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Abstract
Graph neural networks (GNNs) have achieved remarkable results for various graph learning tasks. However, one of the recent 
challenges for GNNs is to adapt to different types of graph inputs, such as heterophilic graph datasets in which linked nodes 
are more likely to contain a different class of labels and features. Accordingly, an ideal GNN model should adaptively accom-
modate all types of graph datasets with different labeling distributions. In this paper, we tackle this challenge by proposing a 
regularization framework on graph framelet with the regularizer induced from graph p-Laplacian. By adjusting the value of 
p, the p-Laplacian based regularizer restricts the solution space of graph framelet into the desirable region based on the graph 
homophilic features. We propose an algorithm to effectively solve a more generalized regularization problem and prove that 
the algorithm imposes a (p-Laplacian based) spectral convolution and diagonal scaling operation to the framelet filtered node 
features. Furthermore, we analyze the denoising power of the proposed model and compare it with the predefined framelet 
denoising regularizer. Finally, we conduct empirical studies to show the prediction power of the proposed model in both 
homophily undirect and heterophily direct graphs with and without noises. Our proposed model shows significant improve-
ments compared to multiple baselines, and this suggests the effectiveness of combining graph framelet and p-Laplacian.

Keywords  Graph neural networks · Graph framelets · p-Laplacian regularization

1  Introduction

Graph neural networks (GNNs) have demonstrated remark-
able ability for graph learning tasks [5, 53, 58, 65]. The 
input to GNNs is the so-called graph data which records 
useful features and structural information among data. Such 
data are widely seen in many fields, such as biomedical sci-
ence [1], social networks [16], and recommend systems [52]. 
GNN models can be broadly categorized into spectral and 
spatial methods. The spatial methods such as MPNN [20], 
GAT [48] and GIN [54] utilize the message passing mecha-
nism to propagate node feature information based on their 
neighbours [44]. On the other hand, the spectral methods 
including ChebyNet [14], GCN [28] and BernNet [24] are 
derived from the classic convolutional networks, treating the 
input graph data as signals (i.e., a function with the domain 
of graph nodes) [41], and filtering signals in the Fourier 
domain [6, 14]. Among various spectral-based GNNs, the 
graph framelets GCN [61], which is constructed on a type of 
wavelet frame analogized from the identical concept defined 
on manifold [15], further separates the input signal by prede-
fined low-pass and high-pass filtering functions and resulting 
a convolution-type model as in the studies [9, 60, 61]. The 
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graph framelet shows great flexibility in terms of controlling 
both low and high-frequency information with robustness to 
noise and thus in general possesses high prediction power in 
multiple graph learning tasks [9, 56, 60, 62, 63, 69].

Along with the path of developing more advanced mod-
els, one of the major challenges in GNN is identified from 
the aspect of data consistency. For example, many GNN 
models [32, 51, 53, 54, 68] are designed based on the homo-
phily assumption i.e., nodes with similar features or labels 
are often linked with each other. Such phenomenon can be 
commonly observed in citation networks [13] which have 
been widely used as benchmarks in GNNs empirical studies. 
However, the homophily assumption may not always hold, 
and its opposite, i.e. Heterophily, can be observed quite often 
in many real-world datasets in which the linked nodes are 
more likely to contain different class labels and features [59]. 
For example, in online transaction networks, fraudsters are 
more likely to link to customers instead of other fraudsters 
[42]. The GNNs designed under homophilic assumption are 
deemed unsuitable for heterophilic graphs. It is evident from 
their significant performance degradation [59]. The reason 
is that the class of heterophilic graphs contains heterogene-
ous instances and hence the signals should be sharpened 
rather than smoothed out. An ideal framework for learning 
on graphs should be able to accommodate both homophilic 
and heterophilic scenarios.

One of the active aspects to resolve the GNN adap-
tion challenge is by regularizing the solution of GNNs via 
the perspective of optimization. The work done by [67] 
unified most of state-of-the-art GNNs as an optimization 
framework. Furthermore, one of the recent works [18] 
considered assigning an adjustable p-Laplacian regular-
izer to the (discrete) graph regularization problem that is 
conventionally treated as a way of producing GNN out-
comes (i.e., Laplacian smoothing). In view of the fact 
that the classic graph Laplacian regularizer measures the 
graph signal energy along edges under L2 metric, it would 
be beneficial if GNN could be adapted to heterophilic 
graphs under Lp metric ( 1 ≤ p < 2 ). Given that L1 metric 
is more robust to high-frequency signals, a higher model 
discriminative power is preserved. The early work [27] has 
demonstrated the advantage of adopting L1 metric in the 
Locality Preserving Projection (LPP) model. In addition, 
the recently proposed p-Laplacian GNN [18] adaptively 
modifies aggregation weights by exploiting the variance 
of node embeddings on edges measured by the graph gra-
dient. With a further investigation on the application of 
p-Laplacian, [36] suggested an efficient gradient descent 
optimization strategy to construct the p-Laplacian embed-
ding space that guarantees convergence to viable local 
solutions. Although the p-Laplacian based optimization 
scheme has been successfully lodged in basic GNN model 
[18], whether it can be further incorporated with more 

advanced GNN model (i.e., graph framelets) with higher 
prediction power and flexibility is still unclear. Specifi-
cally, one may be interested in identifying whether the 
advantage of deploying p-Laplacian in GNN still remains 
in graph framelet or what is the exact functionality of 
p-Laplacian interacting with the feature representations 
generated both low and high pass framelet domains. In 
addition, as graph framelets have shown great potential in 
terms of the graph noise reduction [56, 61, 69], whether 
the inclusion of p-Laplacian regularizer could enhance/
dilute such power remains unclear. These research gaps 
inspire us to incorporate p-Laplacian into graph frame-
lets and explore further for the underlying relationship 
between them.

Since the p-Laplacian regularized optimization problem 
lacks a closed-form solution, except for when p = 2 [64], an 
iterative algorithm is suggested to estimate the solution and 
each iteration can be analogized to a GNN layer [62]). The 
solution of such an algorithm is defined by the first-order 
condition of the optimization problem. As a result, one can 
relate this to the implicit layer approach [10, 57] which has 
the potential of avoiding over-smoothing issues since the 
adjusted node feature will be re-injected in each iteration 
step. By adjusting the value of p, both p-Laplacian GNN and 
the algorithm are capable of producing learning outcomes 
with different discriminative levels and thus able to handle 
both homophilic and heterophilic graphs. Similar work has 
been done by [17] which presents a framework based on 
the Bregman layer to fulfill the bi-level optimization for-
mulations. To reap the benefit of p-Laplacian regulariza-
tion in the framelet domain, in this paper, we propose two 
p-Laplacian Regularized Framelet GCN models which are 
named p-Laplacian Undecimated Framelet GCN (pL-UFG) 
and p-Laplacian Fourier Undecimated Framelet GCN (pL-
fUFG). In these models, the p-Laplacian regularization can 
be applied on either the framelet domain or the well-known 
framelet Fourier domain. The p-Laplacian-based regularizer 
incurs a penalty to both low and high-frequency domains 
created by framelet, producing flexible models that are capa-
ble of adapting different types of graph inputs (i.e., homoph-
ily and heterophily, direct and undirect). We summarize our 
contributions as follows:

–	 We define two types of new GNN layers by introducing 
p-Laplacian regularizers to both decomposed and recon-
structed framelets. This paves the way for introducing 
more general Bregman divergence regularization in the 
graph framelet framework;

–	 We propose an iterative algorithm to fit the proposed 
models and explore an alternative algorithm developed 
from the F-norm LPP;

–	 We prove that the iteration of the proposed algorithm 
provides a sequence of spectral graph convolutions and 
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diagonal scaling over framelet-filtered graph signals, this 
gives an deeper explanation of how p-Laplacian regular-
izer interacts with the framelet.

–	 We connect the proposed p-Laplacian regularizer to the 
previously studied framelet regularizer to illustrate the 
denoising power of the proposed model.

–	 We investigate the performance of the new models on 
graph learning tasks for both homophilic (undirected) 
graphs and heterophilic (directed) graphs. To our best 
knowledge, we are the first to explore the possibility 
of applying the framelet GCN for directed graphs. The 
experiment results demonstrate the effectiveness of pL-
UFG and pL-fUFG on real-world node classification 
tasks with strong robustness.

The rest of the paper is organized as follows. In Sect. 2, we 
introduce the p-Laplacian operator and regularized GNN, 
followed by a review of recent studies on regularized graph 
neural networks, which include implicit layers and graph 
homophily. In Sect. 3, we introduce the fundamental proper-
ties of graph framelet and propose the p-Laplacian regular-
ized framelet models. Furthermore, we develop an algorithm 
to solve the regularization problem that is more general than 
p-Laplacian regularization. We also provide theoretical anal-
ysis to show how the p-Laplacian based regularizer interacts 
with the graph framelet. By the end of Sect. 3 a brief dis-
cussion on the denoising power of the proposed model is 
presented. Lastly, we present the experimental results and 
analysis in Sect. 5. Finally, this paper is concluded in Sect. 6.

2 � Preliminaries

This section provides an in-depth exploration of the funda-
mental concepts, encompassing graphs, graph framelets, and 
regularized graph neural networks. For the sake of reader 
comprehension and ease of following the intended ideas, 
each newly introduced model and definition will be accom-
panied by a succinct review of its developmental history.

