74.710 56.957
Mean 49.616 49.465 49.248 52.620 50.686
Std 1.160 0.857 0.126 8.812 2.294

25 Best 49.092 49.098 49.342 49.283 49.582
Worst 58.451 73.209 90.681 52.457 63.061
Mean 50.067 53.968 57.025 50.163 52.808
Std 2.308 6.702 12.980 1.199 4.409
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Fig. 6   The best and worst paths 
found by hospIPA for Sce-
nario-4 with D equal to 25

Fig. 7   The best and worst paths 
found by hospIPA for Sce-
nario-5 with D equal to 25



International Journal of Machine Learning and Cybernetics	

Ta
bl

e 
12

  
C

om
pa

ris
on

 b
et

w
ee

n 
ho

sp
IP

A
 a

nd
 o

th
er

 p
at

h 
pl

an
ne

rs
 fo

r S
ce

na
rio

-4

B
ol

d 
va

lu
es

 sh
ow

 th
e 

be
tte

r r
es

ul
ts

D
ho

sp
IP

A
IP

A
G

A
G

A
PS

O
M

FO
SS

A
PF

A
SB

O
SC

A
EC

TL
BO

H
SG

W
O

 -M
SO

S
C

IP
SO

G
W

O
A

EO
N

SE
A

EO

10
B

es
t

60
.3

96
60

.4
28

76
.7

56
67

.1
11

75
.0

29
67

.3
12

70
.7

68
71

.1
99

91
.8

52
68

.9
07

71
.5

34
70

.3
08

64
.7

49
62

.5
55

60
.8

45
W

or
st

60
.4

28
60

.6
25

15
8.

21
7

10
2.

92
5

13
2.

44
8

12
9.

54
4

19
8.

56
0

11
9.

07
1

19
0.

91
6

12
4.

65
1

15
4.

50
7

24
1.

00
3

15
8.

00
6

95
.0

48
68

.7
15

M
ea

n
60

.4
11

60
.4

54
11

0.
25

4
77

.9
69

97
.3

08
88

.9
45

11
7.

95
6

86
.4

33
12

7.
02

9
92

.7
87

97
.5

94
13

3.
47

6
82

.3
11

69
.7

34
63

.0
80

St
d

0.
01

2
0.

04
9

22
.9

65
8.

66
3

13
.5

29
15

.3
98

38
.8

21
10

.3
65

21
.0

23
15

.3
08

25
.5

90
53

.0
87

20
.5

61
7.

88
5

2.
40

0
R

an
k

1
2

12
5

10
8

13
7

14
9

11
15

6
4

3
15

B
es

t
60

.4
77

60
.7

04
11

3.
06

8
94

.3
49

11
2.

40
2

90
.1

11
75

.3
49

66
.8

31
16

9.
52

6
80

.8
45

77
.2

91
73

.2
93

75
.1

04
69

.3
51

63
.0

00
W

or
st

69
.5

64
62

.1
77

40
0.

38
8

22
5.

29
0

22
9.

75
7

24
9.

23
9

32
1.

77
3

16
6.

02
9

38
7.

57
0

22
8.

60
0

23
3.

96
0

47
0.

72
6

18
8.

10
0

11
6.

73
6

71
.9

03
M

ea
n

62
.2

01
61

.5
45

23
6.

27
1

13
0.

59
5

15
8.

71
6

17
1.

55
1

16
9.

95
7

10
3.

48
9

25
6.

54
0

15
8.

62
9

12
7.

87
6

16
6.

22
8

97
.4

45
85

.6
50

66
.8

79
St

d
3.

38
1

0.
48

1
70

.8
77

26
.8

01
32

.6
52

36
.1

49
63

.5
89

30
.4

86
42

.3
78

41
.7

15
37

.6
16

10
9.

