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Abstract
With the increasing influence of machine learning algorithms in decision-making processes, concerns about fairness have 
gained significant attention. This area now offers significant literature that is complex and hard to penetrate for newcomers 
to the domain. Thus, a mapping study of articles exploring fairness issues is a valuable tool to provide a general introduc-
tion to this field. Our paper presents a systematic approach for exploring existing literature by aligning their discoveries 
with predetermined inquiries and a comprehensive overview of diverse bias dimensions, encompassing training data bias, 
model bias, conflicting fairness concepts, and the absence of prediction transparency, as observed across several influential 
articles. To establish connections between fairness issues and various issue mitigation approaches, we propose a taxonomy 
of machine learning fairness issues and map the diverse range of approaches scholars developed to address issues. We 
briefly explain the responsible critical factors behind these issues in a graphical view with a discussion and also highlight 
the limitations of each approach analyzed in the reviewed articles. Our study leads to a discussion regarding the potential 
future direction in ML and AI fairness.
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1  Introduction

Machine learning-based models have undoubtedly brought 
remarkable advancements in various fields, demonstrating 
their ability to make accurate predictions and automate deci-
sion-making processes. However, many real-world applica-
tions of machine learning (ML) models, such as determin-
ing admission to a university [1], screening job applicants 
[2–4], disbursing government subsidies [5, 6], identifying 
persons at high risk of disease [7], and so on, are prone 
to bias. The inherent biases and limitations in the training 
data and algorithms can lead to discriminatory outcomes and 
perpetuate societal biases. Discriminatory outcomes refer to 
situations where machine learning models produce predic-
tions or decisions that systematically favor or disadvantage 
particular groups more than others [8, 9]. Societal biases 

are the preconceived notions, prejudices, or stereotypes in a 
society that can lead to unfair advantages or disadvantages 
for specific individuals or groups. ML and AI researchers 
have raised many questions about the source and the solu-
tion to the fairness issues in AI (FAI) and discussed various 
types of biases [10].

ML models can exhibit various unfairness issues, encom-
passing biases and discriminatory outcomes. Discussions 
often revolve around biases in training datasets, discrimi-
natory behavior exhibited by predictive models, and the 
challenge of interpreting and explaining the outcomes pro-
duced by these models. Biases in the training dataset usually 
refer to the data representing disparities and discrimination 
against certain groups based on attributes such as race, gen-
der, or socioeconomic status, which Ml models may inad-
vertently amplify. The press and literature gradually started 
to discuss these types of ML model bias in the early twenty-
first century [11, 12]. Also, ML models can exhibit bias 
towards specific groups despite unbiased training data. Other 
than these issues, the prediction outcome’s unexplainable 
and uninterpretable nature is another widespread fairness 
issue. Explainability and interpretability refer to the logical 
reasoning of outcomes with available alternative profiles. 
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For example, suppose a person is denied credit from a bank. 
In that case, explanations provide feedback on where exactly 
his profile could be altered to get the credit, such as increas-
ing monthly income, decreasing loan amount, or changing 
race. Some of these changes may not be possible, such as 
changing a person’s race to get credit from a back, which 
makes the bank’s credit assigning model unfair or biased 
towards a group of people [13]. In addition, researchers also 
report some other forms of bias, including inconsistent pre-
dictions and inherent biases within the data [14, 15].

As these bias types can compromise the integrity and 
reliability of decision-making procedures, impeding the 
advancement the ML model originally intended to enable, 
achieving fairness in ML predictions is essential [16]. Avoid-
ing fairness concerns across diverse domains, including sign 
language analysis (e.g., [17, 18]), image object analysis (e.g., 
[19, 20]), non-linear data analysis (e.g., [21, 22]) and graph 
data analysis (e.g., [23]), could provoke doubts regarding the 
credibility and reliability of machine learning methodolo-
gies in respective fields. Advancement in ensuring fairness 
requires continuous research, development, and implementa-
tion of approaches to mitigate predictions’ discrimination. 
Numerous researchers have discussed and proposed various 
approaches to this ongoing challenge in recent years, lead-
ing to rapid and dynamic growth in research within the field 
[24–28]. As a consequence of this growth, comprehending 
the existing issues and methodologies within the field can 
be time-consuming, highlighting the need for dedicated 
efforts to stay up-to-date with the latest advancements. It 
even requires much effort for people new to the field as a 
researcher. Literature review articles aid in this situation and 
provide comprehensive information so that researchers and 
practitioners can understand the proposed methodologies 
and their limitations with minimal effort. Also, it allows for 
examining different fairness definitions, evaluation metrics, 
and bias mitigation strategies employed in various domains. 
Moreover, a literature review helps identify gaps, challenges, 
and open research questions in the pursuit of fairness, ena-
bling researchers to build upon existing work and propose 
novel approaches. Additionally, it aids in creating a shared 
knowledge base and promotes collaboration within the 
research community, ultimately contributing to developing 
more robust, transparent, and equitable machine learning 
models.

Although there are many literature review articles on fair-
ness-ensuring approaches, some limitations persist in these 
works. Firstly, many studies need more discussion regarding 
the article exploring and collecting process [29–32]. Sec-
ondly, recent methodologies presented in these articles may 
need to be updated as researchers continue advancing the 
field [29]. In this regard, it is common for some approaches 
to lose relevance and for new approaches to gain signifi-
cant impact, shaping the direction of research in machine 

learning and AI. Therefore, staying updated with the lat-
est advancements is essential to ensure continued progress 
and relevance. Thirdly, although the usual goal of fairness-
related articles is to generalize fairness definitions from 
various perspectives and develop an approach where this 
defined fairness is ensured, some literature review articles 
highlight various fairness definitions more than developed 
fair approaches [29]. However, understanding the procedures 
to ensure fairness is as crucial as comprehending the various 
fairness-related terminologies. Lastly, there is a need for a 
more standardized evaluation and classification of fairness 
methodologies from the perspective of their addressed fair-
ness issues. Most reviews classify fairness-ensuring meth-
odologies based on when the researchers are incorporating 
a bias mitigation strategy (Prior to the model implementa-
tion, after the model implementation, or during the model 
implementation). We need to connect these fairness-ensur-
ing methodologies with the specific issue types. Emerging 
academics often require more direction for understanding 
a classification of methodologies from the perspective of 
specific fairness issues they solve. Researchers often adhere 
to conventional methodologies when addressing specific 
challenges in their field. For example, scholars usually 
explore debiasing techniques for removing inherent data 
bias and generate counterfactual examples to explain model 
prediction.

To solve these issues, we offer a comprehensive mapping 
analysis of some recent fairness concerns and academics’ 
proposed strategies. A comprehensive mapping study can 
present a clear idea of how to explore this field of research, 
which is especially helpful for aspiring scholars. Besides, a 
mapping study is a valuable tool for identifying and retriev-
ing recent articles, facilitating the collection of related stud-
ies in subsequent years, even if the discussed articles become 
outdated. In this regard, the impact of a mapping study can 
endure longer than that of conventional review articles. 
Figure 1 graphically represents our motivation to follow a 
systematic mapping study. Our paper also generalizes fair-
ness-related terminologies with appropriate examples and 
the adopted approaches for ensuring them. Finally, we also 
present a taxonomy of fairness-ensuring methodologies from 
the perspective of fairness issues they solve. This discussion 
can be a good source for identifying new trends in proposed 
solutions, their limitations, and potential future directions 
in state-of-the-art articles. We summarize our contributions 
as follows,

•	 We offer a systematic mapping study of 94 articles that 
address fairness concerns, bias mitigation strategies, 
fairness terminology, and metric definitions across dis-
tinct research groups. Our mapping study method pre-
sents an adaptable search query for multiple databases 
that explains the article filtering process and an over-
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view of how the number of articles increased/decreased 
over time and which countries are mostly involved in 
these 94 articles. This description of the filtering pro-
cess facilitates the credibility of the work. Also, new 
researchers can follow or tune the query to review more 
updated papers for an extended period.

•	 We classify the fairness issues first and then further 
classify the fairness-ensuring methodologies adopted 
to solve each type of fairness issue. We also represent 
the graphical taxonomy of fairness issues in Fig. 6, 
the taxonomy of methodologies in Fig. 7, and a tax-
onomy representing specific methodologies targeted 
to solve specific issues and their limitations in Fig. 10 
for researchers to understand this area’s current trends 
easily.

•	 We describe each type of fairness issue, summarize the 
approaches described in the filtered articles and discuss 
their limitations. We also provide a detailed definition 
of the fairness terminologies explored in the filtered 
articles for applying in the bias mitigation approaches, 
explain them with related examples, and provide the 
metric definition of the fairness terminology (if avail-
able).

•	 We provide ideas for future contributions that researchers 
have yet to explore.

•	 We summarize the publicly available datasets that other 
researchers have explored in the filtered articles and 
open-source tools that other researchers have proposed 
for mitigating bias or identifying bias in a dataset.

We organize the rest of the paper as follows: Sect. 2 presents 
the background material necessary to follow our discussion. 
Then, section 3 discusses our methods of this mapping 
study along with the research questions we are attempting 
to answer in this article and the developed query. Section 4 
represents the findings from our mapping study in the form 
of answers to current research trends and most engaged 
countries and individuals, the first two research questions 
mentioned in section 3. The rest of the research question 
answers are regarding the analysis of the filtered papers. 
The research problems discussed in the filtered papers, the 
adopted methodologies to solve them, and the limitations 
or challenges of these methodologies are in section 5, 6, 7 
accordingly. Next, the following two sections, 8 and 9, rep-
resent the answers to the last two questions regarding future 
direction and publicly available datasets, tools, and source 
code. We also discuss threats to the validity of our work in 
section 10. Finally, we conclude in section 11 with a general 
summary of our contributions.

2 � Background

Several notable literature review articles have examined the 
landscape of fairness-ensuring methodologies. Some arti-
cles generalized explanations of bias types and their sources 
from various perspectives. For example, Reuben Binns dis-
cussed two types of unfairness issues from the perspective 
of discrimination against groups: algorithmic discrimination 

Fig. 1   Motivation to follow 
systematic mapping approach 
visualized in the diagram’s 
sequential phases (contained 
within square boxes) from top 
to bottom. Comprehensive 
review articles assist us in learn-
ing current trends. Over time, 
the reviews with a systematic 
mapping approach and reviews 
without a systematic mapping 
approach are affected by the 
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The article collection process 
aids in consolidating emerg-
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reviews, enabling continued 
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trends, even over an extended 
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against protected feature groups and lack of individual fair-
ness in the algorithm as the bias [29]. Algorithmic discrimi-
nation against protected feature groups refers to the situation 
where machine learning algorithms result in unfair treatment 
or unfavorable outcomes for certain groups of individuals 
based on their protected attributes, such as race, gender, 
or age. Lack of individual fairness in algorithms refers to 
the situation where the algorithm treats similar individuals 
differently, leading to unfair outcomes. This fairness issue 
is problematic because it can result in unjust outcomes for 
individuals who are similar in relevant respects but are 
treated differently by the algorithm. Both types of unfairness 
can arise when the algorithm uses inappropriate features 
or biased training data to make decisions. Unlike Reuben 
Binns, Mehrabi et al. discussed biases from the perspec-
tive of the source of the bias. They explained three types 
of ML model biases: training data bias, algorithm bias, and 
user-generated data bias [31]. Here, training data bias refers 
to biases in the data used to train machine learning mod-
els, resulting in models that reflect and reinforce the biases 
present in the data. Next, Algorithm bias refers to the bias 
that may be introduced into machine learning models by the 
algorithms used to train them. This bias can result from the 
selection of a particular algorithm or from how we imple-
ment the algorithm. Finally, User-generated data bias refers 
to the bias when we train the model with user-generated data 
that may reflect the biases and preferences of the users who 
generated it rather than being representative of the popula-
tion as a whole.