2.1 � Basic notations

Let G = (V, E,W) denote a weighted graph, where 
V = {v1, v2,⋯ , vN} and E ⊆ V × V  represent the node set 
and the edge set, respectively. X ∈ ℝ

N×c is the feature 
matrix for G  with {x1, x2,⋯ , xN} as its rows, and 
W = [wi,j] ∈ ℝ

N×N  is the weight matrix on edges with 
wi,j > 0 if (vi, vj) ∈ E and wi,j = 0 otherwise. For undirected 
graphs, we have wi,j = wj,i which means that W is a sym-
metric matrix. For directed graphs, it is likely that 
wi,j ≠ wj,i which means that W may not be a symmetric 
matrix. In most cases, the weight matrix is the graph adja-
cency matrix, i.e., wi,j ∈ {0, 1} with elements wi,j = 1 if 

(vi, vj) ∈ E  and wi,j = 0 otherwise. Furthermore, let 
Ni = {vj ∶ (vi, vj) ∈ E} denote the set of neighbours of node 
vi and D = diag(d1,1, ..., dN,N) ∈ ℝ

N×N denote the diagonal 
degree matrix with di,i =

∑N

j=1
wi,j for i = 1, ...,N . The nor-

m a l i z e d  g r a p h  L a p l a c i a n  i s  d e f i n e d  a s 
L̃ = I − D

−
1

2 (W + I)D−
1

2  .  Las t ly,  fo r  any  vec to r 
x = (x1, ..., xc) ∈ ℝ

c , we use ‖x‖2 = (
∑c

i=1
x2
i
)
1

2 to denote its 
L 2-norm, and similarly for any matrix M = [mi,j] , 
‖M‖ ∶= ‖M‖F = (

∑
i,j m

2
i,j
)
1

2 is used to denote its Frobenius 
norm.

2.2 � Consistency in graphs

Generally speaking, most GNN frameworks are designed 
under the homophily assumption in which the labels of 
nodes and neighbours in the graph are mostly identical. 
The recent work by [66] emphasises that the general topol-
ogy GNN fails to obtain outstanding results on the graphs 
with different class labels and dissimilar features in their 
connected nodes, which we call heterophilic or low homo-
philic graphs. The definition of homophilic and hetero-
philic graphs are given by:

Definition 1  (Homophily and Heterophily [18]) The homo-
phily or heterophily of a network is used to define the rela-
tionship between labels of connected nodes. The level of 
homophily of  a  graph can be measured by 
H⇐G⇒ = �i∈V[|{j}j∈Ni,yi=yi

|∕|Ni|] ,  where  |{j}j∈Ni,yi=yi
| 

denotes the number of neighbours of i ∈ V  that share the 
same label as i such that yi = yj . H⇐G⇒ → 1 corresponds 
to strong homophily while H⇐G⇒ → 0 indicates strong 
heterophily. We say that a graph is a homophilic (hetero-
philic) graph if it has strong homophily (heterophily).

2.3 � p‑Laplacian operator

The first paper that explores the notation of graph p-Lapla-
cian and utilizes it in the regularization problem in graph 
structure data can be traced back to the work [64], in 
which the regularization scheme was further explored to 
build a flexible GNN learning model in the study [18]. In 
this paper, we refer to the notation similar to the one used 
in the paper [18] to define the graph p-Laplacian operator. 
We first define the graph gradient as follows:

Definition 2  (Graph Gradient) Let FV ∶= {F|F ∶ V → ℝ
d} 

and FE ∶= {g|g ∶ E → ℝ
d} be the function space on nodes 

and edges, respectively. Given a graph G = (V, E,W) and 
a function F ∈ FV , the graph gradient is an operator ∇W

:FV → FE defined as for all [i, j] ∈ E,
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where fi and fj are the signal vectors on nodes i and j, i.e., 
the rows of F.

Without confusion, we will simply denote ∇W as ∇ for 
convenience. For [i, j] ∉ E  , (∇F)([i, j]) ∶= 0 . The graph 
gradient of F at a vertex i, ∀i ∈ {1, ...,N} , is defined as 
∇F(i) ∶= ((∇F)([i, 1]);… ;(∇F)([i,N])) and its Frobenius 
norm is given by ‖∇F(i)‖2 ∶= (

∑N

j=1
(∇F)2([i, j]))

1

2 which 
measures the variation of F around node i. Note that we 
have two explanations for the notation ∇F : one as a graph 
gradient (over edges) and one as node gradient (over 
nodes). The meaning can be inferred from its context in 
the rest of the paper. We also provide the definition of 
graph divergence, analogous to the Laplacian operator in 
continuous setting, which is the divergence of the gradient 
of a continuous function.

Definition 3  (Graph Divergence) Given a graph 
G = (V, E,W) and a function F ∶ V → ℝ

d , g ∶ E → ℝ
d , 

the graph divergence is an operator div ∶ FE → FV which 
satisfies:

Furthermore, the graph divergence can be computed by:

Given the above definitions on graph gradient and diver-
gence, we reach the definition of the graph p-Laplacian.

Definition 4  (p-Laplacian operator [18]) Given a graph 
G = (V, E,W) and a multiple channel signal func-
tion F ∶ V → ℝ

d , the graph p-Laplacian is an operator 
Δp ∶ FV → FV , defined by:

where ‖ ⋅ ‖p−2 is element-wise power over the node gradi-
ent ∇F.

Remark 1  Clearly, when we have p = 2 , Eq. (3) recovers the 
classic graph Laplacian. When p = 1 , we can analogize Eq. 
(3) as a curvature operator defined on the nodes of the graph, 
because  when  p = 1 ,  we  have  Eq .  (3 )  a s 

Δ1F = −
1

2
div

�
∇F

‖∇F‖
�

 . This aligns with the definition of 
mean curvature operator defined on the continuous domain. 
Furthermore, we note that the p-Laplacian operator is linear 

(∇WF)([i, j]) ∶=

√
wi,j

dj,j
fj −

√
wi,j

di,i
fi.

(1)⟨∇F, g⟩ = ⟨F,−div(g)⟩.

(2)div(g)(i) =

N∑
j=1

√
wi,j

di,i
(g[i, j] − g[j, i]).

(3)ΔpF ∶= −
1

2
div(‖∇F‖p−2∇F), for p ≥ 1.

when p = 2 , while in general for p ≠ 2 , the p-Laplacian is a 
non-linear operator since Δp(aF) ≠ aΔp(F) for a ∈ ℝ�{1}

.

Definition 5  (p-eigenvector and p-eigenvalue) Let 
�p(v) = (‖v1‖p−2v1, ..., ‖vN‖p−2vN) for v ∈ ℝ

N . With some 
abuse of the notation, we call u ∈ FV ( d = 1 ) a p-eigen-
vector of Δp if Δpu = ��p(u) where � is the associated 
p-eigenvalue.

Note that in above definition, we use the fact 
that u acting on all nodes gives a vector in ℝN  . Let 
�p(U) = (�p(U;,1), ...,�p(U∶,N))  fo r  U ∈ ℝ

N×N  .  O n e 
[18] can show that p-Laplacian can be decomposed as 
Δp = �p(U)��p(U)

T for some diagonal matrix �.

2.4 � Graph framelets

Framelet is a type of wavelet frame. The study by [46] 
is the first to present a wavelet with a lifting scheme that 
provides a foundation in the research of wavelet transform 
on graphs. With the increase of computational power, [22] 
proposed a framework for the wavelet transformation on 
graphs and employed Chebyshev polynomials to make 
approximations on wavelets. [15] further developed tight 
framelets on graphs. The new design has been applied for 
graph learning tasks [60] with great performance enhance-
ment against the classic GNNs. The recent studies show 
that framelet can naturally decompose the graph signal 
and re-aggregate them effectively, achieving a significant 
result on graph noise reduction [62] with the use of a dou-
ble term regularizer on the framelet coefficients. Combing 
with singular value decomposition (SVD), the framelets 
have been made applicable to directed graphs [69].

A simple method of building more versatile and stable 
framelet families was suggested by [56] which is known 
as Quasi-Framelets. In this study, we will introduce graph 
framelets using the same architecture described in the 
paper [56]. We begin by defining the filtering functions 
for Quasi-Framelets:

Definition 6  (Filtering functions for Quasi-Framelets) We 
call a set of R + 1 positive filtering functions defined on 
[0,�] , F = {g0(�), g1(�), ..., gR(�)} , Quasi-Framelet scaling 
functions if the following identity condition is satisfied:

such that g0 descends from 1 to 0 and gR ascends from 0 to 1 
as frequency increases over the spectral domain [0,�].

(4)g0(�)
2 + g1(�)

2 +⋯ + gR(�)
2 ≡ 1, ∀� ∈ [0,�],
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Particularly g0 aims to regulate the highest frequency 
while gR to regulate the lowest frequency, and the rest to 
regulate other frequencies in between.

Consider a graph G = (V, E) with its normalized 
graph Laplacian L̃ . Let L̃ have the eigen-decompo-
sition L̃ = UΛUT  where U is the orthogonal spectral 
bases with its spectra Λ = diag(�1, �2, ..., �N) in increas-
ing order. For a given set of Quasi-Framelet functions 
F = {g0(�), g1(�), ..., gR(�)} defined on [0,�] and a given 
level J ( ≥ 0 ), define the following Quasi-Framelet signal 
transformation matrices

Note that in the above definition, m is called the coarsest 
scale level which is the smallest m satisfying 2−m�N ≤ � . 
Denote by W = [W0,J ;W1,0;...;WR,0; W1,1;...,WR,J] as the 
stacked matrix. It can be proved that WTW = I , thus pro-
viding a signal decomposition and reconstruction process 
based on W . We call this graph Framelet transformation.