58
7

26
.8

82
13

.9
87

2.
43

9
R

an
k

2
1

14
8

10
13

12
6

15
9

7
11

5
4

3
20

B
es

t
60

.4
36

69
.5

83
21

2.
11

8
16

6.
11

4
14

7.
38

8
16

3.
50

0
15

3.
11

9
84

.3
85

26
0.

95
8

11
5.

41
0

78
.3

44
10

4.
20

0
82

.1
19

75
.3

50
69

.3
17

W
or

st
61

.6
98

83
.5

71
64

5.
48

5
24

2.
61

2
51

3.
24

5
37

0.
77

3
60

5.
61

2
27

7.
44

9
52

8.
95

8
38

3.
25

8
28

7.
39

5
49

4.
31

6
20

8.
40

6
17

7.
23

1
82

.3
13

M
ea

n
60

.7
03

76
.9

06
35

2.
00

4
20

1.
93

8
24

1.
84

0
24

5.
42

0
24

2.
89

1
16

4.
26

7
38

1.
92

6
26

2.
51

0
15

3.
69

9
22

1.
07

1
12

5.
47

8
10

1.
52

7
73

.5
13

St
d

0.
50

5
5.

16
6

94
.7

15
22

.0
93

74
.1

72
53

.8
65

89
.0

24
49

.3
30

52
.7

63
75

.9
75

64
.4

85
95

.9
19

41
.9

68
28

.0
88

3.
05

8
R

an
k

1
3

14
8

10
12

11
7

15
13

6
9

5
4

2
25

B
es

t
60

.5
26

72
.3

21
36

0.
87

1
22

9.
27

7
17

3.
40

5
19

3.
24

3
15

2.
94

2
12

8.
84

0
37

5.
23

7
20

9.
78

3
80

.5
44

14
0.

18
5

79
.4

62
82

.0
95

73
.6

71
W

or
st

73
.0

29
12

4.
60

8
81

5.
00

3
38

6.
46

1
65

3.
90

5
48

3.
70

7
45

9.
10

0
41

1.
03

4
10

78
.3

13
58

4.
57

7
37

9.
76

6
73

6.
03

8
37

7.
54

8
15

1.
07

1
85

.9
15

M
ea

n
62

.6
58

93
.4

85
47

0.
69

7
28

8.
55

4
30

5.
86

3
31

4.
83

2
28

3.
54

0
24

4.
36

3
56

0.
71

8
36

6.
93

2
13

7.
18

8
35

9.
50

9
13

5.
73

1
90

.0
38

77
.8

94
St

d
3.

54
9

19
.6

41
10

9.
87

5
35

.6
24

10
1.

40
3

62
.8

28
64

.2
89

60
.9

48
14

5.
64

6
10

0.
35

9
75

.6
10

13
3.

50
1

60
.1

12
12

.8
73

2.
69

8
R

an
k

1
4

14
9

10
11

8
7

15
13

6
12

5
3

2
A

ve
ra

ge
 ra

nk
1.

25
0

2.
50

0
13

.5
00

7.
50

0
10

.0
00

11
.0

00
11

.0
00

6.
75

0
14

.7
50

11
.0

00
7.

50
0

11
.7

50
5.

25
0

3.
75

0
2.

50
0

O
ve

ra
ll 

ra
nk

1
2

14
7

9
10

10
6

15
10

8
13

5
4

2



	 International Journal of Machine Learning and Cybernetics

Ta
bl

e 
13

  
C

om
pa

ris
on

 b
et

w
ee

n 
ho

sp
IP

A
 a

nd
 o

th
er

 p
at

h 
pl

an
ne

rs
 fo

r S
ce

na
rio

-5

B
ol

d 
va

lu
es

 sh
ow

 th
e 

be
tte

r r
es

ul
ts

D
ho

sp
IP

A
IP

A
G

A
G

A
PS

O
M

FO
SS

A
PF

A
SB

O
SC

A
EC

TL
BO

H
SG

W
O

 -M
SO

S
C

IP
SO

G
W

O
A

EO
N

SE
A

EO

10
B

es
t

49
.2

03
49

.0
39

63
.9

53
58

.5
87

65
.5

48
55

.4
16

65
.0

60
55

.7
42

83
.1

49
58

.9
46

57
.9

64
68

.9
05

54
.4

10
55

.7
25

49
.5

21
W

or
st

52
.3

50
49

.1
11

21
0.