These review articles emphasize discussing the adopted 
fairness-ensuring methodologies and often classify these 
methodologies. Generally, they classify these methodologies 
into pre-processing, in-processing, and post-processing [30, 
31]. Simon Caton organized a taxonomy with these classes 
and subdivided them further to lead a conversation on cur-
rent methodologies [30]. Firstly, Pre-processing methods 
involve manipulating the training data before feeding it 
into the machine learning algorithm. This process generally 
involves data cleaning, feature selection, feature scaling, or 
sampling methods to ensure the data is balanced and rep-
resentative of the population. Examples of pre-processing 
methods include data augmentation and demographic parity-
ensuring methods. Data augmentation indicates data modifi-
cation to balance underrepresented classes, and demographic 
parity-ensuring strategies indicate equalizing the proportion 
of positive outcomes across different protected groups. Sec-
ondly, in-processing methods modify the machine learning 
algorithm during the training process to ensure fairness. 
These methods involve modifying the objective function or 
adding constraints to the optimization problem to ensure a 
fair outcome from the model. Examples of in-processing 
methods include adversarial training, where a separate 
model predicts the protected attribute and the original model 

ensures that it does not use this information to make pre-
dictions, and equalized odds, where the algorithm is opti-
mized to ensure that the true-positive rates and false-positive 
rates are equal across different protected groups. Lastly, the 
post-processing methods involve modifying the output of 
the machine learning algorithm to ensure fairness. These 
methods involve adding a fairness constraint to the output, 
adjusting the decision threshold, or applying a re-weighting 
scheme to the predictions to ensure they are fair. Examples 
of post-processing methods include calibration and reject 
option classification. Calibration in machine learning refers 
to adjusting a model’s output to match the true probability of 
an event occurring better. A reject option allows the model 
to abstain from predicting uncertain inputs rather than mak-
ing a potentially inaccurate prediction. Overall, these three 
categories and taxonomies of methods provide a range of 
options for researchers and practitioners to address bias and 
discrimination in machine learning models.

Along with leading a discussion regarding issues and 
methodologies, these articles represent fairness-related ter-
minologies and metrics. In this regard, Chen et al. catego-
rized fairness definitions into two groups: individual fairness 
and group fairness [32]. Individual fairness entails treating 
similar individuals equally, regardless of their group mem-
bership. In contrast, group fairness aims to ensure that the 
model treats different groups of individuals fairly, regardless 
of their protected attributes such as gender, age, or race. This 
type of fairness ensures that the algorithm does not discrimi-
nate against any specific group. Besides them, Mehrabi et al. 
proposed a more granular concept of fairness, called sub-
group fairness, that focuses on ensuring fairness for relevant 
subgroups of individuals based on protected attributes and 
other relevant factors [31]. This fairness involves identifying 
subgroups of individuals with particular characteristics and 
ensuring that the algorithm treats them fairly. Another vital 
aspect of fairness-ensuring methodologies is measuring the 
degree of fairness a model achieves. To this end, scholars 
have proposed various fairness metrics that quantify differ-
ent aspects of fairness. One review article comprehensively 
discussed these metrics and categorized them into different 
types [30]. The first category is abstract fairness metrics, 
based on mathematical properties such as independence, 
separation, and sufficiency. The second category is group 
fairness metrics, which measure how well the algorithm 
performs for different groups of individuals based on their 
protected attributes. Finally, the fourth category is individ-
ual and counterfactual fairness metrics, which consider the 
hypothetical scenario of how the model would have behaved 
if specific protected attributes were different. These fairness 
definitions and metrics are crucial in evaluating the perfor-
mance of fairness-ensuring methodologies and can guide 
the development of algorithms that achieve the desired level 
of fairness.
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Although the reviews offer valuable insights into different 
aspects of fairness, their limitations indicate the need for a 
more systematic and organized mapping study. For example, 
one significant limitation of these reviews is the need for 
more discussion on the interrelationships between the classi-
fication of fairness issues and the appropriate fairness-ensur-
ing methodologies. While these reviews with methodology-
based taxonomies/classifications bring synthesized insights 
into discussing the current fairness trends [29–32], it is dif-
ficult to link up these methodology classifications with the 
fairness issues that they solve and with the issues that they 
generate themselves. For academics, it is crucial to acknowl-
edge that different types of fairness issues may require dif-
ferent types of methodologies for mitigation. Thus, a more 
detailed exploration of the links between the classification 
of fairness issues and the corresponding fairness-ensuring 
methodologies could facilitate the development of more 
effective and tailored solutions to address fairness issues 
in machine learning. Understanding the interconnection 
between issue groups and adopted method groups enables 
researchers to learn the appropriate method types they need 
to develop for a specific issue. Figure 2 depicts a graphical 
representation of different aspects of various review struc-
tures that motivate our study. In this context, we propose 
taxonomy delineating pivotal factors that give rise to diverse 
classes of fairness concerns. Additionally, we categorize the 
methodologies employed to address each issue class and 
outline their respective limitations. By establishing these 
connections between fairness issue groups, corresponding 
resolution approaches, and their constraints, our taxonomy 

provides a comprehensive overview of prevailing trends 
within this domain.

3 � Method of mapping study

We followed mapping techniques from other articles to ana-
lyze the major research trends in Ethical Machine Learning 
over the past two decades [33, 34]. Our mapping techniques 
involve identifying relevant publications by conducting a 
comprehensive search of four major databases, including 
ACM DL, IEEE Xplore, SpringerLink, and Science Direct, 
focusing on papers on the fairness concept. We selected 
these databases because they are widely renowned within 
the research community. To ensure a systematic approach, 
we followed the search and selection process recommended 
by B. Kitchenham [33, 34] and structured our research que-
ries on key subject phrases and synonyms of those words 
for various indexing sites based on the process described by 
D. Das et al. [35]. Finally, we filtered the studies based on 
their relevance to our goal. We represent the filtered stud-
ies regarding year, countries, and authors. We elaborately 
describe these steps below.

3.1 � Research question development 
and refinement

This mapping study investigates how ethical AI and ML 
model researchers developed and utilized approaches to 
mitigate bias. We directed our efforts toward structuring and 

Fig. 2   Aspects of various 
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refining the research inquiries in alignment with Creswell 
et al.’s guidelines [36]. Drawing from Creswell et al. and 
Wayne et al., our approach involved formulating research 
questions comprising a primary inquiry accompanied by 
subsidiary inquiries [36, 37]. This methodology mirrors the 
approach adopted by previous researchers in constructing 
pivotal central and subsidiary questions pertinent to their 
objectives [35, 38, 39]. Our overarching objective revolves 
around delving into state-of-the-art research on fairness con-
cerns, prompting an exploration of the involved researchers 
and their geographic affiliations within this research domain. 
This exploration encompasses their resolved challenges, 
methodologies employed, prospective research avenues, 
and experimental tools or datasets. Consequently, we have 
formalized the ensuing research questions (RQs): 

	 i.	 What is the state-of-the-art research on fairness issues 
in AI?

	 ii.	 Which countries and individuals are the most engaged 
in this field of study?

	 iii.	 What problem have they solved?
	 iv.	 What method have they adopted to solve that problem?
	 v.	 What are the next challenges of the research?
	 vi.	 What is the future direction?
	vii.	 Did they provide the source code and the dataset?

We maintained documentation while reading articles and 
determining the answers to the questions mentioned above 
for each article.

3.2 � Query design

Our query development process involves breaking down the 
study subject into a few key phrases. Then we attempted 
other combinations of synonymous words to those phrases. 
There were a total of three segments in our search query. 
First, we included the search phrase “Artificial Intelligence" 
in the initial segment of our query. We also included simi-
lar terms such as “AI", “ML", and “Machine Learning" in 
that portion. Next, we considered keywords, such as model, 
prediction, outcome, decision, algorithm, or learning for 
the second segment, as we wanted to explore the articles 
focusing on fairness ensuring only for ML models. In the 
third segment, we used concepts synonymous with ethical 
fairness or bias, such as fairness, fairness, ethics, ethical, 
bias, discrimination, and standards, to narrow our search 

results. Finally, for the last segment, we chose ‘mitigating 
bias’, ‘bias mitigation’, ‘removing bias’, ‘bias removal’, ‘fair-
ness definition’, ‘explanation’, and ’interpretation’ keywords. 
Figure 3 depicts the search query.

3.3 � Article collection, organization, filtering 
and mapping

We selected research based on our search query, and our 
search query yielded a significant number of articles. Never-
theless, only some of these articles were within the scope of 
our research. During the initial screening, we filtered these 
papers. Following, we applied targeted screening approaches 
to filter out publications with insignificant impact on this 
subject, excessive length, published in languages other 
than English, and repeated or identical research. We also 
attempted to see if the full text of the article was availa-
ble publicly and if the author’s claim was well-referenced. 
Finally, we analyzed the results from our search query for 
multiple ranges. For example, we attempted to find our query 
terms in the paper’s ‘abstract’, ‘introduction’, ‘conclusion’ 
and ‘title’ or ‘anywhere in the text’, and so on. Then, we 
looked through the related work section of the remaining 
review articles, adding significant research that the search 
query had missed. In case these additional papers belong to 
any of the four databases (IEEE Xplore, ACM DL, Spring-
erLink, and Science Direct), we add them as ‘referenced’ 
for those databases, and if they are from other sources, we 
add them to the ‘other’ section. Table 1 shows the results of 
our search queries. We extensively investigated the relevant 
works once we had reduced them to ninety-four publications 
to uncover current trends in fairness issues, adopted meth-
odologies to solve these issues, fairness-related must-know 
terminologies, remaining challenges, popularly utilized data-
sets, and developed tools in this area. We also discussed the 
probable scope of improvement in model fairness disclosed 
in some of those filtered articles and from our understanding.

4 � Result of the mapping study

Scholars have devoted considerable attention to exploring 
the counterfactual concept in machine learning and artifi-
cial intelligence to ensure fair prediction. In our study, we 
searched 420 research articles to identify contributions in 
this field, ultimately selecting 94 articles that closely aligned 

Fig. 3   The designed query 
consists of three main parts 
for collecting articles from 
various databases with relevant 
keywords
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with the scope of fairness. In the following subsections, we 
represented our findings by answering the first two research 
questions enumerated in Section 3.1.

4.1 � State of the art of research in Ethical AI

Although researchers have been studying machine learning 
models since the early nineteenth century, the unfairness of 
predictive machine learning models is a relatively recent 
topic.

Figure 4 displays the number of processed papers per 
year, revealing a significant increase in the number of papers 
after year 2016. It indicates the growing interest of academ-
ics in the field of fair prediction.

4.2 � Engaged countries and individuals

Figure 5 indicates that concerns regarding fairness in ML 
and AI models have gained widespread attention and are 
not limited to any specific group of researchers. During our 
analysis, we did not notice any particular author with sig-
nificantly more publications. However, we noticed that many 
articles came from authors from the United States. Out of the 
94 papers analyzed, the highest number of publications on 
this topic came from the United States, followed by the UK 

with approximately one-fifth of the author’s numbers of the 
US, and Germany in third place with roughly one-seventh 
of the author’s numbers of the US.

5 � Addressed fairness issues

The filtered articles describe some challenges, and we sum-
marized them into a few common problem groups: biased 
training data, bias toward feature groups, biased decision 
models, lack of prediction transparency, and inherent bias. 
We discuss some of the common key factors that cause these 
biases, represented in a graphical view in Fig. 6. Bold oval 
shapes represent the issues, and the other oval shapes, with 
multiple outward arrows, represent the key factors. The 
arrows represent the contribution of key factors in general-
ized fairness issues.