In order to alleviate the computational cost imposed by 
eigendecomposition for the graph Laplacians, the framelet 
transformation matrices can be approximated by Chebyshev 
polynomials. Empirically, the implementation of the Che-
byshev polynomials Tn

r
(�) with a fixed degree n, n = 3 is 

sufficient to approximate gr(�) . In the sequel, we will sim-
plify the notation by using Tr(�) instead of Tn

r
(�) . Then the 

Quasi-Framelet transformation matrices are defined in Eqs. 
(6, 7) can be approximated by,

(5)W0,J = U g0

(
�

2m+J

)
⋯ g0(

�

2m
)UT ,

(6)Wr,0 = U gr

(
�

2m

)
UT , for r = 1, ...,R,

(7)
Wr,𝓁 = U gr

(
�

2m+𝓁

)
g0

(
�

2m+𝓁−1

)
⋯ g0

(
�

2m

)
UT

,

for r = 1, ...,R, 𝓁 = 1, ..., J.

(8)W0,J ≈ T0

(
1

2m+J
L̃
)
⋯ T0

(
1

2m
L̃
)
,

(9)Wr,0 ≈ Tr

(
1

2m
L̃
)
, for r = 1, ...,R,

(10)
r,� ≈ r

( 1
2m+�

L̃
)

0
( 1
2m+�−1

L̃
)

⋯ 0
( 1
2m

L̃
)

,

for r = 1, ...,R,� = 1, ..., J.

Remark 1  The approximated transformation matrices defined 
in Eqs. (8, 9, 10) simply depend on the graph Laplacian. For 
directed graphs, we directly take in the Laplacian normal-
ized by the out degrees in our experiments. We observe this 
strategy leads to improved performance in general.

For a graph signal X , the framelet (graph) convolution 
similar to the spectral graph convolution that can be defined 
as

where � is the learnable network filter. We also call WX the 
framelet coefficients of X in Fourier domain. The signal then 
will be filtered in its spectral-domain according to learnable 
filter diag(�).

2.5 � Regularized graph neural network

In reality, graph data normally have large, noisy and com-
plex structures [25, 29]. This brings the challenge of choos-
ing a suitable neural network for fitting the data. It is well 
known that one of the common computational issues for 
most classic GNNs is over-smoothing which can be quanti-
fied by Dirichlet energy that converges to zero as the number 
of layers increases. This observation leads to an investiga-
tion into the so-called implicit layers on regularized graph 
neural networks.

The first paper to consider GNNs layer as a regularized 
signal smoothing process is done by [67], in which the clas-
sic GNN layers are interpreted as the solution of the regu-
larized optimization problem, with certain approximation 
strategies to avoid matrix inversion in the closed-form solu-
tion. The regularized layer also can be linked to the implicit 
layer [57], more specific examples are given by [67]. In gen-
eral, given the node features, the output of the GNN layer 
can be written as the solution for the following optimization 
problem

where F is the graph signal. Equation (12) defines the layer 
output as the solution for the (layer) optimization problem 
with a regularization term tr(FT L̃F)} , which is able to 
enforce smoothness of a graph signal. The closed form solu-
tion is given by F = (I +

1

2�
L̃)−1X . It is computationally 

inefficient because of matrix inversion. However, we can 

(11)𝜃 ⋆ X = WT (diag(𝜃))(WX),

(12)F = argmin
F

�
�‖X − F‖2

F
+

1

2
tr(FT L̃F)

�
,
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rearrange it to (I + 1

2�
L̃)F = X and interpret it as a fixed 

point solution to F(t+1) = −
1

2�
L̃F(t) + X . The latter is then 

the implicit layer in GNN at layer t. Such an iteration is 
motivated by the recurrent GNNs as shown in several recent 
works [21, 34, 43]. Different from explicit GNNs, the output 
features F of a general implicit GNN are directly modeled 
as the solution of a well defined implicit function, e.g., the 
first order condition from an optimization problem. Denote 
the rows of F by fi ( i = 1, 2, ...,N ) in column shape. It is well 
known that the regularization term (12) is

which is the so-called graph Dirichlet energy [64]. As pro-
posed in the work [64], one can replace the graph Lapla-
cian matrix in the above equation to the pre-defined graph 
p-Laplacian, then the p-Laplacian based energy denoted as 
Sp(F) can be defined as (for any p ≥ 1):

where we adopt the definition of element-wise p-norm as 
in paper [18]. Finally, the regularization problem becomes

With strong generalizability of the regularization form in 
Eq. (14), it is natural to consider to deploy Eq. 14 to multi-
scale graph neural networks (i.e., graph framelets) to explore 
whether the benefits of allocating p-Laplacian based regular-
izer still remains and how the changes of p within included 
regularizer interacts with the feature propagation process 
via each individual filtered domains. In the next section, we 
will accordingly proposed our model and provide detailed 
discussion and analysis on it.

3 � The proposed models

In this section, we show our proposed models: p-Laplacian 
Framelet GNN (pL-UFG) and p-Laplacian Fourier Undeci-
mated Framelet GNN (pL-fUFG) models. In addition, we 
introduce a more general regularization framework and 
describe the algorithms of our proposed models.

1

2
tr(FT L̃F) =

1

2

∑
(vi,vj)∈E

‖‖‖‖‖‖

√
wi,j

dj,j
fj −

√
wi,j

di,i
fi

‖‖‖‖‖‖

2

,

(13)Sp(F) =
1

2

∑
(vi,vj)∈E

‖‖‖‖‖‖

√
wi,j

dj,j
fj −

√
wi,j

di,i
fi

‖‖‖‖‖‖

p

,

(14)F = argmin
F

�
�‖X − F‖2

F
+ Sp(F)

�
.

3.1 � p‑Laplacian undecimated framelet GNN 
(pL‑UFG)

Instead of simply taking the convolution result as the frame-
let layer output (derived in Eq. (11)), we apply the p-Lapla-
cian regularization on the framelet reconstructed signal by 
imposing the following optimization to define the new layer,

where � ∈ (0,∞) . In which we recall that the first term 
Sp(F) in the above equation is the p-Laplacian based energy 
defined in Eq. (13). Sp(F) measures the total signals’ vari-
ation throughout the graph-based format of p-Laplacian. 
The second term dictates that optimal F should not deviate 
excessively from the framelet reconstructed signal for the 
input signal X . Each component of the network filter � in 
the frequency domain is applied to the framelet coefficients 
WX . We call the model in Eq.(15) pL-UFG2.

One possible variant to model (15) is to apply the regulari-
zation individually on the reconstruction at each scale level, 
i.e., for all the r,� , define

We name the model with the propagation in the above equa-
tion as pL-UFG1. In our experiment, we note that pL-UFG1 
performs better than pL-UFG2.

3.2 � p‑Laplacian Fourier undecimated framelet GNN 
(pL‑fUFG)

In pL-fUFG, we take a strategy of regularizing the framelet 
coefficients. Informed by earlier experience, we consider the 
following optimization problem for each framelet transforma-
tion in Fourier domain. For each framelet transformation Wr,j 
defined in Eqs. (9)-(10), define

Then the final layer output is defined by the reconstruction 
as follows

(15)F = argmin
F

Sp(F) + �‖F −WTdiag(�)WX‖2
F
,

(16)

Fr,� = argmin
Fr,�

Sp(Fr,�) + �‖Fr,� −WT
r,�
diag(�r,�)Wr,�X‖2F,

F = F0,J +

R�
r=1

J�
�=0

Fr,� .

(17)

Fr,� = argmin
Fr,�

Sp(Fr,�) + �‖Fr,� − diag(�r,�)Wr,�X‖2F.

(18)F = WT
0,J
F0,J +

R∑
r=1

J∑
�=0

WT
r,�
Fr,� .
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Or we can only aggregate all the regularized and filtered 
framelet coefficients in the following way

With the form of both pL-UFG and pL-fUFG, in the next 
section we show an even more generalized regulariza-
tion framework by incorporating p-Laplacian with graph 
framelets.

3.3 � More general regularization

For convenience, we write the graph gradient for multiple 
channel signals F as

or simply ∇F if no confusion. For an undirected graph we 
have ∇WF([i, j]) = −∇WF([j, i]) . With this notation, we can 
re-write the p-Laplacian regularizer in (13) (the element-
wise p-norm) in the following.

where vj ∼ vi stands for the node vj that is connected to node 
vi and ∇WF(vi) =

(
∇WF([i, j])

)
vj∶(vi,vj)∈E

 is the node gradient 
vector for each node vi and ‖ ⋅ ‖p is the vector p-norm. In fact, 
‖∇WF(vi)‖p measures the variation of F in the neighbour-
hood of each node vi . Next, we generalize the regularizer by 
considering any positive convex function � as

It is clear when �(�) = �p , we recover the p-Laplacian regu-
larizer. In image processing field, several penalty functions 

(19)F = F0,J +

R∑
r=1

J∑
�=0

Fr,� .