84
9

12
5.

26
3

22
8.

83
8

15
9.

56
0

21
9.

13
3

97
.7

09
16

1.
33

0
10

5.
82

2
12

4.
81

4
27

0.
95

1
11

4.
79

8
64

.5
32

56
.7

88
M

ea
n

50
.1

68
49

.0
87

10
5.

11
6

70
.0

71
99

.1
40

80
.0

13
11

9.
54

6
66

.5
24

11
3.

67
8

83
.5

95
87

.1
89

11
4.

52
4

83
.2

84
57

.3
57

52
.6

63
St

d
1.

45
3

0.
03

2
33

.4
80

13
.0

37
31

.4
22

22
.0

23
38

.7
97

11
.5

71
20

.7
70

16
.2

18
13

.5
03

44
.3

96
15

.8
29

1.
82

6
2.

63
4

R
an

k
2

1
12

6
11

7
15

5
13

9
10

14
8

4
3

15
B

es
t

49
.1

29
49

.8
28

14
4.

12
3

97
.4

37
71

.3
80

92
.8

25
96

.0
46

64
.4

84
16

5.
07

5
78

.9
45

61
.8

97
10

2.
65

6
70

.6
63

55
.7

40
52

.1
41

W
or

st
53

.6
74

53
.4

55
41

4.
68

6
17

5.
32

6
28

8.
32

5
23

4.
46

9
28

1.
90

1
15

7.
03

0
35

3.
78

9
28

7.
69

9
23

9.
70

9
71

1.
13

4
18

0.
96

4
10

0.
51

8
58

.4
59

M
ea

n
49

.9
05

51
.7

17
22

5.
81

1
13

3.
76

4
13

7.
68

8
14

5.
07

1
18

7.
00

6
93

.0
61

26
7.

27
5

18
8.

06
7

13
7.

61
5

21
9.

62
9

12
7.

64
1

71
.2

99
55

.3
78

St
d

1.
71

4
1.

31
1

58
.3

65
15

.3
23

55
.6

91
30

.0
44

41
.9

49
22

.1
35

44
.2

12
56

.5
86

48
.8

32
14

4.
74

5
30

.0
12

11
.9

76
6

2.
02

3
R

an
k

1
2

14
7

9
10

11
5

15
12

8
13

6
4

3
20

B
es

t
49

.1
21

57
.6

29
27

8.
66

6
15

3.
30

5
77

.2
46

16
3.

63
3

13
9.

16
8

83
.3

14
23

1.
10

4
16

0.
50

8
61

.0
37

10
7.

83
3

62
.0

21
60

.4
27

55
.0

16
W

or
st

52
.5

23
78

.6
18

59
0.

34
0

26
9.

28
6

57
0.

12
9

29
8.

37
6

71
2.

94
2

20
7.

09
7

66
1.

46
6

46
6.

87
0

38
6.

52
7

11
84

.1
52

26
9.

83
4

68
.0

67
60

.6
04

M
ea

n
49

.6
16

69
.2

24
35

6.
83

0
20

3.
67

5
24

5.
73

4
22

0.
34

8
26

0.
34

9
14

4.
50

5
37

8.
61

9
31

1.
80

0
17

6.
98

3
41

0.
19

0
16

1.
17

4
63

.3
30

57
.8

18
St

d
1.

16
0

8.
13

8
77

.8
25

33
.0

18
10

9.
79

6
37

.5
09

10
3.

92
4

34
.7

28
98

.1
31

92
.8

35
87

.1
04

30
2.