5.1 � Biased training data

Bias in the data refers to the presence of systematic errors 
or inaccuracies that deplete the fairness of a model if we 
use these biased data to train a model. Bias can potentially 
exist in all data types as bias can arise from a list of factors 
[95]. Among these factors, measurement bias is a potential 

Table 1   Search query results for 
indexer sites

Database Search result Filtered Referenced Total List of papers

IEEE Xplore 74 8 2 10 [25, 26, 40–47]
ScienceDirect 90 3 3 6 [48–53]
Springer link 135 9 3 12 [54–66]
ACM DL 121 19 9 28 [67–94]
Other NA NA 38 38 [27, 28, 73, 95, 95–130]
Total 420 25 8 94 All of the above

Fig. 4   Number of papers found 
per year starting from 2009 to 
2022
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source of data bias in ML that occurs when the measure-
ments or assessments used to collect data systematically 
overestimate or underestimate the true value of the charac-
teristic being measured [85, 103, 110, 111]. For example, 
training data in criminal justice systems often includes prior 
arrests and family/friend arrests as attributes to assess the 
probability of repeating a crime in the future. As a result, 
it can lead to racial profiling or disparities in sentencing 
practices because we cannot confidently guarantee that an 
individual from a group will behave similarly to others.

Next, representation bias is another crucial factor for 
a biased training dataset. It refers to the bias in a dataset 
or model that results from under or over-representing cer-
tain groups or characteristics in the data, which can lead to 
biased or inaccurate predictions for those groups [91, 103, 
104]. For example, Yang et al. have highlighted the issue of 
underrepresented images, particularly for the representation 
of people and their attributes in the ImageNet dataset, where 
only a small percentage of images ( 1% , 2.1% ) are from China 
and India, and a comparatively more extensive portion of 
images are from the United States ( 45% ) [91]. Similarly, 
Shankar et al. demonstrated that classifier performance is 
notably lower for underrepresented categories trained on 
ImageNet [104]. Additionally, word embeddings, learned 
from large corpora of text data, represent words as vectors in 
a high-dimensional space in various NLP (Natural Language 
Processing)-based predictive models. However, these word 
embeddings encode various issues, such as gender biases 
and lack of diversity, which contribute to the model’s inabil-
ity to generalize well to new data [86, 87, 123]. Also, when 
we train a word embedding model on a dataset where the 
word “doctor" is more associated with the word “man" and 
“nurse" is more associated with “woman", the model may 
learn to associate gender with these professions, even when 

Fig. 5   Number of articles in 
processed papers for this map-
ping study per country
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it is not necessary for the given task. In this regard, Zhang 
et al. argue that while researchers designed many machine 
learning models to optimize and maximize accuracy, they 
may also inadvertently learn and propagate existing biases 
in the training data [92].

Sampling bias slightly differs from the representation 
bias [103, 131]. Sampling bias occurs when the sample data 
for training does not represent the population targeted to 
generalize. In contrast, representation bias is an inadequate 
representation of the real-world distribution of the data. For 
example, if a researcher wants to study the height of people 
in a particular country but only samples people from a sin-
gle city, the results may only represent part of the country’s 
population. The sample may be biased toward people from 
that specific city, resulting in inaccurate conclusions about 
the height of the country’s population. Subsequently, another 
aspect that can make the model predictions inaccurate is 
label bias [92]. It occurs when the labels assigned to data 
instances are biased in some way. For example, a dataset of 
movie reviews may have been labeled by individuals with a 
particular preference for a certain genre, leading to biased 
labels for movies of other genres.

Besides them, Aggregation bias refers to a type of bias 
that arises when a model is used to make predictions or deci-
sions for groups of individuals with different characteristics 
or from different populations [113]. It occurs when a single 
model is used to generalize across different groups or sub-
populations and can lead to sub-optimal performance for 
some groups. For example, scholars study blood glucose 
(sugar) levels such as HbA1c (widely used to diagnose and 
monitor diabetes), which usually differ across ethnicities and 
genders. Thus, a single model may become biased towards 
the dominant population and not work equally well for all 
groups (if combined with representation bias) [61].

Depending on the specific application and context, there 
may also be other sources of bias in training data that can 
potentially lead to unfair model outcomes. Thus, processing 
the training data to remove existing bias is often necessary 
for many machine learning-based models [92]. Otherwise, 
If we train the model on a biased dataset, it can lead to 
unfair outcomes and perpetuate existing societal inequali-
ties. Therefore, it is essential to identify and mitigate bias in 
the data to ensure that machine learning models are fair and 
equitable. Scholars in the articles primarily address this step 
as pre-processing [123].

5.2 � Inherent bias

Inherent bias, also known as intrinsic bias, refers to the bias 
inherent in the studied data or problem rather than the bias 
introduced during the modeling or analysis process [62]. 
Along with all the discussed biases, we can observe inherent 
biases in multiple ways, such as prediction inconsistency and 

prediction falsification due to partial data. Prediction incon-
sistency is a different type of bias addressed as leave-one-out 
unfairness. Although a definite cause is yet to be discovered, 
scholars often held many of the above biases responsible 
for prediction inconsistency [84]. Prediction, regardless of 
its accuracy, is expected to be constant. This bias refers to 
a situation where including or removing only one instance 
from the dataset and retraining the model on this modified 
dataset alters the prediction outcome for another instance 
entirely irrelevant to that included or deleted instance [84]. 
In other words, the model’s predictions are not consistently 
fair for all individuals in the dataset when the model is 
retrained on the remaining data after removing a single data 
point. As a result, the predictions for the removed data point 
may change in an unfair or biased way. The leave-one-out 
unfairness problem is particularly relevant for datasets where 
individual data points are sensitive. It makes ML models 
unreliable and untrustworthy in serious implementations 
such as predicting recidivism or determining creditworthi-
ness criminal detection.

Another significant inherent bias source is the Historical 
discrimination. Even if the algorithms used in decision-
making processes are unbiased, the data they are trained 
on may contain historical biases, leading to discriminatory 
outcomes [62]. Calmon et al. stated that the presence of his-
torical discrimination in linear datasets, such as the widely 
studied Adult Income dataset used for evaluating fairness in 
machine learning, can result in biased predictions despite 
high model performance when using such biased data for 
training [97, 124]. For example, suppose a training dataset 
for an employee hiring algorithm only includes data from 
past hires, and past hiring practices were biased against cer-
tain groups. In that case, the algorithm will continue per-
petuating that bias in hiring decisions. Historical bias can 
be challenging to address because it reflects broader soci-
etal biases deeply ingrained in our institutions and culture. 
Even if we design a fair decision-making system according 
to a particular definition of fairness, the data it uses to learn 
may still reflect historical biases and lead to unfair decisions 
[105]. However, it is vital to recognize and address histori-
cal bias in machine learning models to prevent perpetuating 
unfair and discriminatory practices.

5.3 � Bias toward feature groups

Bias towards protected feature groups refers to a type of 
bias where a machine learning algorithm may unintention-
ally favor or discriminate against certain protected feature 
groups, such as women, colored, or ethnic minorities when 
making decisions. This bias is problematic because it per-
petuates existing societal inequalities and can result in unfair 
outcomes for specific individuals or groups, especially in 
high-stakes domains [98, 125]. For example, a protected 
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feature-dependent model for predicting recidivism rates 
could result in more false positives for certain groups, 
leading to lengthy prison sentences or increased monitor-
ing, even when the individual may not pose a significant 
risk. Many factors can lead to bias toward protected feature 
groups. For example, training and inherent data bias can 
also be responsible for discriminating against people with 
protected feature groups. Also, other factors, such as unbal-
anced feature data, confounding variables, and predicting 
attribute’s connection to protected feature can contribute to 
this bias in addition to those mentioned in section 5.1.

We refer to a dataset with severely skewed or uneven 
value distribution across various features as having unbal-
anced feature data. In other words, when a dataset has a 
significantly larger or smaller number of instances of certain 
features or categories within features compared to others, 
it indicates unbalanced feature data. For example, suppose 
we utilize a model that announces verdicts, and the training 
data contains gender information as a data feature. If, in the 
data, females are verdict more times than males for training 
an RAI, the RAI model may perpetuate these biases and 
unfairly target females (specific groups) [67].

Confounding variables can be another reason the model 
is biased toward certain feature groups [114]. If a protected 
feature correlates with other variables that affect the out-
come variable, then the protected feature can become a con-
founding variable. It can lead to training a model in a biased 
way that can associate the confounding variables with the 
outcome variable. For example, consider a study investigat-
ing the relationship between caffeine consumption and heart 
disease risk. If the study does not control for age, then age 
may act as a confounding variable, as older people tend to 
have a higher risk of heart disease and may also consume 
more caffeine. In this case, the study may mistakenly con-
clude that caffeine consumption is associated with a higher 
risk of heart disease when in fact, it is the confounding vari-
able of age that is responsible for the observed relationship.

Additionally, dependency on protected features may 
lead to poorer outcomes [98]. When a machine learning 
model relies heavily on protected features, it can lead to 
biased predictions that favor certain protected groups over 
others. For example, a loan approval model that relies heav-
ily on race as a feature may be biased against certain racial 
groups. It may happen if the model fails to identify other 
strongly correlated features that are not sensitive or if the 
dataset lacks enough features other than the protected fea-
ture. As a result, the model may unfairly deny loans to mem-
bers of certain groups.

Other than these reasons, scholars also mention other 
aspects, such as Dwork et al. stating that the inability to 
learn the distribution of sensitive attributes in the training 
data is a potential reason for bias towards protected features 
[99]. The authors define sensitive attributes as 

those protected by anti-discrimination laws (race, gender, 
and age). Mishler et al. discussed that if we train RAI mod-
els on datasets having sensitive features, they may become 
biased against certain races or gender [67]. As the reason 
for bias toward feature groups, some articles also claim that 
false positive outputs are as harmful as false negative outputs 
in many high-stakes decisions for a dataset with protected 
attributes [63]. For example, in a criminal justice system, 
falsely predicting someone is likely to re-offend (a false 
positive) could lead to unjust incarceration or other forms 
of harm [64, 115, 117].

5.4 � Decision model bias

The above sections 5.1, 5.2, and 5.3 describe how data bias 
can ruin fair predictions for some ML models. However, a 
predictive ML model can be unfair even though the training 
dataset is not biased or contains protected attributes such as 
race, gender, or age [98, 125, 132]. Algorithmic bias is a 
potential bias that can introduce discrimination or unfairness 
in the model. It refers to the bias introduced by the algorithm 
rather than inherent in the input data [88, 118].

Another reason is the hidden biases. Despite having a 
balanced distribution in the dataset and being free of sensi-
tive feature correlation, it still can contain hidden biases, 
which refer to the biases present in the data used to train an 
ML model that is not immediately apparent or identifiable 
[45]. These biases can result in discriminatory outcomes for 
specific groups. For example, using zip codes in the model 
may inadvertently incorporate racial or economic factors 
that are not directly related to criminal behavior. Using zip 
code as an attribute can lead to over-predicting the likeli-
hood of recidivism for specific groups and under-predicting 
it for others, resulting in unjust outcomes.

Besides them, many Risk Assessment Instruments (RAI) 
implement ML-based models and may only emphasize pre-
diction accuracy, which can eventually lead to unfairness 
[132]. Risk assessment instruments (RAIs) are machine 
learning models used to assess the likelihood of recidivism 
or future criminal behavior in individuals [110, 111, 119]. 
Unfairness in these tools can lead to severe consequences 
that are not adequately justified, such as serving more years 
in jail for being colored individuals [110, 111].

Additionally, evaluation bias refers to a type of bias that 
arises while evaluating machine learning models, and thus, it 
is not related to data bias. It happens when the performance 
of a model is assessed in a way that is biased toward cer-
tain groups or outcomes, leading to misleading or incorrect 
conclusions [95, 103]. For example, suppose we adopt an 
evaluation method solely based on its overall accuracy with-
out considering the model’s performance on different sub-
groups. In that case, the evaluation outcome may hide that 
the model performs poorly on certain protected groups while 
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delivering high accuracy. It can lead to adopting biased mod-
els that appear to perform well overall but are discrimina-
tory towards certain groups. Mitigating these biases can help 
ensure a fair model, build trust in machine learning systems, 
and increase their adoption in various domains.