∇WF([i, j]) =

√
wi,j

dj,j
fj −

√
wi,j

di,i
fi.

(20)

Sp(F) =
1

2

�
(vi,vj)∈E

��∇WF([i, j])
��p

=
1

2

�
vi∈V

⎡⎢⎢⎣

��
vj∼vi

��∇WF([i, j])
��p
� 1

p ⎤⎥⎥⎦

p

=
1

2

�
vi∈V

‖∇WF(vi)‖pp

(21)S�
p
(F) =

1

2

�
vi∈V

�(‖∇WF(vi)‖p).

have been proposed in the literature. For example, �(�) = �2 
is known in the context of Tikhonov regularization

[2, 3, 30]. When �(�) = � (i.e. p = 1 ), it is the classic 
total variation regularization. When �(�) =

√
�2 + �2 − � , 

it is referred as the regularized total variation. An exam-
ple work can be found in the work [11]. The case of 
�(�) = r2 log(1 + �2∕r2) corresponds to the non linear diffu-
sion [40].

In pL-UFG and pL-fUFG, we use Y to denote 
WTdiag(�)WX and diag(�r,j)Wr,jX respectively, as then we 
propose the generalized p-Laplacian regularization models as

3.4 � The algorithm

We derive an iterative algorithm for solving the generalized 
p-Laplacian regularization problem (22), presented as the fol-
lowing theorem.

Theorem 1  For a given positive convex function �(�) , define

and denote the matrices M = [Mi,j] , � = diag(�11, ..., �NN) 
and � = diag(�11, ..., �NN) . Then the solution to problem (22) 
can be solved by the following message passing process

with an initial value, e.g., F(0) = 0.

Here �(k) , �(k) and M(k) are calculated according to the 
current features F(k) . When �(�) = �p , from Eq. (23) we 
can have the algorithm for solving pL-UFG and pL-fUFG.

Proof  Define L�
p
(F) as the objective function in Eq. (22), 

consider a node feature fi in F , then we have

(22)F = argmin
F

S�
p
(F) + �‖F − Y‖2

F
.

Mi,j =
wi,j

2
��∇WF([i, j])

��p−2⋅�
��(‖∇WF(vi)‖p)
‖∇WF(vi)‖p−1p

+
��(‖∇WF(vj)‖p)
‖∇WF(vj)‖p−1p

�
,

�ii = 1∕

��
vj∼vi

Mi,j

di,i
+ 2�

�
, �ii = 2��ii

(23)F(k+1) = �(k)D−1∕2M(k)D−1∕2F(k) + � (k)Y,
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Setting 
�L�

p
(F)

�fi
= 0 gives the following first order condition:

This equation defines the message passing on each node vi 
from its neighbour nodes vj . With the definition of Mi,j , �ii 

�L�
p
(F)

�fi
= 2�(fi−yi)

+
1

2

�
vk∈V

�

�fi
�(‖∇WF(vk)‖p)

= 2�(fi − yi) +
1

2

�

�fi
�(‖∇WF(vi)‖p)

+
1

2

�
vj∼vi

�

�fi
�(‖∇WF(vj)‖p)

= 2�(fi − yi) +
1

2
��(‖∇WF(vi)‖p)

1

p
(‖∇WF(vi)‖p)1−p �

�fi��
vj∼vi

‖∇i,j(w, f)‖p
�

+
1

2p

�
vj∼vi

�

�fi
‖∇j,i(w, f)‖p

⋅ ��(‖∇WF(vj)‖p)(‖∇WF(vj)‖p)1−p

= 2�(fi − yi) +
1

2p
��(‖∇WF(vi)‖p)(‖∇WF(vi)‖p)1−p⋅

��
vj∼vi

p‖∇WF([i, j])‖p−2
�

wi,j

di,i
(−∇WF([i, j]))

�

+
1

2

�
vj∼vi

��(‖∇WF(vj)‖p)(‖∇WF(vj)‖p)1−p‖∇WF([i, j])‖p−2
�

wi,j

di,i
∇WF([j, i])

= 2�(fi−yi)+
�
vj∼vi

1

2
‖∇WF([i, j])‖p−2

�
wi,j

di,i
∇WF([j, i])⋅

�
��(‖∇WF(vi)‖p)
‖∇WF(vi)‖p−1p

+
��(‖∇WF(vj)‖p)
‖∇WF(vj)‖p−1p

�

� �
vj∼vi

1

2

�
��(‖∇WF(vi)‖p)
‖∇WF(vi)‖p−1p

+
��(‖∇WF(vj)‖p)
‖∇WF(vj)‖p−1p

�

⋅ ‖∇i,j(w, f)‖p−2
wi,j

di,i
+ 2�

�
fi

=
�
vj∼vi

1

2

�
��(‖∇WF(vi)‖p)
‖∇WF(vi)‖p−1p

+
��(‖∇WF(vj)‖p)
‖∇WF(vj)‖p−1p

�

⋅ ‖∇WF([i, j])‖p−2
wi,j√
di,idj,j

fj + 2�yi.

and �ii , it can be turned into the iterative formula in Eq. (23). 
This completes the proof. 	� ◻

Remark 2  When p ≤ 1 , the objective function is not differen-
tiable in some extreme cases for example the neighbor node 
signals are the same and with the same degrees. In these rare 
cases, the first order condition cannot be applied in the above 
proof. However in practice, we suggest the following alter-
native iterative algorithm to solve the optimization problem. 
In fact, we can split the terms in Sp(F) as

At iteration k, we take wnew
i,j

= wi,j
‖‖∇WF([i, j])

‖‖p−2 as the new 
edge weights, then the next iterate is defined as the solution 
to optimize the Dirichlet energy with the new weights, i.e.,

Thus one step of the classic GCN can be applied in the itera-
tion to solve the p-Laplacian regularized problem (14).

3.5 � Interaction between p‑Laplacian and framelets

In this section, we present some theoretical support on how 
the p-Laplacian regularizer interact with the framelets in the 
model. Specifically, we show that the proposed algorithm in 
Eq. (23) provides a sequence of (p-Laplacian-based) spectral 
graph convolutions and diagonal scaling of the node features 
over the framelet filtered graph signals.This is indicated by 
the following analysis.

First considering the iteration Eq. (23) with initial values 
F(0) = Y = WTdiag(�)WX or diag(�r,j)Wr,jX without loss of 
generality1, we have

(24)Sp(F) =
1

2

∑
(vi,vj)∈E

‖‖∇WF([i, j])
‖‖p−2‖‖∇WF([i, j])

‖‖2.

F(k+1) = argmin
1

2

∑
(vi,vj)∈E

‖‖∇WnewF([i, j])‖‖2.

F(K) = �(K−1)D−1∕2M(K−1)D−1∕2F(K−1)+�(K−1)Y

= �(K−1)M̃
(K−1)

F(K−1) + � (K−1)Y

= �(K−1)M̃
(K−1)(

�(K−2)M̃
(K−2)

F(K−2)

+� (K−2)Y
)

+ � (K−1)Y

= �(K−1)M̃
(K−1)

�(K−2)M̃
(K−2)

F(K−2)

+ �(K−1)M̃
(K−1)

� (K−2)Y + � (K−1)Y

=

(K−1
∏

k=0
�(k)M̃

(k)
)

Y

+ � (K−1)Y +
K−1
∑

k=0

( K−1
∏

l=K−k
�(l)M̃

(l)
)

� (K−k−1)Y.

1  In our practical algorithm we choose F(0)
= 0 , this will gives 

F
(1)

= �(0)Y with a diagonal matrix �(0).
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The result F(K) depends on the key operations �(k)M̃
(k) for 

k = 0, 1, ...,K − 1 , where

where M̃ij has absorbed di,i and dj,j into Mij defined in Theo-
rem 1, i.e., M̃ij = Mi,j∕

√
di,idj,j.

Denote

To introduce the following analysis, define the relevant 
m a t r i c e s  M̃

(k)
= [M̃

(k)

i,j
]  ,  �(k) = diag(�

(k)

ii
)  a n d 

W(k)
p

= [w
(k)

i,j
(p)] = w(k)

p
⊕ (w(k)

p
)T (the Kronecker sum) with 

the column vector

Now, recall that the definition of the classic p-Laplacian is:

Our purpose is to show that our generalized algorithm Eq. 
(25) above can be implemented as the linear combination 
of the classic p-Laplacian filtering. First, based on [18], 
the operator Eq. (27) in the original p-Laplacian message 
passing algorithm can be written in detailed matrix form 
as follows

where the matrix G(k) has elements

and the diagonal matrix �(k)

0
 has diagonal element defined as

(25)

M̃
(k)

i,j
=

wi,j√
di,idj,j

���∇WF
(k)[(i, j)]

���
p−2
⋅

�
��(‖∇WF

(k)(vi)‖p)
‖∇WF

(k)(vi)‖p−1p

+
��(‖∇WF

(k)(vj)‖p)
‖∇WF

(k)(vj)‖p−1p

�

=
wi,j ⋅ w

(k)

i,j
(p)

√
di,idj,j

���∇WF
(k)[(i, j)]

���
p−2

,

(26)�
(k)

i,i
= 1∕

(∑
vj∼vi

M̃
(k)

i,j
+ 2�

)
,

w
(k)

i,j
(p) =

�
��(‖∇WF

(k)(vi)‖p)
‖∇WF

(k)(vi)‖p−1p

+
��(‖∇WF

(k)(vj)‖p)
‖∇WF

(k)(vj)‖p−1p

�
.

w(k)
p

=

�
��(‖∇WF

(k)(vi)‖p)
‖∇WF

(k)(vi)‖p−1p

�N

i=1

.