31
4

54
.7

30
1.

86
5

1.
27

7
R

an
k

1
4

13
8

10
9

11
5

14
12

7
15

6
3

2
25

B
es

t
49

.0
92

67
.0

11
38

1.
90

2
26

0.
00

8
10

7.
69

4
18

4.
21

6
17

9.
31

0
14

6.
36

9
31

2.
98

5
20

1.
94

1
68

.6
00

11
3.

61
4

65
.9

33
63

.5
12

57
.7

35
W

or
st

58
.4

51
10

9.
92

7
93

9.
44

6
41

9.
36

5
58

1.
03

4
63

1.
84

1
44

6.
31

3
46

8.
13

6
14

31
.1

16
69

7.
66

0
45

5.
73

4
14

23
.3

91
42

7.
77

6
16

6.
02

6
60

.1
52

M
ea

n
50

.0
67

92
.2

90
52

5.
07

4
31

7.
79

5
32

3.
89

1
34

5.
00

3
31

6.
29

5
22

3.
26

4
59

1.
81

2
43

5.
61

4
26

1.
15

2
45

7.
17

0
21

6.
62

2
11

0.
24

5
58

.8
48

St
d

2.
30

8
16

.1
63

12
2.

07
6

35
.0

55
12

1.
41

4
11

7.
99

1
59

.1
76

62
.0

73
25

2.
10

7
13

6.
38

9
11

7.
66

4
32

2.
86

2
60

.1
12

31
.0

83
0.

65
2

R
an

k
1

3
14

9
10

11
8

6
15

12
7

13
5

4
2

A
ve

ra
ge

 ra
nk

1.
25

0
2.

50
0

13
.2

50
7.

50
0

10
.0

00
9.

25
0

11
.2

50
5.

25
0

14
.2

50
11

.2
50

8.
00

0
13

.7
50

6.
25

0
3.

75
0

2.
50

0
O

ve
ra

ll 
ra

nk
1

2
13

7
10

9
11

5
15

11
8

14
6

4
2



International Journal of Machine Learning and Cybernetics	

their results were presented in Tables 12 and 13. When the 
results given in Tables 12 and 13 are investigated, it is seen 
that hospIPA obtains better paths than other competitors for 
seventy-five percent of all test cases about the three-dimen-
sional battlefields and gets ranked as the best path planner. 
Moreover, for the remaining 25% of all test cases about the 
three-dimensional battlefields, hospIPA lags slightly behind 
only IP algorithm and gets ranked as the second best path 
planner. If the details of two test cases in which IPA per-
forms better than hospIPA are controlled, it is understood 
that the number of segmentation points is equal to 10 or 15 
and the difference between the mean best objective func-
tion values of the IPA based techniques is relatively small. 
However, if the details of the test cases in which hospIPA 
performs better than IPA are controlled, it is observed that 
the number of segmentation points for the majority of the 
cases is equal to 20 or 25 and the difference between the 
mean best objective function values of IPA based techniques 

is considerable high and demonstrates the effectiveness of 
hospIPA becoming more clearer with the growing difficulty 
of the path planning problem.

5.3 � Execution times of hospIPA

The hospitalization mechanism used by hospIPA completely 
changed the interactions between the members of popula-
tion. Also, it should be noticed that the operations to do with 
the collection of plasma in hospIPA invoke D different calls 
to the procedure responsible for calculating the objective 
function value of a solution and a cycle consumes D more 
evaluations. If most of the individuals are in hospital, the 
phase related with the distribution of infection completes 
quickly and considerable amount of function evaluations 
are spent for the plasma collection and its transfer to the 
receivers. Moreover, if there are more than one hospital-
ized individual, hospIPA does not require compute intensive 