5.5 � Lack of prediction transparency

Machine learning models can be complex and challenging 
to interpret, making it hard to understand how the model 
makes decisions and identify potential sources of bias [89, 
90, 106, 120]. A model can be unfair if a model lacks trans-
parency. Authors identified transparency issues generated 
while developing the ML algorithm, including non-interpret-
able predictions [59], unexplainable outcomes [58], lack of 
contrastive fairness [42], lack of transparency [73] and lack 
of actionable alternative profiles [70]. These issues can lead 
to unexpected vulnerabilities, hidden biases, and negative 
impacts on various stakeholders [58, 68–70, 81].

First, Non-interpretable predictions of ML models refer 
to predictions made by models that humans need help to 
understand meaningfully. Here, non-interpretable predic-
tions can occur when the model is very complex, such as 
deep neural networks and adversarial networks, or when the 
training data is too large or diverse to be easily understood, 
for example, latent representations of an encoder [59]. Next, 
unexplainable outcomes in machine learning refers to situ-
ations where the model’s predictions need more justification 
[58]. The machine learning model provides a single outcome 
without explaining why the model picked this particular 
choice out of several possibilities in the final forecast. It 
makes it difficult for humans to understand how and why 
the model arrived at a particular decision [48, 50, 52, 57].

Moreover, contrastive fairness aims to ensure fairness 
in decisions by comparing outcomes for similar individu-
als who differ only in a protected attribute (such as race or 
gender). Lack of contrastive fairness in models can make 
the model biased favorably or unfavorably towards a group 
of stakeholders [42]. For example, if a job screening model 
is biased toward male candidates over females with similar 
qualifications, the company must modify the algorithm to 
consider them equally. Lastly, lack of actionable alterna-
tive profiles limits the model’s capability to produce other 
feature value combinations that would help to generate an 
expected output. Actionable alternative profile refers to pro-
viding a set of alternative actions or decisions that could 
be taken in response to the outcome of a machine learning 
model [70]. For example, a machine learning model in medi-
cal diagnosis may predict a patient’s high risk of developing 
a particular disease. However, instead of just providing this 
information to the healthcare provider, the model could also 
suggest alternative courses of action or treatment options 
that could reduce the risk or prevent the disease. Having 

actionable alternative profiles is crucial for ensuring the reli-
ability of a decision, as more than relying on a single deci-
sion may be required.

5.6 � Multiple definitions of fairness

Many scholars propose different definitions of model fair-
ness from various perspectives to address these issues. 
Different definitions of fairness often lead to conflicting 
objectives, challenging developers and policymakers. For 
instance, group fairness requires equal treatment of different 
protected groups, while individual fairness demands that the 
model treat similar individuals similarly. Ensuring equal out-
comes for all protected groups may require setting different 
thresholds for different groups, which may violate the prin-
ciple of treating individuals equally regardless of their group 
membership [93]. Conversely, ensuring equal treatment for 
all individuals may lead to unequal outcomes, which may be 
unfair. Meanwhile, predictive parity focuses on equalizing 
the proportion of true positives across different groups. In 
contrast, equalized odds aim to balance true positive 
and false positive rates for a model’s prediction.

In practice, implementing one definition of fairness may 
cause violations of other definitions, leading to a trade-off 
between competing objectives. Also, if a model is designed 
to be fair according to a particular definition of fairness, it 
may still exhibit unintended biases and unfairness when used 
in practice. Therefore, it is essential to consider multiple 
definitions of fairness and the trade-offs between them when 
designing and evaluating machine learning models to mini-
mize the risk of creating discriminatory outcomes. There-
fore, there is often a trade-off between different notions of 
fairness that the model must carefully consider for decision-
making systems. A few articles discuss the challenges of 
defining and achieving variously defined fairness in machine 
learning models and propose various solutions to address 
these challenges [98, 99, 105].

6 � Adopted methodologies by authors 
to solve these issues

Authors from the filtered papers adopted many techniques to 
solve these biases. While some authors have proposed practi-
cal models to remove and detect data bias, protected-feature 
discrimination, unexplainable prediction, model bias, or pre-
diction inconsistency, some authors have provided fairness 
definitions and metrics to remove ambiguity and discuss 
the trade-offs of these concepts. We generalize and classify 
these methodologies according to the specific problem types 
they solve. Figure 7 depicts the methodologies scholars have 
followed to solve generalized issues. The figure’s first col-
umn (containing ‘Biased training data,’ ‘inherent bias,’ ‘bias 
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toward protected feature group,’ ‘decision model bias,’ ‘lack 
of prediction transparency,’ and ‘multiple definitions of fair-
ness’) contains all the generalized issues. We also discuss 
these classes elaborately in the following sections.

6.1 � Methodologies to mitigate data bias

We generalize the techniques adopted by the authors of the 
filtered articles.

6.1.1 � Extending and diversifying

In this technique, people modify the data to diversify the 
model’s input data and implement it for identifying bias 
and modifying the model [96, 121, 122, 129, 133]. One 
method proposes an approach to understanding a model’s 
bias sources by adding counterfactual instances in the data 
points. First, they propose to modify the input data to create 
diversified new data points similar to the original data points 
but with more critical features changed. Then, the model 

Fig. 7   Classification of adopted 
methodologies to solve several 
types of issues
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identifies and quantifies any bias in the model by compar-
ing the model’s predictions on the original data points and 
the corresponding counterfactual instances [121]. Another 
method follows this procedure, uses path-specific counter-
factuals, and adjusts for bias along specific paths [129]. Sim-
ilar to these techniques, the ‘Counterfactual Fairness with 
Regularization (CFR)’ method aims to remove the direct 
effect of sensitive attributes on the predicted outcome while 
preserving as much accuracy as possible. The approach 
involves constructing counterfactual instances and ensuring 
fairness for each individual under different sensitive attrib-
ute values and then using regularization to encourage the 
model to make similar predictions for similar individuals 
with different sensitive attribute values [133]. This method 
ensures individual fairness, and there are other fairness con-
cepts similar to counterfactuals, such as the group fairness 
assumption and the counterfactual fairness assumption. 
Some scholars also propose integrating all these counterfac-
tual fairness concepts into the model similarly for unbiased 
classification, clustering, and regression [122].

6.1.2 � Adversarial techniques

Many scholars discuss adversarial techniques for data 
debiasing by removing or reducing the impact of sensitive 
features that could lead to biased predictions [98, 116]. In 
adversarial training, we generally train a model to predict 
the outcome while being attacked by an adversary trying 
to infer the sensitive attributes. One adversarial technique 
involves training a neural network with a different fairness 
branch to prevent bias based on a protected attribute in the 
learned representations. They train the network adversari-
ally, where the fairness branch competes against the main 
classification task to achieve accuracy and fairness [28]. 
Zhang et al. proposed an adversarial technique with a pre-
dicting branch/network and an adversary branch/network 
[92]. The primary or predictor branch predicts Y given X 
and learns the weight W with an optimization function like 
stochastic gradient descent (SGD) aiming to minimize the 
loss. The output layer passes through the adversary branch 
aiming to predict Z. The architecture of the adversary net-
work depends on the fairness issue they aim to solve. In aim-
ing for goals like Demographic Parity, the adversary would 
predict the protected variable Z using only the input’s pre-
dicted label Ŷ (and not the actual label Y), while withholding 
its own learning process. Similarly, for achieving Equality of 
Odds, the adversary utilizes both the predicted label Ŷ  and 
the true label Y. For achieving Equality of Opportunity for a 
specific class y, the adversary restricts its instances to only 
those where Y = y [31]. Demographic Parity, Equality of 
Odds and Equality of Opportunity is defined in section 6.5. 
Figure 8 depicts a visualization of the architecture for such 
adversarial techniques.

Some scholars explore GAN, where the generator gen-
erates indistinguishable synthetic data while the discrimi-
nator differentiates between real-world and synthetic data. 
To ensure fairness, a fairness critic in an additional adver-
sarial objective ensures that the representations learned by 
the generator are not biased toward any particular group 
[46]. Besides them, another method divides the training 
into two deep neural networks: a representation network 
predicts the protected attribute and another network keeps 
training on the source dataset and fine-tuning on a tar-
get dataset to maintain high accuracy and transferability 
across datasets [100].

6.1.3 � Re‑sampling and re‑labelling

Imbalance in some dataset features contributes to develop-
ing data bias [107]. As a result, some researchers explore 
pre-processing the dataset to mitigate dataset bias. Re-
sampling and re-labeling are two such processes, and many 
research results validated their effectiveness. Re-sampling 
addresses data imbalance that causes bias in machine 
learning models. In a dataset, if the number of instances 
belonging to one class is significantly higher than the other 
classes, then the model may be biased towards the major-
ity class. Re-sampling techniques refer to oversampling 
the minority class or undersampling the majority class to 
create a balanced dataset. It ensures more representative 
data, diverse data from various sources and populations, 
and balanced data across different groups [92, 98]. Besides 
re-sampling the input data, scholars also propose re-labe-
ling data instances to mitigate bias. Bolukbasi et al. pro-
posed to modify the training data by explicitly identifying 
gender-neutral words and using them to adjust the gender-
specific words in the embedding data [123]. For example, 
they replace the word “he" with “she" and vice versa in 
the text data, creating balanced examples of each gender 
association. They also use gender-neutral word pairs (no 
association with a particular gender), such as “doctor" and 
“nurse", to help the model learn a more balanced repre-
sentation of gender-related concepts [123]. In this regard, 
Kamiran et al. proposed a ‘massaging’ method that used 
and extended a Naïve Bayesian classifier to rank and learn 
the best candidates for re-labeling [26, 63].

Fig. 8   The architecture of adversarial network visualized by Zhang 
et al. [92]
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6.1.4 � Thresholding and causal methods

Researchers also explore post-processing techniques, such 
as thresholding for training data bias removal, especially for 
RAIs [25, 27, 134]. In the post-processing technique, schol-
ars adjust the predictions to meet a fairness constraint after 
training the model on data. Thresholding is one such post-
processing technique where a threshold is set on the model’s 
output to ensure a certain level of fairness. For example, 
Hardt et al. introduce the concept of “equality of opportu-
nity”, which means that each group’s true positive 
rate and false positive rate should be equal, 
regardless of the protected attribute [125]. They propose a 
method to enforce this constraint using a constrained optimi-
zation problem, penalizing models with disparate impacts on 
different groups while maximizing overall accuracy. Other 
than thresholding, causal methods can ensure model fair-
ness by analyzing and modeling the causal relationships 
between input features, the predicted outcome, and the sen-
sitive attribute. The goal is to identify the direct and indirect 
causal relationships between these variables and to use this 
information to create fair and unbiased models. In this con-
text, Salimi et al. propose that repairing the training data 
to remove unfair causal relationships is more efficient than 
implementing correlation-based fairness metrics to address 
the root causes of unfairness. They propose a framework 
with three steps: identifying the causal relationships between 
the input features and the output label, identifying any causal 
relationships between the input features and protected attrib-
utes, and then implementing causal inference and database 
repair techniques to remove any unfair causal relationships 
between the input features and the output label [94]. Like 
these techniques, Razieh et al. use causal inference methods 
to estimate counterfactual outcomes for different subgroups 
and then use these estimates to make fair predictions [135]. 
Furthermore, Depeng et al. propose the GAN that they train 
with a novel loss function that penalizes the model for vio-
lating causal constraints. The proposed method ensures that 
the model does not use the protected attribute to make pre-
dictions, thereby reducing bias in the data [112].

6.1.5 � Balancing instance distribution

Lastly, With the goal of accurate image classification mod-
els, Yang et al. introduce a two-step approach to filtering and 
balancing the distribution of images in the popular Imagenet 
dataset of people from different subgroups [91]. In the filter-
ing step, they remove inappropriate images that reinforce 
harmful stereotypes or depict people in degrading ways. In 
the balancing step, they adjust the distribution of images 
from different racial and gender subgroups to ensure that the 
dataset represents each subgroup equally. They supported 
their proposal by showing fairer classification performance 

than in classification in the original Imagenet dataset [91]. 
Along with distribution balancing, some articles also pro-
pose data collection processes to determine if the predictions 
require fairness, inspiring model modification to ensure fair-
ness. For example, Buolamwini et al. propose the Gender 
Shades Benchmark, a benchmark dataset designed to evalu-
ate gender classification systems regarding intersectional 
accuracy disparities. This dataset consists of a diverse and 
representative set of images that includes darker-skinned 
individuals and women who do not conform to traditional 
gender norms [95].