(27)Δp(F) ∶= −
1

2
div(‖∇F‖p−2∇F), for p ≥ 1,

(28)Δ(k)
p
(F(k)) =

(
(�

(k)

0
)−1 − 2�IN

)
F(k) −G(k)F(k),

G
(k)

i,j
=

wi,j√
di,idj,j

���∇WF
(k)[(i, j)]

���
p−2

,

Eq. (28) shows that the operation Δ(k)
p
(F(k)) can be repre-

sented as the product of a matrix (still denoted as Δ(k)
p

 ) and 
the signal matrix F(k).

Noting that G(k) = �M
(k)

⊘W(k)
p

 , multiplying diagonal 
matrix �(k) on both sides of Eq. (28) and taking out F(k) give

As �(k) is diagonal, we can re-write the above equality as

Given that W(k)
p

 is the Kronecker sum of the vector w(k)
p

 and 
its transpose, if we still use w(k)

p
 as its diagonal matrix, then 

we have

This demonstrates that the key terms �(k)M̃
(k)

 in our gener-
alized algorithm is in linear form of p-Laplacian operator 
Δ(k)

p
 . As demonstrated in the research [18], the operator Δ(k)

p
 

approximately performs spectral graph convolution. Hence 
we can conclude that the generalized p-Laplacian iterations 
(23) indeed performs a sequence of graph spectral convo-
lutions (see Lemma 1 below) and gradient-based diagonal 
transformation (i.e., node feature scaling) over the framelet 
filtered graph signals.

Lemma 1  The matrix Δ(k)
p

 is SPD (see [4, 37]) which has its 
own eigendecomposition, offering a graph spectral convolu-
tion interpretation.

Remark 3  Eq. (29) indicates that the p-Laplacian regularizer 
provides graph spectral convolution on top of the framelet 
filtering, which produces a second layer of filtering con-
ceptually and hence restricts the solution space further. See 
Fig. 1 for the illustration. Interestingly, the combination of 
p-Laplacian regularization and framelet offers a more adap-
tive smoothness that suites both homophilic and heterophilic 
data as shown in our experiments.

Remark 4  In terms of asymptotic behavior of Eq. (25), one 
can show roughly that the elements in �(k)M̃

(k)
 are between 

0 and 1, which converges to zero if K is too large. Therefore 
a large K annihilates the first term in Eq. (25) but leaves the 
second term and partial sum from the third. A larger value 

(�
(k)

0
)ii =1∕

(∑
vj∼vi

G
(k)

i,j
+ 2�∕p

)
.

�(k)Δ(k)
p

=
(
�(k)(�

(k)

0
)−1 − 2𝜇�(k)

)
− �(k)( �M

(k)
⊘W(k)

p
).

�(k) �M
(k)

=
((

�(k)(�
(k)

0
)−1 − 2𝜇�(k)

)
− �(k)Δ(k)

p

)
⊙W(k)

p
.

(29)
�(k)M̃

(k)
=
((

�(k)∕�
(k)

0
− 2��(k)

)
− �(k)Δ(k)

p

)
w(k)

p

+ w(k)
p

((
�(k)∕�

(k)

0
− 2��(k)

)
− �(k)Δ(k)

p

)
.
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of � seems to speed up this convergence further, resulting 
shortening the time for finding the solution. However, it is a 
model selection problem for generalizability. Moreover, the 
inclusion of the source term �(K−1)Y guarantees to supply 
certain amount of variations of the node features from both 
low and high frequency domains of the graph framelet and 
it has been shown such inclusion can help the model escape 
from over-smoothing issue [12].

Remark 5  Compared to GPRGNN [12] in which the model 
outcome is obtained by

where �k ∈ ℝ
N×N is learnable generalized Page rank coeffi-

cients, as we have shown in Eq. (29), our proposed algorithm 
defined in Eq. (23) provides a mixed (spectral convolution 

F̂
(k)

=

K−1∑
k

�kF
(k),

and diagonal scaling) to the framelet graph signal outputs 
and thus further directs the solution space of framelet to a 
reasonably defined region. Furthermore, due to the utiliza-
tion of the Chebyshev polynomial in framelet, the computa-
tional complexity for the first filtering is not high, which is 
helpful in terms of defining the provably corrected space for 
the second operation. This shows the efficiency of incorpo-
rating framelet in p-Laplacian based regularization.

4 � Discussions on the proposed model

In this section, we conduct comprehensive discussions for 
our proposed models. We note that we will mainly focused 
on exploring the property of the generalized p-Laplacian 
based framelet GNN (Eq. (22)) and the iterative algorithm 
in Eq. (23), although we may also show some conclusions 

Fig. 1   The figure above shows the working flow of the p-Laplacian 
regularized framelet. The input graph data is first filtered and recon-
structed by the framelet model which contains one low-pass and two 
high-pass filters (i.e., J = 2 ). Then, the result (denoted as Y ) is fur-
ther regularized by a sequence of graph convolution and diagonal res-
caling induced by the p-Laplacian, which is generated based on the 
graph gradient information, serving as an implicit layer of the model. 

By adjusting the p value, node features resulting from this implicit 
layer can be smoothed or sharpened accordingly, thus making the 
model adopt both homophily and heterophilic graphs. Lastly, the 
layer output will then be either forwarded to the task objective func-
tion or to the next framelet and p-Laplacian layers before the final 
prediction task
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of pL-UFG and pL-fUFG as well. Specifically, in Sect. 4.1 
we discuss the denoising power of our proposed model. Sec-
tion 4.2 analyzes the model’s computational complexity. 
Section 4.3 provides a comparison between the p-Laplacian 
regularizer with other regularizers that are applied to GNNs 
via different learning tasks. Finally, the section is concluded 
(Sect. 4.4) by illustrating the limitation of the model and 
potential aspects for future studies.

4.1 � Discussion on the denoising power

The denoising power of framelet has been developed in the 
study[15] and empirically studied by the past works [15, 56, 
62]. Let X = F + � be the input node feature matrix with 
noise � . In works [15, 62], a framelet-based regularizer was 
proposed to resolve the optimization problem which can be 
described as:

where f (⋅, ⋅) is some fidelity function that takes different 
forms for different applications. For any graph signal F , 
the graph �p-norm ‖F‖p,G ∶=

�∑
i �fi�p × di,i

�1∕p , where di,i 
is the degree of the i-th node with respect to f . D is a lin-
ear transformation generated from discrete transformations, 
for example, the graph Fourier transforms or the Framelet 
transforms. Thus, the regularizer assigns a higher penalty to 
the node with a larger number of neighbours. Specifically, 
considering the functional D as the framelet transformation, 
then the first term in Eq. (30) can be written as:

whe re  Z = {(r,�) ∶ r = 1, ...,R,� = 0, ..., J} ∪ {(0, J)} . 
Replacing the p-Laplacian regularizer in Eq. (15) by the 
framelet regularizer defined in the above Eq. (31) we have:

Followed by the work in the research [15], the framelet 
regularizer-based denoising problem in Eq. (30) is associ-
ated with the variational regularization problem that can be 
generally described in the form similar to Eq. (15) where 
the variational term Sp(F) is utilized for regularizing the 
framelet objective function. Simply by replacing the input 
of the first term in Eq. (32) by ∇F and omitting node degree 
information, we have:

(30)min
F

‖DF‖1,G + f (F,X),

(31)‖DF‖1,G =

� �
(r,�)∈Z

�
i

�Fr,�[i]�p × di,i

�1∕p

.

(32)
F = argmin

F

� �
(r,�)∈Z

�
i

�Fr,�[i]�p × di,i

�1∕p

+ �‖F

−WTdiag(�)WX‖2
F
.

Therefore our proposed model naturally is equipped with 
denoising capability and the corresponding (denoising) reg-
ularizing term aligns with the denoising regularizer devel-
oped in the paper [64] without nodes degree information. 
However, the work in the study [64] only handles p = 1 and 
p = 2 . Whereas our p-Laplacian framelet model covers the 
values of p ∈ ℝ+ . This allows more flexibility and effective-
ness in the model.

Furthermore, the major difference between most wavelet 
frame models and the classic variational models is the choice 
of the underlying transformation (i.e., D applied to the graph 
signal) that maps the data to the transformed domain that 
can be sparsely approximated. Given both p-Laplacian (i.e., 
Eq. (15)) and framelet regularizers (i.e., Eq. (31)) target on 
the graph signal FZ that is produced from the sparse and 
tight framelet transformation (Chebyshev polynomials), this 
further illustrates the equivalence between two denoising 
regularizers. Please refer to [15] for more details.