Table 14   Elapsed times of 
hospIPA and IPA with PS equal 
to 30

D Scenario-1 Scenario-2 Scenario-3 Scenario-4 Scenario-5

hospIPA IPA hospIPA IPA hospIPA IPA hospIPA IPA hospIPA IPA

10 Best 0.057 0.073 0.067 0.068 0.061 0.076 0.063 0.068 0.063 0.066
Worst 0.083 0.103 0.116 0.128 0.103 0.101 0.085 0.100 0.097 0.092
Mean 0.062 0.069 0.076 0.084 0.069 0.084 0.071 0.078 0.071 0.075
Std 0.006 0.016 0.012 0.015 0.009 0.017 0.005 0.009 0.008 0.008

15 Best 0.079 0.090 0.090 0.099 0.092 0.104 0.100 0.099 0.096 0.098
Worst 0.107 0.126 0.141 0.125 0.173 0.138 0.134 0.135 0.129 0.138
Mean 0.085 0.097 0.101 0.109 0.116 0.115 0.106 0.110 0.104 0.109
Std 0.006 0.008 0.012 0.006 0.018 0.009 0.007 0.011 0.008 0.011

20 Best 0.107 0.117 0.116 0.131 0.123 0.136 0.118 0.132 0.125 0.133
Worst 0.144 0.144 0.160 0.161 0.151 0.174 0.159 0.180 0.169 0.153
Mean 0.117 0.125 0.129 0.141 0.131 0.150 0.136 0.144 0.139 0.139
Std 0.007 0.007 0.011 0.009 0.009 0.010 0.010 0.012 0.012 0.005

25 Best 0.136 0.145 0.144 0.161 0.147 0.171 0.162 0.160 0.158 0.162
Worst 0.170 0.186 0.228 0.189 0.226 0.207 0.201 0.208 0.203 0.189
Mean 0.149 0.155 0.161 0.168 0.160 0.183 0.173 0.176 0.170 0.170
Std 0.009 0.010 0.014 0.007 0.015 0.011 0.010 0.011 0.017 0.007

Table 15   Sr and Me values of hospIPA and IPA with PS equal to 30

D Scenario-1 Scenario-2 Scenario-3 Scenario-4 Scenario-5

hospIPA IPA hospIPA IPA hospIPA IPA hospIPA IPA hospIPA IPA

10 Sr 100.000 100.000 36.667 73.333 100.000 100.000 100.000 100.000 100.000 100.000
Me 604.700 875.200 810.000 3598.818 84.933 375.267 159.567 1489.933 173.033 771.333

15 Sr 100.000 83.333 100.000 90.000 100.000 100.000 100.000 100.000 100.000 100.000
Me 591.133 3849.560 901.533 4091.222 352.833 1548.967 483.233 2639.067 206.333 2083.500

20 Sr 100.000 100.000 86.667 3.333 100.000 100.000 100.000 33.333 100.000 70.000
Me 1401.433 3834.333 1429.500 1468.000 641.333 3590.567 758.033 3963.800 508.533 4289.238

25 Sr 100.000 56.667 90.000 10.000 93.333 10.000 90.000 10.000 100.000 26.667
Me 1708.600 2519.412 1848.889 752.000 1051.714 602.000 1756.630 641.333 1498.333 3685.000
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operations for selecting the most critical individual with the 
purpose of hospitalization or the best one as a donor. In order 
to analyze how the mentioned situations effect the execution 
time of hospIPA and generate a difference compared to the 
execution time of the standard IPA, 30 independent runs by 

taking PS and maximum evaluation number equal to 30 and 
6000 were carried out. Both hospIPA and IPA were imple-
mented in C programming language and experiments were 
conducted on a Fedora-34 computer with an Intel i5-10500 
processor. For each run, the time elapsed until termination 
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International Journal of Machine Learning and Cybernetics	

was recorded in terms of seconds and the best, worst, mean 
execution times and the calculated standard deviations were 
presented in Table 14. From the results in Table 14, it is 
seen that hospIPA requires less time than the standard IPA 
for 85 percent of all test cases. Executing a decision making 
approach and dynamically adjusting the number of receivers 
as in the mechanisms of hospIPA reduce the computational 
burden stemmed from the selection of the currently hospital-
ized individual and the donor being used for the collection 
of plasma.