6.2 � Methodologies to mitigate bias 
towards protected features

To mitigate bias toward certain groups, scholars propose 
identifying the source of the bias first and then mitigating 
the bias along the route. Many of the methods mentioned 
above maintain this trend, whereas some filtered articles spe-
cifically explore protected feature bias mitigation strategies 
more. In addition to the methods mentioned earlier, scholars 
also consider additional techniques to reduce bias against 
protected attributes.

6.2.1 � Implementing transformation theory

Transformation theory is a framework for improving model 
fairness by transforming the input data to mitigate the effect 
of sensitive attributes on the model’s predictions. The model 
first predicts the protected attribute and then uses this to 
generate transformed data that removes the effect of the sen-
sitive attribute. Then, they generate a fair model by training 
in the transformed data. For example, Meike et al. map the 
input data into a metric space where distances represent the 
similarity between individuals and find the minimum-cost 
way to transport the distribution of protected attribute values 
from biased to unbiased dataset [65]. Paula et al. followed 
this approach and proposed two methods, one that uses a 
generative adversarial network to learn the optimal trans-
port plan and another that directly estimates the transport 
plan using a convex optimization algorithm. They expect the 
resulting model to achieve fairness for the protected attribute 
while maintaining accuracy [101]. Some scholars also have 
explored convex objective functions to minimize the correla-
tion in previous years [124].

6.2.2 � Implementing a fairness critic

To understand if a model is biased toward certain groups, 
scholars explored and proposed several theoretical and prac-
tical fairness concepts to mitigate bias towards protected 
groups. Implementing a fairness critic network to learn a fair 
representation of the data by training an adversarial network 
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is another remarkable idea to mitigate bias against protected 
attributes. Researchers mainly implement this idea for RAI 
models (classifier models). The fairness critic is a separate 
neural network that takes the learned representations as input 
and outputs a score that reflects the level of bias in the rep-
resentation. The classifier maximizes prediction accuracy, 
while the fairness critic maximizes fairness. The two objec-
tives compete against each other in a minimax game. By 
doing so, the model learns a representation that maximizes 
accuracy while minimizing bias towards protected attributes 
[108]. Scholars also approach generative approaches com-
bined with a fairness critic network. For example, Depeng 
et al. introduced an adversarial objective-based fairness loss 
function in the GAN framework to generate realistic and 
unbiased, specifically concerning protected attributes [136]. 
The critic network distinguishes between valid and gener-
ated (that violate fairness constraints) samples. The model 
encompasses a generator GDec with a conditional distribution 
PG(x, y, s) that generates the fake data.

In equation (1) x, y = data pair, s = protected or sensitive 
attribute, PG(s) = Pdata(s) , PG(x, y|s = 1) = PG(x, y|s = 0) 
for ensuring statistical parity constraints and the fairness 
critic differentiates the two types of generated samples 
PG(x, y|s = 1) and PG(x, y|s = 0) indicating if the synthetic 
samples are from protected or unprotected groups.

Figure 9 represents a visualization of their model [136]. 
The proposed approach is evaluated on several benchmark 
datasets and shown to produce realistic and fair samples 
[136].

(1)PG(x, y, s) = PG(x, y|s)PG(s)

6.2.3 � Disparate impact‑based methods

Recently, scholars also explored the disparate impact of 
recidivism prediction instruments and offered several 
solutions to ensure protected group fairness in these tools 
[64, 93, 115, 124]. “disparate impact remover" is one 
such method. It modifies the data distribution to ensure 
equal group representation in the training data [124]. The 
method achieves this by adjusting the weights of each 
training example based on the protected attribute’s distri-
bution, thus equalizing the acceptance rate across groups. 
Also, there is a framework for evaluating the fairness of 
prediction models and demonstrating how to apply it to 
assess the fairness of recidivism prediction instruments 
[64]. This framework has three steps: identifying the group 
protected by anti-discrimination laws or ethical consid-
erations, identifying the outcome variable, and evaluat-
ing prediction fairness through the “disparate impact" and 
“equal opportunity" tests.

6.2.4 � Embedding data into lower‑dimension

Another renowned protected-feature bias mitigation 
approach is to learn fair representations by mapping the 
original data into a lower-dimensional space that preserves 
the relevant information for the downstream task while 
removing the discriminatory features [98]. This method 
aims to learn a representation invariant to protected 
attributes such as race or gender, thereby ensuring that 
the downstream classifier will not make decisions based 
on these attributes.

Fig. 9   Structure of FairGAN as 
represented in [136]
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6.3 � Methodologies to mitigate model bias

6.3.1 � Visualizing data

Some articles explore visualizing the data effectively to 
identify the data source and remove model bias, as hidden 
biases contribute to discrimination in ML-model prediction. 
For example, Dwork et al. propose an interactive visualiza-
tion tool called the “What-if tool" to increase awareness of 
the potential sources of discrimination in machine learn-
ing models [99]. It provides an intuitive and user-friendly 
interface that allows users to explore the impact of various 
changes on the fairness and accuracy of machine learning 
models in real-time and visualize its outputs. Users can 
change input data points, adjust thresholds, and modify other 
parameters to observe how different decisions affect model 
performance and fairness through a variety of fairness and 
performance metrics.

6.3.2 � Introducing social cost matrix into misclassification 
cost matrix

Developers also implement ML models, especially clas-
sification models, as risk assessment instruments (RAI). 
Researchers proposed several approaches to eliminate RAI 
bias, such as CF-based and adversarial debiasing-based 
approaches. Firstly, Kamiran et al. proposed a CF-based 
solution using a decision-theoretic framework in classifica-
tion [44]. Their proposed framework extends the standard 
cost-sensitive learning approach by introducing a social cost 
matrix to capture the societal costs associated with different 
types of errors. The model also includes a two-step pro-
cess for building a discrimination-aware classifier. In the 
first step, the model learns a classifier that minimizes the 
expected cost of misclassification. In the second step, the 
model modifies the cost matrix with the social cost matrix 
to compute the optimal decision boundary using the modi-
fied cost matrix [44]. They further demonstrated the imple-
mentation of the discrimination-aware classifier using a 
threshold-based approach. The threshold-based approach 
uses the expected costs of misclassification and discrimina-
tion to compute a threshold value that balances the trade-off 
between the two costs. The classifier then classifies instances 
as positive or negative based on whether their predicted 
probability exceeds the threshold value [44].

6.3.3 � Generalizing fairness definition and metrics

Definition development for fairness terminologies and met-
rics for measuring fairness in the model outcome is neces-
sary before developing fair models and bias reduction tech-
niques. Thus, many researchers have attempted to propose 
fairness-related terminologies by generalizing definitions 

of fairness from psychology, statistics, quantum comput-
ing, and many more fields. Scholars implement these vari-
ously proposed fairness concepts in a model development 
step. For example, after defining “equalized odds" and 
“calibration", Kleinberg et al. propose a statistical method 
called the “direct constrained optimization" method. They 
formulate the model optimization problem as a constrained 
optimization problem to maximize accuracy subject to fair-
ness constraints. This optimization process involves solving 
for a set of model parameters that satisfy the fairness con-
straints, such as requiring equal false positive or false nega-
tive rates across groups or limiting the difference in average 
risk scores between groups while maximizing the model’s 
accuracy. They further adjust the risk scores by including 
a post-processing step [132]. Lum et al. propose another 
statistical approach similar to the previous one by incor-
porating “group fairness” for calculating the trade-off and 
solving the constrained optimization problem using convex 
optimization [109]. A few articles also propose new metrics 
such as calibration error to quantify the performance of cali-
brations of these methods [126]. A calibration error metric 
measures the discrepancy between predicted probabilities 
and the observed outcomes in an ML model. It quantifies the 
calibration performance of the model by evaluating how well 
the model predicted the probabilities and how they align 
with the true probabilities of the events or classes. After-
ward, “disparate impact-aware Naive Bayes” and “equalized 
odds-aware Naive Bayes” based strategies are two notewor-
thy fairness approaches that ensure that the predictions are 
disparate impact-free and the false positive and negative 
rates are equal across different protected groups [66]. We 
further discuss all the proposed fairness-related definitions 
of the filtered papers in section 6.5.

6.3.4 � Incorporating accuracy and fairness metrics

Usually, any ML models follow accuracy matrices for devel-
oping the model. However, to decrease prediction bias, some 
scholars propose statistical methods incorporating fairness 
and accuracy metrics while developing an ML model and 
balancing the trade-offs between fairness and accuracy, espe-
cially in risk assessment instruments [109, 126, 132].

6.3.5 � Protected attribute info discarding

The adversarial debiasing method tries to learn a debiased 
representation of the data by training a neural network to 
predict an outcome while at the same time being forced 
to discard any information about the protected attribute. 
Madras et al. propose an adversarial training-based method 
to address issues of fairness and bias in machine learn-
ing models [100]. The discriminator predicts the sensitive 
attribute from the learned representation, while the generator 
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produces a representation that is both predictive of the task 
and fair. Another approach is the “jointly constrained Naive 
Bayes”, which restricts the classifier to use only a subset 
of features that are minimally correlated with the protected 
attribute [66]. Furthermore, Calmon et al. proposed quanti-
fying the relationship between protected attributes and other 
features and minimizing the mutual information between 
protected and remaining features. Finally, the authors stated 
that the sensitive attribute is not used to make classification 
decisions and presented convincing experimental results to 
support that fairness and accuracy are balanced [47].

6.3.6 � Statistical framework to alter objective function

The paper proposes a statistical framework for developing 
fair predictive algorithms that explicitly consider fairness 
constraints during model training. It introduces a fairness 
penalty term to the objective function that penalizes the 
algorithm for its deviation from a desired level of fairness. 
This framework is designed to balance fairness and accuracy 
and can be applied to a range of machine learning models 
[109].

6.4 � Methodologies to ensure prediction 
transparency, explainability, interpretability

Researchers have emphasized providing prediction expla-
nations and interpretations to maintain transparency of the 
model predictions. Explanation and interpretation of the 
prediction confirm the outcome’s legitimacy and transpar-
ency about fairness [59, 79]. In addition, prediction explana-
tion provides alternative feature combinations to modify the 
model outcome, and prediction interpretation validates the 
model’s outcome (probability of other outcome occurrences 
without dependency on protected attributes) [50, 68, 72]. 
To explain and interpret a model’s outcome from the fair-
ness perspective, Counterfactual explanations have gained 
significant popularity among the various approaches [71]. 
The counterfactual analysis involves asking “what-if” ques-
tions to determine how changing one or more features of 
a particular instance would affect the model’s output. We 
can use this technique to identify instances where a model’s 
output may be unfair and to make corrections to improve 
fairness [58]. Many scholars have proposed counterfactual 
approaches that received scholars’ attention, such as perfor-
mance improvement for multi-agent learning, causal infer-
ence in machine learning, explanation for system decision 
of black-box models, the actionable alternative outcome of 
existing and new AI models, etc. [70, 137–142]. Academics 
are exploring trade-offs to generate counterfactual explana-
tions and methods to utilize the generated CFs to provide 
explainable and interpretable model outcomes.

6.4.1 � Perturbation‑based methods

One common approach to generating CF is the perturba-
tion-based method. A perturbation-based method is used 
in various fields, including machine learning and optimi-
zation, to analyze the behavior of a system by modifying 
input features and keeping the remaining features fixed to 
observe changes in the prediction. In machine learning, 
scholars mainly employ perturbation-based methods to 
assess a model’s robustness, sensitivity, or generalization. 
Perturbation distance, or feature or input distance, measures 
the extent of modification or change applied to input features 
when generating counterfactual explanations. Wachter et al. 
proposed a method to generate CF explanations for predic-
tions without accessing the model’s internal architecture. 
This method turns the CF generation problem into an opti-
mization problem with an objective function that considers 
measuring perturbation distance between instances. Search 
algorithms such as gradient descent or genetic algorithms 
are employed to find suitable counterfactual instances. The 
generated counterfactuals address interpretability challenges 
[143].