4.2 � Discussion on the computational complexity

In this section, we briefly discuss the computational com-
plexity of our proposed model, specific to the generalized 
model defined in Eq. (22) with its results that can be approx-
imated by the algorithm presented in Eq. (23). The primary 
computational cost of our model stems from the generation 
of the framelet decomposition matrices ( W ) or the framelet 
transformation applied to the node features. We acknowledge 
that generating W involves a high computational complex-
ity, as transitional framelet methods typically employ eigen-
decomposition of the graph Laplacian for this purpose. 
Consequently, the framelet transform itself exhibits a time 
complexity of O(N2(nj + 1)Kc) and a space complexity of 
O(N2(nj + 1)c) for a graph with N nodes and c-dimensional 
features. Notably, the constants n, j, and K are independent 
of the graph data. Existing literature [60] has demonstrated 
that when the input graph contains fewer than 4 × 104 nodes 
(with fixed feature dimension), the computational time for 
framelet convolution is comparable to that of graph atten-
tion networks with 8 attention heads [48]. As the graph’s 
node size increases, the performance of graph attention 
networks degrades rapidly, while graph framelets maintain 
faster computation. However, our application of Cheby-
shev polynomials to approximate W significantly reduces 
the associated computational cost compared to traditional 
methods. Additionally, we acknowledge that the inclusion 
of the p-Laplacian based implicit layer introduces additional 

(33)

F = argmin
F

�
(r,�)∈Z

‖∇Fr,�‖pp + �‖F −WTdiag(�)WX‖2
F
.
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computational cost to the original framelet model, primar-
ily arising from the computation of the norm of the graph 
gradient, denoted as |∇F| . Considering the example of the 
Euclidean norm, the computational cost for |∇F| scales as 
O(N × c) , where N and c represent the number of nodes and 
feature dimension, respectively. Thus, even when account-
ing for the computation of the implicit layer, the overall cost 
of our proposed method remains comparable to that of the 
framelet model.

4.3 � Comparison with other regularizers 
and potential application scenarios

As we have illustrated in Sect. 3.3, with the assistance 
from different form of the regularizers, GNNs performance 
could be enhanced via different learning tasks. In this dis-
cussion, we position our study within the wider research 
landscape that investigates various regularizers to enhance 
the performance of Graph Neural Networks (GNNs) across 
different learning tasks. We earlier discussed the denoising 
power of the pL-UFG in Sect. 4.1, establishing that it can 
be expressed in terms of a denoising formulation. This is 
comparable to the approach from [38], who used a different 
regularizer term to highlight the denoising capabilities of 
GNNs. They showed that their regularizer can effectively 
reduce noise and enhance the robustness of GNN models.

Our study, however, emphasizes the unique advan-
tages that the p-Laplacian brings, a theme also echoed in 
the works by [33] and [8]. Both studies incorporated the 
L1-norm as a regularization term in robust principal com-
ponent analysis (RPCA), showcasing its ability to recover 
low-rank matrices even in the presence of significant noise. 
Furthermore, the study by [35] reinforces the benefits of 
the L1-norm in preserving discontinuity and enhancing local 
smoothness. Characterized by its heavy-tail property, the L1
-norm imposes less penalty on large values, thereby making 
it effective in handling data with substantial corruption or 
outliers.

Furthermore, in terms of the potential practical imple-
mentations, one can deploy our method into various aspects. 
For example, the p-Laplacian based regularizer can be used 
in image processing and computer vision applications, where 
it can help to smooth out noisy or jagged images while pre-
serving important features. In addition, we note that, as we 
implement our graph learning method via an optimization 
(regularization) framework, this suggests any potential prac-
tical implementations (such as graph generation [26], graph 
based time series forecasting [49]) of GNNs can also be 
deployed under our proposed methods with a higher flex-
ibility power.

4.4 � Limitation and potential future studies

While outstanding properties have been presented from our 
proposed model, the exploration of how the p-Laplacian 
based regularization framework can be deployed to various 
types of graphs (i.e., dynamic or spatio-temporal) is still 
wanted. In fact, one may require the corresponding GNNs to 
be able to capture the pattern of the evolution (i.e., combing 
GNN with LSTM or Transformer [39]) of the graph when 
the input graph is dynamic. We note that such a requirement 
is beyond the capability of the current model. However, as 
the p-Laplacian based regularizer restricts the solution of the 
graph framelet, it would be interesting to make the quantity 
of p learnable throughout the training process. We leave this 
to future work.

Moreover, followed by the idea of making p value as 
a learnable parameter in the model, one can also explore 
assigning different values of p to different frequency 
domains of framelet. It has been verified that the low-fre-
quency domain of framelet induces a smoothing effect on 
the graph signal whereas the sharpening effect is produced 
from the high-frequency domain [23]. Therefore, one may 
prefer to obtain a relatively large quantity of p to the low-
frequency domain to enhance the smoothing effect of the 
framelet when the input graph is highly homophily, as one 
prefers to predict identical labels for connected nodes. On 
the other hand, a smaller value of p is wanted for a high-
frequency domain to further sharpen the differences between 
node features (i.e., ∇F ) so that distinguished labels can be 
produced from the model when the input graph is hetero-
philic. Moreover, as the p-Laplacian-based implicit layers 
are allocated before the framelet reconstruction, it would be 
interesting to explore how such implicit layers can affect the 
signal reconstruction of the framelet.

5 � Experiments

In this section, we present empirical studies on pL-UFG 
and pL-fUFG on real-world node classification tasks with 
both heterophilic and homophilic graphs. We also test the 
robustness of the proposed models against noise. Both two 
experiments are presented with detailed discussions on 
their results. In addition, we discuss by adjusting the quan-
tity of the p in our proposed model, the so-called abla-
tion study is automatically conducted in our experiments. 
The code for our experiment can be accessed via https://​
github.​com/​super​ca729/​pL-​UFG. Lastly, it is worth noting 
that our proposed method has the potential to be applied 
to the graph learning task other than node classification 
such as graph level classification (pooling) [60] and link 

https://github.com/superca729/pL-UFG
https://github.com/superca729/pL-UFG
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prediction [31]. Although we have yet to delve into these 
tasks, we believe that by assigning some simple manipula-
tions to our methods, such as deploying the readout func-
tion for graph pooling or computing the log-likelihood for 
graph link prediction, our method is capable of handling 
these tasks. Similarly, our model could be beneficial in 
community detection tasks by possibly identifying clus-
ters of similar characteristics or behaviors. We leave these 
promising research aspects to our future work.

5.1 � Datasets, baseline models and the parameter 
setting

Datasets. We use both homophilic and heterophilic 
graphs  (datasets) from https://​www.​pyg.​org/ to assess 
pL-UFG and pL-fUFG, including benchmark heterophilic 
datasets: Chameleon, Squirrel, Actor, Wisconsin, Texas, 
Cornell, and homophilic datasets: Cora, CiteSeer, Pub-
Med, Computers, Photos, CS, Physics. In our experiments, 
homophilic graphs are undirected and heterophilic graphs 
are directed (where we observe an improved performance 
when direction information is provided). We included the 
summary statistics of the included datasets together with 
their homophily index and split ratio in Table 1

Baseline models. We consider eight baseline models for 
comparison:

–	 MLP: standard feedward multiple layer perceptron.
–	 GCN [28]: GCN is the first of its kind to implement lin-

ear approximation to spectral graph convolutions.
–	 SGC [50]: SGC reduces GCNs’ complexity by removing 

nonlinearities and collapsing weight matrices between 
consecutive layers.

–	 GAT​ [48]: GAT is a graph neural network that applies 
the attention mechanism on node feature to learn edge 
weight.

–	 JKNet [55]: JKNet can flexibly leverage different neigh-
bourhood ranges to enable better structure-aware repre-
sentation for each node.

–	 APPNP [19]: APPNP combines GNN with personalized 
PageRank to separate the neural network from the propa-
gation scheme.

–	 GPRGNN [12]: GPRGNN architecture that adaptively 
learns the GPR (General Pagerank) weights so as to 
jointly optimize node feature and topological informa-
tion extraction, regardless the level of homophily on a 
graph.

–	 p-GNN [18]:p-GNN is p-Laplacian based GNN model, 
whose message-passing mechanism is derived from a 
discrete regularization framework.

–	 UFG [60]: UFG is a type of GNNs based on framelet 
transforms, the framelet decomposition can naturally 
aggregate the graph features into low-pass and high-pass 
spectra.

The test results are reproduced using code that runs in our 
machine, which might be different from the reported results. 
In addition, compared to p-GNN, the extra time and space 
complexity induced from our algorithm is O(N2(RJ + 1)d).