5.4 � Convergence performance and statistical 
analysis of hospIPA

For a numerical analysis about the convergence character-
istics of a meta-heuristic algorithm, Success rate (Sr) and 
Mean evaluations (Me) are the two common metrics [77]. If 
an algorithm finds a solution whose objective function value 
is better than the previously determined threshold until the 
end of a run, the considered algorithm is assumed as suc-
cessful for this run and the ratio between the number of runs 
for which algorithm is successful and total number of runs 
corresponds to the Sr metric. When the minimum number 
of evaluations required to find a solution whose objective 
function is better than the threshold for each successful run 
is recorded and then averaged, the Me value is obtained. 
The threshold was determined as 60 and 70 for the two and 

three-dimensional battlefield scenarios respectively and 
the calculated Sr and Me values of hospIPA and IPA with 
30 individuals were presented in Table 15. The Sr and Me 
values given in Table 15 prove the superior convergence 
performance of hospIPA compared to the convergence per-
formance of IPA. The Sr value of hospIPA is found equal or 
higher than the Sr value of IPA for 19 of all 20 test cases. 
Also, it should be noted that the Me value of hospIPA is cal-
culated less than the Me value of IPA for 16 of 19 test cases 
in which the Sr value of hospIPA is equal or higher than the 
Sr value of IPA. When the remaining 3 test cases in which 
IPA performs better than hospIPA by considering the Me 
values are analyzed, it should be emphasized that while IPA 
excesses threshold only for 10 percent of all runs, hospIPA 
excesses the threshold for 90 percent of all runs and shows 
its nine times stable and consistent performance against 
IPA. The better convergence performance of hospIPA even 
though IPA outperforms its competitor by evaluating the Me 
metric for some test cases can be further validated with the 
convergence curves of two and three-dimensional test cases 
containing 25 segmentation points over Fig. 8.

Even though the positive contribution of the proposed 
hospitalization mechanism and treatment schema on the 
solving performance of hospIPA and its superiority against 
standard implementation of IPA can be demonstrated by 
checking the results of comparative studies, an appropri-
ate statistical test should also be employed for proving the 

Table 16   Results of the 
Wilcoxon signed rank test for 
hospIPA and IPA

Bold values show the statistically significant algorithms

D Scenario-1 Scenario-2 Scenario-3 Scenario-4 Scenario-5

hospIPA vs IPA hospIPA vs IPA hospIPA vs IPA hospIPA vs IPA hospIPA vs IPA

10 � Val 2.758e−03 6.010e−04 1.635e−06 1.501e−06 1.450e−06
Z Val 2.993 −3.431 4.793 4.811 −4.818
W+ 87 399 0 0 465
W− 378 66 465 465 0
Sign hospIPA IPA hospIPA hospIPA IPA

15 � Val 1.557e−06 1.727e−06 1.687e−06 7.243e−02 7.592e−06
Z Val 4.803 4.782 4.787 1.796 4.476
W+ 0 0 0 145 15
W− 465 465 465 320 450
Sign hospIPA hospIPA hospIPA - hospIPA

20 � Val 1.684e−06 1.766e−06 1.697e−06 1.702e−06 1.692e−06
Z Val 4.788 4.778 4.786 4.785 4.787
W+ 0 0 0 0 0
W− 465 465 465 465 465
Sign hospIPA hospIPA hospIPA hospIPA hospIPA