6.4.2 � Optimization‑based methods

Another approach is the optimization-based method, which 
slightly differs from the perturbation-based method. After 
generating CF instances by solving the optimization prob-
lem (minimizing original and CF instance differences), 
the method focuses on satisfying certain constraints, such 
as individual and group fairness of the generated CFs. By 
applying this approach, Kusner et al. (2017) introduced a 
framework for generating counterfactual explanations by 
minimizing the distance in a latent feature space [127]. 
Besides them, Samali et al. developed an optimization tech-
nique to ensure fairness in methods by creating representa-
tions with similar richness for different groups in the dataset 
[144]. They represented experimental results showing that 
men’s faces have lower reconstruction errors than women’s 
in an image dataset. They developed a dimensionality reduc-
tion technique utilizing an optimization function mentioned 
in equation (2).

Here, A and B are two subgroups, UA and UB denote matrices 
whose rows correspond to rows of U, U contain members 
of subgroups A and B given m data points in Rn . Their pro-
posed algorithm is summed up in two steps: firstly, it relaxes 
the objective to a semidefinite program (SDP) and solves it. 
Secondly, it solves a linear program that would reduce the 
rank of the solution [144].

(2)

minU∈Rm×n,rank(U)≤dmax

{
1

|A|
loss(A,UA),

1

|B|
loss(B,UB)

}
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6.4.3 � Rule‑based methods

Additionally, rule-based methods have been proposed, such 
as the Anchors algorithm by Ribeiro et al., which generates 
rule-based explanations by identifying the smallest set of 
features that must be true for a specific prediction [130].

6.4.4 � Combining multiple methods

These different methods offer diverse ways to generate 
counterfactual explanations, allowing researchers and 
practitioners to choose the most suitable approach for their 
needs. Some other scholars emphasize generating diverse 
CFs to explore the explanation space and identify diverse 
and coherent explanations. This method combines multi-
ple techniques such as heuristics, optimization algorithms, 
sampling methods for searching, and pruning techniques. 
It also captures the trade-off between diversity and coher-
ence. It may penalize redundant or overlapping explanations 
while rewarding diverse and coherent explanations. Candi-
date explanations generated from this method are diverse 
and coherent [76].

6.4.5 � Multi‑modal alternative profiles

Besides the linear counterfactual generation methods men-
tioned above, scholars also explore multi-modal CF gen-
eration. For example, Abbasnejad et al. propose generating 
counterfactual instances by modifying both the input image 
and the generated text. These modifications capture alterna-
tive visual and linguistic explanations, resulting in different 
model predictions. This function typically includes terms 
encouraging visual fidelity, linguistic coherence, and dis-
similarity from the original instance [43].

6.5 � Fairness terminologies and metrics definitions

The filtered articles proposed various fairness-related termi-
nologies to mitigate fairness issues by implementing them 
in bias reduction strategies. We present generalized descrip-
tions of these definitions.

•	 Disparate impact: Feldman et al. describe the disparate 
impact as a situation in which a decision-making pro-
cess disproportionately impacts members of a protected 
group, regardless of intent [99] or in other words, dis-
parate impact is a predictor that makes different errors 
for different feature groups [93, 125]. Disparate impact 
can be measured using statistical techniques such as the 
“disparate impact ratio", which compares the proportion 
of favorable outcomes (such as job offers) between differ-
ent groups. If the ratio is significantly different between 
groups, it suggests that the model is exhibiting disparate 

impact. For example, from a dataset of three men and 
five women, this job offering algorithm offers jobs to two 
men and two women, then the ratio for men 2

3
 is signifi-

cantly larger than 2
5
 . It indicates the presence of disparate 

impact.
•	 Causal fairness: A decision rule is causally fair for a 

protected attribute if changing that protected attrib-
ute while holding all other variables constant does not 
change the probability of receiving a positive outcome 
[125]. In other words, the protected attribute should not 
cause any outcome differences. For example, in a data-
set of people’s information, such as age, gender, salary, 
and mortgage rate, if a credit card-allowing algorithm 
provides the exact prediction (allow credit card for that 
person) in the presence and absence of gender, then the 
algorithm has causal fairness.

•	 Demographic parity: Dwork et al. state that demo-
graphic parity is satisfied if the proportion of positive 
outcomes is equal across all groups [99]. Keeping the 
meaning same, Hardt et al. defined the demographic par-
ity when the true positive rate (TPR) is equal across all 
groups [125]. Emphasizing the positive outcome, Feld-
man et al. claimed that a classifier has demographic par-
ity if its positive predictive value (PPV) is equal across 
all groups [102]. For example, in job applications, if the 
model selects 10% of male and 10% of female candidates 
for interviews, then demographic parity is satisfied. Here, 
10% is the TPR and PPV for both males and females, 
which is equal. The classifier predicts negative outputs 
for 90% males and females, indicating the negative pre-
dictive value.

•	 Equalized odds and calibration: In the context of fair 
machine learning, ‘equalized odds’ is a fairness criterion 
that requires the true positive and false positive rates to 
be equal across different groups defined by a sensitive 
attribute, such as race or gender [132]. True positive 
(TP) and false positive (FP) rates are commonly used 
performance metrics in classification tasks. Specifically, 
equalized odds means that the probability of a positive 
outcome (e.g., being approved for a loan or receiving a 
medical intervention) should be the same for individuals 
in different groups who have the same true status (e.g., 
whether they will pay back the loan or whether they have 
a particular medical condition).

•	 Group fairness: It is a popular fairness concept defined 
and explored by many researchers from several perspec-
tives to implement it in developing fair model [64, 97, 99, 
125, 128]. In the definition of group fairness by Dwork 
et al., they emphasized the model to have demographic 
parity and not to have a disparate impact for ensuring 
that similar individuals be treated similarly, regardless 
of their group membership [99]. Similarly, Feldman 
defined group fairness regarding the disparate impact 
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and stated that the ratio of positive outcomes (e.g., being 
released on parole) should be roughly equal across dif-
ferent groups defined by sensitive attributes (e.g., race 
or gender) [93]. Researchers also defined group fairness 
in terms of equalized odds. Such as Li et al. stated that 
group fairness requires that the true positive and false 
positive rates be the same across all groups [77]. It means 
the probability of a loan being approved should be the 
same for all groups, regardless of social relationships, 
race, gender, or other protected attributes [55, 77].

•	 Individual fairness: It refers that two individuals with 
similar relevant characteristics (e.g., credit history, 
income) should receive similar decisions [77]. To explain 
it with a previous example, from a dataset of three men 
and five women, a job offering algorithm offers jobs to 
two men with similar characteristics, such as a similar 
salary range and mortgage rate. However, if the third man 
has a similar salary and mortgage rate as the other two 
men, then we can expect that the model will also offer 
jobs to this third man if it has individual fairness.

•	 Contrastive fairness: It is a fairness criterion that 
focuses on comparing the outcomes of two groups that 
are similar in all relevant ways except for their member-
ship in a protected attribute group, such as race or gender. 
The idea is to evaluate the extent to which their protected 
attribute status can explain the difference in outcomes 
between these groups and to ensure that this difference is 
not more significant than it would be if the groups were 
not distinguished by their protected attribute [42]. For 
example, in a hiring context, contrastive fairness would 
require that two equally qualified candidates with differ-
ent protected attribute statuses (e.g., one male and one 
female) have roughly the same chance of being selected 
for the job. This fairness criterion addresses situations 
where the compared groups are not entirely distinct and 
non-protected attributes can not fully explain outcome 
differences.

•	 Burden: This terminology inclines to remove discrimi-
nation between categorical groups. It refers to the cost or 
effort required to achieve a particular level of transpar-
ency and fairness in a machine-learning model. There 
is often a trade-off between a model’s level of interpret-
ability and fairness and the cost of achieving these goals 
[73]. For example, adding interpretability or fairness con-
straints to a model may increase the computational cost 
of training or evaluating the model or require additional 
data collection or annotation, which refers to the burden. 
We must balance the burden of achieving a certain level 
of transparency or fairness against the potential benefits 
of using the model in a particular application.

•	 Equality of effort: This concept is analyzed as a causal-
based fairness approach, which refers to a notion of 
fairness in which individuals are judged based on their 

effort and not just their outcomes. According to the 
context of group fairness in machine learning, equality 
of effort requires that individuals who put in the same 
amount of effort (most other features have the same 
value) should have equal chances of success, regardless 
of any protected group status (such as race or gender) 
[80]. For example, A female and a male candidate with 
similar qualifications should have equal chances of being 
approved for a job interview.

•	 Causal probabilistic logic: Scholars explore causal 
probabilistic logic to remove the ambiguity of the judg-
ment-based causal fairness idea. Causal probabilistic 
logic is a type of logic that attempts to understand the 
relationships between cause and effect in probabilistic 
terms. One crucial aspect of causal probabilistic logic is 
the use of counterfactuals, which are statements about 
what would have happened if a particular event had not 
occurred. Counterfactuals allow one to reason about 
the causal effects of interventions and can be used to 
test causal hypotheses [50]. In this approach, causality 
is modeled probabilistically, where events are seen as 
causes of other events with some probability.

•	 Group Fairness Indicator (GFI): It refers to a metric 
that quantifies the level of fairness achieved for differ-
ent groups or sub-populations within a given context. 
A GFI typically considers the outcomes or predictions 
made by the system for various groups and compares 
them based on a fairness criterion. The choice of fairness 
criterion varies depending on the specific context and 
the fairness principle being considered, such as equal-
ized odds, demographic parity, or equal opportunity. For 
example, in the context of classification algorithms, a 
GFI compares the true positive rates, false positive rates, 
or predictive accuracy for different demographic groups 
(such as gender or race). By analyzing these metrics, 
researchers and practitioners can evaluate whether the 
algorithm exhibits disparities or biases in its predictions 
across different groups. The purpose of a group fairness 
indicator is to provide an objective measure of fairness 
and enable the identification of any unfairness or dis-
criminatory patterns in the decision-making process. In 
addition, it helps stakeholders assess the performance of 
algorithms and make informed decisions to mitigate any 
observed disparities [45].

•	 Proximity: The definition of proximity is required for 
exploring CFs. It refers to the similarity between the 
original instance and the counterfactual instance gen-
erated to explain the prediction of a machine learning 
model. It measures how far the counterfactual instance 
is from the original instance in the feature space. For 
example, if a machine learning model predicts that a loan 
application will be denied, a counterfactual explanation 
could generate a new loan application similar to the 
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original one but with some changes resulting in the loan 
being approved. The proximity of the counterfactual loan 
application would reflect how similar it is to the original 
loan application [70, 106].

•	 Sparsity Similar to proximity, sparsity, validity, and 
diversity are defined for CF explanations. Firstly, spar-
sity refers to the property of the explanation that suggests 
changing as few features as possible while still achiev-
ing the desired outcome. For example, a sparse example 
identifies a few key features of a loan application that 
change the outcome of the loan decision if we modify 
those key features [70].

•	 Validity Secondly, validity refers to the degree to which 
the counterfactual explanations provided for a given 
model’s output are true and realistic. For example, sup-
pose a CF for loan approval ML model’s predictions say 
to increase the monthly income within two days for the 
approval to be granted. In that case, the CFs need more 
validity as it is impossible [70].

•	 Diversity Finally, Diversity measures how distinct the 
different counterfactual explanations are. In other words, 
diverse counterfactual explanations provide a range of 
alternative scenarios that explain the model’s decision 
from multiple perspectives [70]. For example, suppose 
a machine learning model classifies a loan applicant as 
high risk due to their low credit score. A diverse set of 
counterfactual explanations could include providing 
alternative scenarios for the applicant to improve their 
credit score, such as paying off debt, getting a secured 
credit card, or taking out a credit-builder loan. By pre-
senting various possible solutions, diverse explanations 
can help the user better understand the model’s decision-
making process and increase their trust in the system.