Hyperparameter tuning. We use grid search for tun-
ing hyperparameters. We test p ∈ {1.0, 1.5, 2.0, 2.5} 
for PGNN, pL-UFG and pL-fUFG. The learning rate is 
chosen from {0.01, 0.005}. We consider the number of 
iterations T in p-Laplacian message passing from {4, 5} 
after 10 warming-up steps. For homophilic datasets, we 
tune � ∈ {0.1, 0.5, 1, 5, 10} and for heterophilic graphs 
� ∈ {3, 5, 10, 20, 30, 50, 70} . The framelet type is fixed as 
Linear (see [56]) and the level J is set to 1. The dilation scale 

Table 1   Statistics of the 
datasets, H(G) represent the 
level of homophily of overall 
benchmark datasets

Datasets Class Feature Node Edge Train/Valid/Test H(G)

Cora 7 1433 2708 5278 20%/10%/70% 0.825
CiteSeer 6 3703 3327 4552 20%/10%/70% 0.717
PubMed 3 500 19,717 44,324 20%/10%/70% 0.792
Computers 10 767 13,381 245,778 20%/10%/70% 0.802
Photo 8 745 7487 119,043 20%/10%/70% 0.849
CS 15 6805 18,333 81,894 20%/10%/70% 0.832
Physics 5 8415 34,493 247,962 20%/10%/70% 0.915
Chameleon 5 2325 2277 31,371 60%/20%/20% 0.247
Squirrel 5 2089 5201 198,353 60%/20%/20% 0.216
Actor 5 932 7600 26,659 60%/20%/20% 0.221
Wisconsin 5 251 499 1703 60%/20%/20% 0.150
Texas 5 1703 183 279 60%/20%/20% 0.097
Cornell 5 1703 183 277 60%/20%/20% 0.386

https://www.pyg.org/
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s ∈ {1, 1.5, 2, 3, 6} , and for n, the degree of Chebyshev poly-
nomial approximation to all g’s in (15–18), is drawn from 
{2, 3, 7}. It is worth noting that in graph framelets, the Che-
byshev polynomial is utilized for approximating the spec-
tral filtering of the Laplacian eigenvalues. Thus, a d-degree 
polynomial approximates d-hop neighbouring information 
of each node of the graph. Therefor, when the input graph 
is heterophilic, one may require d to be relatively larger as 
node labels tend to be different between directly connected 
(1-hop) nodes. The number of epochs is set to 200, the same 
as the baseline model[18].

5.2 � Experiment results and discussion

Node classification: Tables 2 and 3 summarize the results 
on homophilic and heterophilic datasets. The values after 
± are standard deviations. The top three results are high-
lighted in First, Second, and Third. From the experiment 
results, we observe that pL-UFG and pL-fUFG achieve 
competitive performances against the baselines in most of 
the homophily and heterophily benchmarks. For the models’ 
performance on homophily undirect graphs, Table 2 shows 
that pL-UFG21.5 has the top accuracy in Cora, Photos and 
CS. For Citeseer, pL-UFG12.0 , pL-UFG22.0 and pL-fUFG2.0 
have the best performance. In terms of the performance on 
heterophily direct graphs (Table 3), we observe that both of 
our two models are capable of generating the highest accu-
racy in all benchmark datasets except Actor where the top 
performance was generated from MLP. However, we note 
that for Actor, our pL-UFG11.0 achieves almost identical 
outcomes compared to those of MLP.

Aligned with our theoretical prediction in Remark 4 from 
the experiment, we discover that the value of the trade-off 
term � for pL-UFG and pL-fUFG is significantly higher than 
that in pGNN, indicating that framelet has a major impact on 
the performance of the model. The performance of pL-UFG, 
pL-fUFG and others on heterophilic graphs are shown in 
Table 3. pL-UFG and pL-fUFG both can outperform MLP 
and other state-of-the-art GNNs under a low homophilic 
rate. In terms of denoising capacity, pL-UFG and pL-fUFG 
are far better than the baseline models. Figures 6 and 7 show 
that both pL-UFG and pL-fUFG produce the top accuracies 
across different noise levels.

Discussion for p < 2 . To enable GNN model to better 
adapt to the heterophilic graphs, an ideal GNN model shall 
induce a relatively high variation in terms of the node fea-
ture generated from it. Therefore, compared to the models 
with p = 2 , the model regularized with p ≠ 2 regularizer 
imposes a lesser penalty and thus produces outputs with a 
higher variation. This is supported by the empirical observa-
tion from Table 3 in which the highest prediction accuracy 

for heterophilic graphs are usually achieved by our model 
with p < 2.

Discussion for p = 1. Here we specifically focus on p = 1 
in our models. Recall that when p = 1 , the p-Laplacian 
operator acts on the graph signal F is Δ1F = −

1

2
div

�
∇F

‖∇F‖
�
 . 

Based on Remark 1, when p = 1 , Δ1F is equivalent to the 
mean curvature operator defined on the embedded surface. 
In analogy to differential geometry, points that curvature can 
not be properly defined are so-called singular points. Thus 
one can similarly conclude that when a graph contains a 
singular node (i.e., the graph is crumpled [7]) then both Δ1F 
and its corresponding Sp(F) can not be properly defined. 
Furthermore, one can easily check that, when p = 1 , the 
regularization term �(�) = �p produces a higher penalty than 
its Sp(F) counterparts. This is because, when p = 1 , 

Sp(F) = (
∑c

i
(∇fi)

2)
1

2 whereas �(�) = �1 =
∑

i �∇fi� . Clearly, 
we have Sp(F) < 𝜙(𝜉) unless all of the nodes in the graph are 
singular nodes, or in the graph in which there is only one 
non-singular point while the rest nodes are singular.

5.3 � Visualization on the effect of p

Based on the claim we made in previous sections, increasing 
the value of p leads our model to exhibit a stronger smooth-
ing effect on the node features, thereby making it more suit-
able for homophilic graphs. Conversely, when p is small, the 
model preserves distinct node features, making it a better fit 
for heterophilic graphs. To validate this idea, we visualize 
the changes in relative positions (distances) between node 
features for p = 1 (the minimum value) and p = 2.5 (the 
maximum value). We specifically selected the Cora and 
Actor datasets and employed Isomap [47] to map both the 
initial node features and the node features generated by our 
model to ℝ2 , while preserving their distances. The results 
are depicted in Fig. 2 and 3.

From both Fig. 2 and 3, it can be observed that when 
p = 1 , the sharpening effect induced by our model causes 
the node features to become more distinct from each other. 
Under the Isomap projection, the nodes are scattered apart 
compared to the input features. Conversely, when a rela-
tively large value of p = 2.5 is assigned, the model exhib-
its a stronger smoothing effect, resulting in all nodes being 
aggregated towards the center in the Isomap visualization. 
These observations provide direct support for our main 
claim regarding the proposed model.   

5.4 � Experiments on denoising capacity

Followed by the discussion in Sect. 4.1, in this section 
we evaluate our proposed models’ (pL-UFG and pL-
fUFG) denoising capacity on both homophilic (Cora) and 
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heterophilic (Chameleon) graphs. Since the node features 
of the included datasets are in binary, we randomly assign 
binary noise with different proportions of the node features 
(i.e., r ∈ {5%, 10%, 15%, 20%} ). From Fig. 6 and 7 we see 
that pL-UFG21.5 defined in Eq. (16) outperforms other base-
lines and showed the strongest robustness to the contami-
nated datasets. This is expected based on our discussion on 
the denoising power in Sect. 4.1 and the formulation of our 
models (defined in Eqs. (15), (16) and (17)). The denoising 
capacity of our proposed model is sourced from two parts 
including the sparse approximation of the framelet decom-
position and reconstruction, i.e., W and WT , and variational 
regularizer Sp(F) [15]. Compared to pL-UFG1 defined in 

Eq. (15), pL-UFG2 assigns the denoising operators, W , 
WT and Sp(F) , to the node inputs that is reconstructed from 
both sparsely decomposed low and high-frequency domains 
so that the denoising operators target on the original graph 
inputs at different scales and hence naturally result in a better 
model denoising performance. In addition, without taking 
the reconstruction in the first place, the term in pL-fUFG 
‖Fr,j − diag(�r,j)Wr,jX‖2F is less sparse than the pL-UFG2 
counterpart. Thus regularizing with the same Sp(F) , the 
effect from insufficient eliminated noise from pL-fUFG 
will lead pL-fUFG to an incorrect (respect to pL-UFG2) 
solution space which can not be recovered by the additional 
reconstruction using WT , and this is the potential reason for 

Fig. 2   Isomap Visualization with using homophilic data (Cora) by changing of p 
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observing an outperforming result from pL-UFG2 compared 
to other proposed models.

In addition to the above experiment, here we show how 
the results of how the quantity of p affect the denoising 
power of the proposed model, while keeping all other 
parameters constant. The results of the changes of the 
denoising power are included in Fig. 4 (homophilic graph) 
and 5 (heterophilic graph).

Based on the observations from the results, it appears 
that the performance of different values of p varies under 
different noise rates. For the homophilic graph, the per-
formance of pL-UFG21.5 and pL-UFG22.0 seems to be 
relatively stable across different noise rates, while the 
performance of other values of p fluctuates more. For the 
heterophilic graph, the performance of pL-UFG12.5 and 
pL-UFG22.5 appears to be relatively stable across different 

noise rates, while the performance of other values of p 
fluctuates more.

We also note that these observations on the fluctuations of 
the results are expected, as we have shown that the denoising 
process of our proposed model can be presented as:

where Z = {(r,�) ∶ r = 1, ...,R,� = 1, ..., J} ∪ {(0, J)} is 
the set of indices of all framelet decomposed frequency 
domains. It is not hard to verify that once a larger quantity of 
p is assigned, the penalty on the node feature difference ( ∇F ) 
becomes to be greater. Therefore, a stronger denoising power 
is induced. In terms of different graph types, when the input 
graph is heterophily, in most of the cases, the connected 

(34)F=argmin
F

�
(r,�)∈Z

‖∇F(r,�)‖pp +�‖F−WTdiag(�)WX‖2
F
.

Fig. 3   Isomap Visualization with using heterophilic data (Actor) by changing of p 
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nodes tend to have distinct features, after assigning noise 
to those features, if the feature difference becomes larger, a 
higher quantity of p is preferred. In the meanwhile, adding 
noise for the heterophilic graph could also make the feature 
difference becomes smaller, in this case a large quantity of 
p may not be appropriate, this explains why most of lines 
in Fig. 5 are with large fluctuations. Similar reasoning can 
be applied to the case of the denoising performance of our 
model for homophilic graphs, we omit it here.