25 � Val 1.717e−06 1.729e−06 1.767e−06 1.781e−06 1.756e−06
Z Val 4.784 4.782 4.778 4.776 4.779
W+ 0 0 0 0 0
W− 465 465 465 465 465
Sign hospIPA hospIPA hospIPA hospIPA hospIPA
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path planning capabilities of hospIPA. The Wilcoxon signed 
rank test is used commonly in order to decide that one of 
the compared techniques is statistically better [77]. If the 
significance level abbreviated as � is less than a constant 
that is usually chosen as 0.05, it is accepted that the differ-
ence between two techniques is enough to generate statisti-
cal significance in favor of one of them [77]. The Wilcoxon 
signed rank test results for the comparison of hospIPA and 
IPA with 30 individuals were given in Table 16. While the 
Z value corresponds to the test statistics, W+ and W− show 
the sum of ranks for which IPA is better than hospIPA and 
the sum of ranks for which hospIPA is better than IPA by 
considering 30 independent runs respectively in Table 16. 
When the � values calculated for the comparison between 
hospIPA and IPA are evaluated, it is validated that hospIPA 
is able to calculate paths whose qualities statistically appar-
ent for seventeen of twenty test cases. Only for the cases 
with 10 segmentation points belonging to Scenario-2 and 
Scenario-5, the Wilcoxon signed rank test indicates that the 
statistical significance is in favor of IPA. As seen from the 
properties and number of the test cases for which hospIPA 
is statistically better than IPA, the newly introduced variant 
manages the difficulties of the paths being planned in detail 
by calculating the convenient values for more than 15 seg-
mentation points.

6 � Conclusion

The advantages coming with the usage of UAVs and UCAVs 
caused strategical changes on the military projections of 
nations and immense budgets were released in order to 
improve the performance and task success of these modern 
vehicles. Because of the direct impact on the performance 
and task success of a UAV or UCAV system, solving a 
problem called path planning optimally by considering the 
enemy threats, fuel or battery consumption and some limi-
tations about the maneuverability became more important. 
Immune Plasma algorithm (IP algorithm or IPA) has been 
introduced recently to the literature of intelligent optimiza-
tion techniques. In this study, IP algorithm was powered with 
a hospitalization mechanism that generates a hospital, fills it 
with the critical patients corresponding to the poor solutions 
of the population and decides who will be discharged after 
the plasma transfer. Moreover, the existing treatment schema 
was remodeled in a manner that the plasma being transferred 
will be gathered over the best solution found so far and the 
donor chosen from the population. The new IPA variant 
supported with the mentioned hospitalization mechanism 
and treatment schema that together remove the requirement 
of NoR and NoD parameters was named the hospital IPA 
(hospIPA) and employed as a UAV or UCAV path planner.

The paths planned by hospIPA for two and three-dimen-
sional battlefields were compared with the paths planned 
by a set of well-known meta-heuristics and some of their 
variants. The experimental studies allowed to conclude 
that hospIPA is more qualified path planner than the tested 
algorithms. While hospIPA outperforms the considered 
path planners for the fourteen of all twenty test cases, it is 
ranked as the second or third best solver for the six remain-
ing cases and still proves its competitive performance. The 
hospitalization mechanism selecting the poor solutions and 
quarantining them in a hospital helps hospIPA to explore the 
vicinity of the qualified solutions steadily. Furthermore, if 
the newly designed treatment schema that models the col-
lection of the plasma by exploiting the best solution found 
so far does not give a substantial contribution to a hospital-
ized individual or it is not enough to discharging, hospi-
talization is continued for the considered individual. As an 
expected result of the mentioned decision, the evaluations 
are consumed more effectively for the non-hospitalized indi-
viduals or qualified solutions in the population. The future 
works can be devoted to the researches about the IPA based 
path planners for which the hospitalization mechanism and 
treatment schema are selected adaptively by considering the 
properties of the population. Also, the performance of the 
hospIPA or similar variants can be investigated by planning 
paths for multiple UAV or UCAV systems in a battlefield 
with static and dynamic enemy threats, non-flight zones and 
its challenging cases containing relatively high number of 
segmentation points.
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