7 � Challenges and limitations 
of the methodologies

Although these methodologies developed with fairness-
related terminologies solve many issues, they also generate 
other challenges. Some scholars have addressed these draw-
backs of their suggested approach, such as in which circum-
stances their method would only function sometimes. Some 
of the typical limitations of the proposed methodologies are 
the limited scope of protected attributes, the assumption of 
causal relationships, the failure to handle categorical fea-
tures, the focus on individual fairness, ambiguous explana-
tion, the data quality and representativeness, and the trade-
off between fairness and accuracy. Figure 10 represents 
these limitations and which methodologies can potentially 
have these limitations. The figure also represents an overall 
illustration of issues, the methods to solve them, and their 
limitations.

7.1 � Limited scope of protected attributes

Many existing bias reduction methods focus on addressing 
bias related to a specific set of protected attributes, such as 
race or gender, while neglecting other potential sources of 
bias [64, 93, 98, 115, 124]. This limited scope may lead to 
insufficient mitigation of bias [97].

7.2 � The assumption of causal relationships

Additionally, causal relationship assumptions can gener-
ate unwanted bias in the model prediction. Experts gener-
ally researched counterfactual explanations in light of two 
mechanisms: contrast effects and causal inferences. How-
ever, these suggested methods are temporary and costly 
[54]. Moreover, Causal inference models offer to answer 
causal questions like, “If a feature A changes, what will 
happen to outcome y" [60]. However, causal inference does 
not describe how the confidence of a particular outcome is 
altered for ignorable changes in the training set [84]. The 
difficulties in generating counterfactuals may also lead to 
undesired fairness challenges [54].

7.3 � The failure to handle categorical features

Also, developing methodologies by exploring similar data-
sets reduces the chance of handling different features. Many 
existing methodologies work with datasets that mostly have 
continuous features. Thus, Existing CF generating algo-
rithms may fail to handle categorical features [72]. This 
restriction to categorical or group features results in the 
misled measurement of fairness [77].

7.4 � The focus on individual fairness

Next, several bias reduction approaches prioritize individual 
fairness, which aims to treat similar individuals similarly. 
However, they may overlook group fairness, resulting in 
disparate outcomes for certain groups [145].

7.5 � Ambiguous explanation

Furthermore, CFs may occasionally fail to ensure logical 
explanations. In reality, a set of diverse counterfactuals may 
contain changes of attribute values for altering the prediction 
that is not changeable to those values [69]. In this aspect, 
research is scarce regarding what should be optimized to 
generate a feasible set of counterfactual [69, 70].

7.6 � The data privacy concern

Along with unfeasible CF explanations, CF-generating 
approaches trigger provoking protected attributes [69]. 
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Discrimination detection algorithms are developed based 
on the assumption that all attribute information is vis-
ible to algorithms. This assumption is not valid for all 
scenarios. Thus, these algorithms are limited to getting 
protected features [55, 77, 80].

7.7 � The trade‑off between fairness and accuracy

Besides these limitations, data quality also contributes 
to challenges. For example, bias reduction methods rely 
heavily on the training data’s quality and representative-
ness. If the training data contains biases or is unrepre-
sentative of the target population, the methods may not 
effectively mitigate bias [95]. Finally, Some bias reduc-
tion techniques involve modifying the model or training 
process to achieve fairness, which can lead to a trade-off 
between fairness and accuracy. Striving for perfect fair-
ness may come at the cost of decreased predictive per-
formance [126].

7.8 � The information loss and altering

The goal of re-sampling is to ensure that we train the model 
on a balanced dataset, which can help mitigate bias and 
improve the model’s overall performance. However, it is 
essential to note that re-sampling can also result in a loss 
of information, and we need to ensure that the re-sampled 
dataset is representative of the original dataset.

7.9 � The excessive computational expense

Many of the adopted methodologies involve adversarial tech-
niques, and the main problem with adversarial techniques is 
that they can be computationally expensive. Additionally, 
and may not always be effective in addressing all forms of 
bias. Adversarial training, or adversarial debiasing, involves 
generating adversarial examples in various ways, such as 
perturbing the input data to the model to maximize the 
model’s loss or minimize its accuracy. This process requires 
solving an optimization problem for each training example, 
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which can be computationally expensive, especially for large 
datasets. Moreover, adversarial techniques may require addi-
tional training iterations to achieve convergence, leading to 
a further computational burden. Additionally, generating 
adversarial examples may require running the model mul-
tiple times for each example, increasing the computational 
cost. Finally, adversarial techniques may require special-
ized hardware or software to efficiently generate adversarial 
examples, adding to the computational expense.

These limitations highlight the challenges, and we need 
to adopt and implement methodologies to address these 
limitations in developing and applying bias reduction 
methodologies.

8 � Future Direction

Some of our studied papers proposed future research direc-
tions (mainly in the conclusion or introduction of the paper). 
We gathered all this information while doing our mapping 
analysis and classified these indicated future efforts into a 
few categories, which we will explain next.

8.1 � Fairness methodologies for models 
beyond binary decisions

Most filtered research articles proposed methodologies to 
ensure fairness for models that only perform binary pre-
diction [98, 125, 132]. For example, a credit card denying/
accepting model predicts only ‘yes’ indicating credit card 
request accepted and ‘no’ indicating credit card request 
rejected [125, 146]. However, expanding fairness beyond 
binary decisions is a future direction. It includes addressing 
fairness in multi-class classification and regressive tasks. 
For example, predicting the right insurance plan, such as 
‘start-up family pack’, ‘small family pack’, or ‘large family 
pack’ for a family, based on the earning member’s income, 
requires a model with multi-class classification. Also, we 
may need regressive models to settle an amount for offering 
salary for an individual depending on his/her qualification 
and company requirement, which also requires fairness for 
all candidates. In the case of a lower initial offering, many 
competitive candidates may not even feel the need to negoti-
ate based on the offering. In contrast, in the case of a high 
initial offering, the company may suffer in the long run with 
lower potential or lower employee performance. To ensure 
fairness, the regressive model should have minor differences 
in initial salary offerings for candidates with the same quali-
fications but different age ranges, races, or genders. Thus, 
developing methodologies that account for nuanced differ-
ences among groups rather than focusing solely on binary 
outcomes can be a noteworthy contribution in this field 
[147].

8.2 � Intersectionality‑aware fairness methodologies 
for protected features

Most of the fairness-ensuring strategies explained in the fil-
tered papers focused on reducing bias towards a protected 
feature in the dataset [63, 64, 93, 115, 124, 124]. Thus, tra-
ditional fairness ensuring strategies often focus on individ-
ual protected attributes in isolation, assuming that we can 
address the biases associated with each attribute separately. 
However, intersectionality-aware fairness methodologies 
address biases that emerge from the intersections of multi-
ple attributes. It recognizes multidimensional and intercon-
nected social identities and discriminations arising from the 
combination of multiple protected attributes, such as race, 
gender, age, and socioeconomic status. For example, con-
sider a credit card application process where decisions are 
made based on various attributes, such as income, employ-
ment status, and credit history. Intersectionality-Aware Fair-
ness would consider how biases and discrimination may 
arise when individuals possess multiple intersecting attrib-
utes, such as a woman of color or a low-income transgender 
individual. They may face unique forms of bias that can-
not be adequately captured by considering each attribute in 
isolation. Thus, by considering intersectionality awareness, 
RAI tools and other bias reduction approaches can better 
capture the multidimensional and interconnected nature of 
social identities and address the biases and discrimination 
that arise from the combination of multiple protected attrib-
utes [87].

8.3 � User‑defined fairness and customization

Existing fairness-ensuring methodologies maintain two 
steps: 1. defining fairness from social, statistical, or other 
perspectives and 2. ensuring the defined fairness in the 
proposed method. Researchers or policymakers pre-define 
fairness definitions, imposing a one-size-fits-all notion of 
fairness on algorithmic decision-making. However, differ-
ent individuals and communities may have different per-
spectives, values, and priorities regarding fairness. Allow-
ing users to customize fairness definitions and constraints 
can provide a more inclusive and personalized approach to 
fairness. User-defined fairness and customization involve 
empowering individuals to have a say in defining their 
notions of fairness and incorporating their preferences into 
the fairness-ensuring methodologies. We can tailor meth-
odologies to align with individual perspectives and values 
by enabling users to define their fairness criteria. This cus-
tomization can take various forms, such as providing adjust-
able fairness thresholds, allowing users to prioritize different 
groups or attributes, or incorporating feedback mechanisms 
to refine fairness definitions based on user input iteratively. 
The idea of user-defined fairness and customization reflects 
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the importance of fairness being context-dependent and sub-
jective to some extent. It acknowledges that fairness is a 
complex and multidimensional concept that should be adapt-
able to different peoples’ and communities’ specific needs 
and preferences.

8.4 � fairness ensuring methodologies considering 
long‑term concept definitions and dynamics

The future direction also involves expanding fairness-ensur-
ing methodologies to consider the effects of interventions 
and algorithmic decisions over time. This direction recog-
nizes that fairness is not a static concept and that disparities 
may emerge or change in different contexts and timeframes. 
Methodologies must examine how interventions and algo-
rithmic decisions impact fairness outcomes over extended 
periods to address long-term fairness. It requires understand-
ing the dynamics of fairness and considering how biases and 
disparities can manifest or evolve. Additionally, long-term 
fairness involves accounting for the potential unintended 
consequences of interventions and algorithmic systems. 
Fairness-ensuring methodologies should assess the long-
term effects of such interventions to ensure that they do not 
inadvertently reinforce or introduce new biases or dispari-
ties [148].

8.5 � Preparing and publishing unbiased datasets

Researchers must focus on removing bias in popular datasets 
to promote fairness in the models developed from these data-
sets. Many researchers search for a dataset free of intricate 
biases as the data and the state of the dataset’s attribute can 
be biased [54, 55, 70]. They need these datasets for testing 
the fairness of RAIs or other predicting models. Scholars 
have introduced approaches to test if a model prediction is 
biased toward any group [110, 111]. However, if we apply 
these approaches to predictive models with biased datasets, 
the results may not indicate that even though the model 
is fair. This situation will make the purpose of the unfair-
ness testing algorithms ambiguous. Thus, if some scholars 
remove some biases from a few datasets and make them 
publicly available, other scholars can look into them and 
work on removing other biases from those datasets. These 
datasets can be widely explored for developing models with-
out worrying about unfair models.

9 � Source code, datasets, tools

Some filtered studies have developed tools to contribute to 
model fairness research and represent the results of imple-
menting their approach in standard datasets to prove their 
claim. We considered the accessibility of these datasets and 

special proposed tools if they have provided a source code 
repository. Some researchers also pointed to dataset reposi-
tories that are not publically accessible. We present these 
tools and the popular datasets these articles explore in sec-
tion 9.1 and 9.

9.1 � Developed tools/frameworks

•	 Aequitas [129]: This toolkit generates reports from the 
obtained data to test if an ML model is fair for differ-
ent subgroups. Aequitas can help people from various 
professions, such as data scientists, ML researchers, and 
policymakers.

•	 AIF3601 [149]: AI Fairness 360 or AIF360 is an indus-
trial Python toolkit developed by IBM mainly for evaluat-
ing fairness algorithms and providing a common frame-
work so that scholars can share their ideas. A complete 
collection of fairness metrics for datasets and models, 
justifications for these metrics, and dataset’s and model’s 
bias mitigation strategies are included in the package 
along with an inter​activ​e Web exper​ience.

•	 DiCE2 [70]: It is an open-source quantitative evaluation 
framework for counterfactuals that allows fine-tuning for 
a particular scenario and enables comparison between 
CF-based and other local explanation based methods 
[150]. This tool provides diverse counterfactual instances 
that are different from the original but represent the same 
class. This method used diversity metrics and proxim-
ity constraints for generating diverse and feasible CFs 
(where the prediction is binary).

•	 ViCE3: It is a black-box visual analytic tool that enhances 
the interpretability of machine learning models in the 
context of visual tasks. The approach focuses on generat-
ing counterfactual explanations by providing alternative 
visual examples that would lead to different model pre-
dictions. It uses a heuristic search algorithm, a Gaussian 
technique in features, and a greedy approach to discover 
the lowest set of viable adjustments for changing the out-
come [72].

•	 CERTIFAI: The development of counterfactual explana-
tions is the main focus of CERTIFAI (Counterfactual 
Explanations for Robustness, Transparency, Interpret-
ability, and Fairness of Artificial Intelligence models) 
[73]. Existing counterfactual generating algorithms have 
a few shortcomings, such as infeasible examples. It hin-
ders the process of evaluating the robustness and fairness 
of developed models. This tool aims to provide a solution 
to this issue.

1  https://​github.​com/​Trust​ed-​AI/​AIF360
2  https://​github.​com/​micro​soft/​DiCE
3  https://​github.​com/​5teff​en/​ViCE

https://aif360.mybluemix.net/
https://github.com/Trusted-AI/AIF360
https://github.com/microsoft/DiCE
https://github.com/5teffen/ViCE
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9.2 � Supporting datasets

•	 HELOC [151]: The HELOC (Home Equity Line of 
Credit) dataset is a real-world dataset popularly known 
in the field of credit risk assessment and lending. The 
HELOC (Home Equity Line of Credit) dataset is a 
real-world dataset commonly used in credit risk assess-
ment and lending. It contains demographic information 
about borrowers’ credit profiles, loan applications, and 
loan performance related to home equity lines of credit. 
Researchers often utilize this dataset for developing and 
evaluating machine learning models to predict credit risk, 
determine the likelihood of defaulting on a loan, improve 
lending decisions, manage credit risk, and assess the fair-
ness of loan approval processes. For example, Gomez 
et al. ran their case study to show how their proposed 
technique provided the ML explanation for prediction on 
this dataset [72].

•	 Child welfare dataset: This dataset contains child wel-
fare and protection information. The specific attributes 
and labels in the dataset may vary depending on the 
source and purpose of the dataset. However, there are 
usually demographic attributes (age, gender, ethnicity), 
socioeconomic attributes (income, education level), case 
information (referral, abuse or neglect reported), family 
history (parental substance abuse, domestic violence, or 
mental health issues), placement history (foster place-
ment history), service utilization (counseling, therapy, 
or parenting programs). In the academic field, the Child 
Welfare dataset is a valuable resource for understanding 
the ethical dimensions of child welfare practices and the 
implications of using AI technologies in this domain. 
It allows researchers to identify potential challenges, 
propose solutions, and contribute to developing ethi-
cal guidelines and frameworks for AI systems in child 
welfare. For example, Mishler showed Risk Assessment 
Instruments tools’ inability to generate separate risk 
scores with the help of this dataset [67].

•	 UCI adult dataset [152]: The UCI Adult dataset, also 
known as the Census Income dataset, is a popular data-
set used in machine learning and data mining research. 
The UCI Adult dataset consists of 14 attributes or fea-
tures. These attributes capture various demographic, 
social, and economic information about individuals. 
The type of attributes includes a mix of categorical 
and numerical attributes. Categorical attributes repre-
sent specific characteristics such as education, marital 
status, occupation, and relationship status. Numerical 
attributes include age, educational years, capital gain, 
loss, and weekly work hours. The predicting attribute 
in the UCI Adult dataset is typically the “income” 
attribute, which indicates whether an individual earns 
more than 50, 000 per year. This attribute serves as a 

binary label, often used for classification tasks. The 
UCI Adult dataset is valued for its real-world rel-
evance, the presence of socio-economic attributes, 
and the opportunities it provides for studying fairness, 
bias, and income prediction tasks. Its availability and 
well-documented nature make it a suitable dataset for 
many field researchers. For example, Ramaravind K. 
Mothilal et al. evaluated their method of explaining 
the ML model on this dataset [70]. Sharma et al. used 
this dataset to generate and analyze a comparison of 
the same person’s explanation to demonstrate their 
model’s superiority [73]. Furthermore, another paper 
used seven attributes (sex as the protected attribute, 
age, marital status, work class, education, hours, and 
income as outcome) of this dataset to evaluate their 
proposed discrimination detection and removal algo-
rithms based on equality of effort [80].

•	 UCI German Credit Dataset [153] and Dataset from 
Lending Club [154]: The UCI German Credit Dataset 
is a well-known dataset used in machine learning and 
credit risk analysis. It consists of 20 attributes or features 
(a mix of categorical and numerical attributes) that cap-
ture various aspects of individuals applying for credit, 
including personal, financial, and employment informa-
tion. Categorical attributes include sex, housing status, 
employment type, and credit history. Numerical attrib-
utes include features like age, credit amount, duration of 
credit, and installment rate. The predicting attribute in 
the UCI German Credit Dataset is typically the “credit 
risk” attribute, which indicates whether a person is con-
sidered a good or bad credit risk. This binary label is used 
for classification tasks to predict the creditworthiness of 
applicants. Similar to the UCI German credit dataset, the 
dataset from Lending Club typically consists of several 
attributes (categorical and numerical). It includes numer-
ous attributes that provide information about loan appli-
cants and their financial profiles. The predicting attribute 
is typically the loan status or loan outcome. This attribute 
indicates whether a loan was fully paid, charged off, in 
default, or had another status. It can be used for clas-
sification tasks to predict the likelihood of loan default 
or assess lending models’ performance. To evaluate the 
model accuracy and feature information of loan decisions 
with the proposed model and other models, these datasets 
were used by [70].

•	 Diabetes Dataset [155]: It is widely used in healthcare 
research. the key characteristics of this dataset are nine 
attributes capturing health-related measurements and 
demographic information (numerical and categorical). 
The predicting attribute in the Diabetes Dataset is the 
“Outcome” attribute, which represents the presence 
or absence of diabetes in the individual. This attribute 
serves as the target variable for classification tasks. 
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Gomez [72] et al. explained an instance in this database 
and contextualized the values of the dataset.

•	 Pima Indian diabetes dataset: For comparing the robust-
ness of different models, S. Sharma [73] et al. utilized 
this dataset. The dataset serves as a benchmark for eval-
uating the performance of different classification algo-
rithms in the context of diabetes prediction. Researchers 
can compare their models’ accuracy, sensitivity, speci-
ficity, and other metrics with existing literature that uti-
lizes this dataset. The simplicity and interpretability of 
the Diabetes Dataset also make it suitable for students 
and beginners to practice and understand the concepts 
of data preprocessing, feature selection, model training, 
and evaluation in a healthcare context.

•	 Outbrain Click Prediction [156] and KKBox’s Music 
Recommendation Challenge [157]: These datasets are 
available in Kaggle. To compare test scores using differ-
ent positional approaches, Yuan et al. used these datasets 
[158].

•	 HMDA4: The Home Mortgage Conflict of interest Act 
(HMDA) dataset is a collection of data related to mort-
gage applications and loans in the United States. It con-
tains information on various attributes related to loan 
applications, borrowers, lenders, and loan characteristics. 
The dataset provides valuable insights into lending prac-
tices and can be used to analyze mortgage market trends, 
identify potential disparities or biases, and assess fair 
lending practices. The attributes included in the HMDA 
dataset can vary depending on the year and jurisdiction. 
However, typical attributes in HMDA datasets include 
applicant’s information, load information, and lender 
information. The dataset also includes information on 
the loan approval status, denials, and other loan-related 
outcomes, which can be used as labels for predicting loan 
outcomes or assessing fairness [56, 159]. The official 
website of the Consumer Financial Protection Bureau 
(CFPB), the organization responsible for collecting and 
maintaining the HMDA data, can be an excellent source 
for accessing the dataset through their public data plat-
form.

10 � Threats to validity of our study

We attempted to include papers on the fairness study of 
machine learning prediction using counterfactual notions 
with our query. However, owing to the limits of our query, 
there is still a chance that we may miss out on consider-
able research. We used the same query for all repositories, 

but the terms’ scope differed in a few cases. For example, 
for ACM DL, we used “machine learning” and “fairness” 
within the whole article and “counterfactual” within only 
the abstract of the article. However, for IEEE Xplore, this 
threshold of query terms resulted in 2000+ search results 
that could not be processed. As a result, we set the query 
words boundary to be within the article’s abstract. We also 
investigated related works of these publications to filter out 
as many significant articles as feasible. However, it is still 
easy to overlook certain essential linked studies.

Furthermore, we’ve concentrated on skimming through 
articles to address the research questions mentioned in 
Sect. 3. Our review strategy offers an overall view of the 
field by outlining categories of fairness issues, adopted 
methodologies, and their limitations. By diving deeper 
into the different methodologies used, we can engage in a 
detailed discussion on potential developments in ensuring 
fairness. While the proposed taxonomy and current dis-
cussions in our paper suit a review aimed at introducing 
newcomers to the field, categorizing methodologies from 
various perspectives, such as based on implementation time 
perspectives-like in-processing, pre-processing, and post-
processing [30]-provides intriguing insights for researchers 
focusing on method development.

11 � Conclusion

We followed a systematic approach to explore the current 
research trends in this field. First, we examined the present 
method of performing systematic mapping studies followed 
by other scholars. Then, we proceeded to the section where 
we followed the rules for portraying secondary research 
work in a classified and informative structure. The majority 
of the procedures we are following in this study are based 
on best practices outlined by Wieringa et al. [34], Das et al. 
[35], Petersen et al. [160], Kitchenham et al. [33], Gonçales 
et al. [161]. Following the steps and best literature review 
practices, we can summarize our contributions as follows:

•	 We classified and synthesized articles depending on gen-
eralizing the types of approaches scholars explored.

•	 We constructed the research questions for our study and 
structured our generalized query for four popular data-
bases.

•	 We explicitly discussed our search results with the query 
in the form of our research question-answer and refer-
enced relevant articles that the keyword search did not 
include.

From the study, we conclude that a model with high accu-
racy can represent multiple types of fairness issues, such 
as bias against protected attributes, inherent data bias, or 

4  https://​www.​consu​merfi​nance.​gov/​data-​resea​rch/​hmda/​histo​ric-​
data/

https://www.consumerfinance.gov/data-research/hmda/historic-data/
https://www.consumerfinance.gov/data-research/hmda/historic-data/
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lack of explanation. Different types of bias require differ-
ent types of approaches. Bias mitigation methodologies are 
only partially immune to these biases. Handling numer-
ous fairness issues in one model may result in a new and 
distinctive fairness issue [84]. As a result, understanding 
the current need to ensure model fairness requires a thor-
ough study of the previous methods and their difficulties. 
Thus, generalizing the fairness issues and classifying the 
methodologies from the perspective of these issues may 
contribute to improving the existing methodologies and 
developing advanced methodologies. So, we contributed 
in this regard and summarized our contribution as follows.

•	 We provide insights into the current landscape of fair-
ness by highlighting the issues scholars are exploring. 
We generalize the issues into six groups and discuss the 
key factors contributing to these issues.

•	 We classify and discuss the adopted methodologies to 
solve these issues highlighting how we can mitigate 
training data bias, mitigate bias toward protected attrib-
utes, and provide prediction explanation and interpreta-
tion.

•	 Furthermore, we organize the challenges of these meth-
ods and link the discussed challenges to these method-
ologies.

•	 We also contributed by discovering possible future 
directions from these articles.

In addition to the highlighted contributions, our mapping 
study methodology holds significant potential for future 
perspectives. While the article reviews offer insightful 
guidance for newcomers in the field, the systematic map-
ping approach detailed in Sect. 3 streamlines the process 
for researchers to review the current literature landscape 
(such as query development, searching databases with the 
query, filtering articles, etc.). Given that the articles sur-
veyed in this paper might become outdated due to emerg-
ing methodologies over time. However, the mapping study 
approach will provide a reliable direction for guiding the 
review of newer methods in this domain.
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