5.5 � Regarding to ablation study

It is worth noting that one of the advantages of assigning an 
adjustable p-Laplacian-based regularizer is on the conveni-
ence of conducting the ablation study. As the key principle 
of ablation study is to test whether a new component (in 
our case the regularizer) in a proposed method can always 
add advantages over baseline model counterparts regard-
less of the newly involved parameters. This suggests that 
the ablation study of our method are naturally conducted to 
compare our models with the regularizers with the underly-
ing networks via both the node classification tasks and the 
model denoising power test (Figs. 6 and 7). It is not hard to 
observed that in most of cases, regardless of the change of 

p, our proposed model kept outperforming baseline models. 
However, as our proposed model was driven from an regu-
larization framework, another potential parameter that we 
note could affect the model performance is the quantity of 
� . Based on Eq. (22), an increase of the quantity of � leads 
to a increase of model’s convexity, as a consequence, could 
guide model more closed to the global optima when p ≠ 2 . 
Another observation to � is we found that a smaller value 
of � together with a relatively bigger value of p are more 
suitable for homophily/heterophilic graphs, this implies 
that � seems to have an opposite effect on model’s adaption 
power compared to p. However, to quantify the effect of � 
via a suitable measure (i.e., potentially Dirichlet energy [23, 
45]) is out of the scope of this paper, we leave it to future 
discussions.  

6 � Conclusion and further work

This paper showcases the application of p-Laplacian 
Graph Neural Networks (GNN) in conjunction with 
framelet graphs. The incorporation of p-Laplacian regu-
larization brings remarkable flexibility, enabling effective 
adaptation to both homophilic undirected and heterophilic 

Table 2   Test accuracy (%) on homophilic undirected graph

Method Cora CiteSeer PubMed Computers Photos CS Physics

MLP 66.04 ± 1.11 68.99 ± 0.48 82.03 ± 0.24 71.89 ± 5.36 86.11 ± 1.35 93.50 ± 0.24 94.56 ± 0.11

GCN 84.72 ± 0.38 75.04 ± 1.46 83.19 ± 0.13 78.82 ± 1.87 90.00 ± 1.49 93.00 ± 0.12 95.55 ± 0.09

SGC 83.79 ± 0.37 73.52 ± 0.89 75.92 ± 0.26 77.56 ± 0.88 86.44 ± 0.35 OOM OOM
JKNet 83.69 ± 0.71 74.49 ± 0.74 82.59 ± 0.54 69.32 ± 3.94 86.12 ± 1.12 91.11 ± 0.22 94.45 ± 0.33

APPNP 83.69 ± 0.71 75.84 ± 0.64 80.42 ± 0.29 73.73 ± 2.49 87.03 ± 0.95 91.52 ± 0.14 94.71 ± 0.11

GPRGNN 83.79 ± 0.93 75.94 ± 0.65 82.32 ± 0.25 74.26 ± 2.94 88.69 ± 1.32 91.89 ± 0.08 94.85 ± 0.23

UFG 80.64 ± 0.74 73.30 ± 0.19 81.52 ± 0.80 66.39 ± 6.09 86.60 ± 4.69 95.27 ± 0.04 95.77 ± 0.04

PGNN1.0 84.21 ± 0.91 75.38 ± 0.82 84.34 ± 0.33 81.22 ± 2.62 87.64 ± 5.05 94.88 ± 0.12 96.15 ± 0.12

PGNN1.5 84.42 ± 0.71 75.44 ± 0.98 84.48 ± 0.21 82.68 ± 1.15 91.83 ± 0.77 94.13 ± 0.08 96.14 ± 0.08

PGNN2.0 84.74 ± 0.67 75.62 ± 1.07 84.25 ± 0.35 83.40 ± 0.68 91.71 ± 0.93 94.28 ± 0.10 96.03 ± 0.07

PGNN2.5 84.48 ± 0.77 75.22 ± 0.73 83.94 ± 0.47 82.91 ± 1.34 91.41 ± 0.66 93.40 ± 0.07 95.75 ± 0.05

pL-UFG11.0 84.54 ± 0.62 75.88 ± 0.60 85.56 ± 0.18 82.07 ± 2.78 85.57 ± 19.92 95.03±0.22 ��.��±�.��

pL-UFG11.5 84.96 ± 0.38 76.04 ± 0.85 85.59±0.18 85.04 ± 1.06 92.92±0.37 95.03 ± 0.22 96.27±0.06

pL-UFG12.0 85.20 ± 0.42 76.12 ± 0.82 85.59±0.17 ��.��±�.�� ��.��±�.�� 94.77 ± 0.27 96.04 ± 0.07

pL-UFG12.5 85.30 ± 0.60 76.11±0.82 85.54 ± 0.18 85.18 ± 0.88 91.49 ± 1.29 94.86 ± 0.14 95.96 ± 0.11

pL-UFG21.0 84.42 ± 0.32 74.79 ± 0.62 85.45 ± 0.18 84.88 ± 0.84 85.30 ± 19.50 95.03±0.19 96.06 ± 0.11

pL-UFG21.5 85.60±0.36 75.61 ± 0.60 85.59±0.18 84.55 ± 1.57 93.00±0.61 95.03±0.19 96.14 ± 0.09

pL-UFG22.0 85.20 ± 0.42 76.12 ± 0.82 85.59±0.17 85.27±1.15 92.50 ± 0.40 94.77 ± 0.27 96.05 ± 0.07

pL-UFG22.5 ��.��±�.�� 75.88 ± 0.67 85.53 ± 0.19 85.11 ± 0.81 92.44 ± 1.51 ��.��±�.�� 95.99 ± 0.12

pL-fUFG1.0 84.45 ± 0.43 75.64 ± 0.64 85.62±0.19 84.57 ± 1.08 86.09 ± 16.35 94.98±0.23 96.23±0.09

pL-fUFG1.5 85.40±0.45 75.94 ± 0.63 85.62±0.17 85.00 ± 1.21 92.12 ± 1.35 94.98 ± 0.23 96.12 ± 0.08

pL-fUFG2.0 85.20 ± 0.42 76.12±0.82 ��.��±�.�� 85.29±1.16 92.47 ± 0.48 94.77 ± 0.27 96.05 ± 0.07

pL-fUFG2.5 85.21 ± 0.44 76.01 ± 0.97 85.54 ± 0.20 84.94 ± 0.91 92.26 ± 1.26 94.95 ± 0.11 96.02 ± 0.04
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directed graphs, thereby significantly enhancing the pre-
dictive capabilities of the model. To validate the efficacy 
of our proposed model, we conducted extensive numerical 
experiments on diverse graph datasets, demonstrating its 

superiority over baseline methods. Notably, our model 
exhibits robustness against noise perturbation, even under 
high noise levels. These promising findings highlight the 
tremendous potential of our approach and warrant further 

Table 3   Test accuracy (%) on 
heterophilic directed graph

Method Chameleon Squirrel Actor Wisconsin Texas Cornell

MLP 48.82 ± 1.43 34.30 ± 1.13 41.66±0.83 93.45 ± 2.09 71.25 ± 12.99 83.33 ± 4.55

GCN 33.71 ± 2.27 26.19 ± 1.34 33.46 ± 1.42 67.90 ± 8.16 53.44 ± 11.23 55.68 ± 10.57

SGC 33.83 ± 1.69 26.89 ± 0.98 32.08 ± 2.22 59.56 ± 11.19 64.38 ± 7.53 43.18 ± 16.41

GAT​ 41.95 ± 2.65 25.66 ± 1.72 33.64 ± 3.45 60.65 ± 11.08 50.63 ± 28.36 34.09 ± 29.15

JKNet 33.50 ± 3.46 26.95 ± 1.29 31.14 ± 3.63 60.42 ± 8.70 63.75 ± 5.38 45.45 ± 9.99

APPNP 34.61 ± 3.15 32.61 ± 0.93 39.11 ± 1.11 82.41 ± 2.17 80.00 ± 5.38 60.98 ± 13.44

GPRGNN 34.23 ± 4.09 34.01 ± 0.82 34.63 ± 0.58 86.11 ± 1.31 84.38 ± 11.20 66.29 ± 11.20

UFG 50.11 ± 1.67 31.48 ± 2.05 40.13 ± 1.11 93.52 ± 2.36 84.69 ± 4.87 83.71 ± 3.28

PGNN1.0 49.04 ± 1.16 34.79 ± 1.01 40.91 ± 1.41 94.35 ± 2.16 82.00 ± 11.31 82.73 ± 6.92

PGNN1.5 49.12 ± 1.14 34.86 ± 1.25 40.87 ± 1.47 94.72 ± 1.91 81.50 ± 10.70 81.97 ± 10.16

PGNN2.0 49.34 ± 1.15 34.97 ± 1.41 40.83 ± 1.81 94.44 ± 1.75 84.38 ± 11.52 81.06 ± 10.18

PGNN2.5 49.16 ± 1.40 34.94 ± 1.57 40.78 ± 1.51 94.35 ± 2.16 83.38 ± 12.95 81.82 ± 8.86

pL-UFG11.0 ��.�� ± �.�� 38.81 ± 1.97 41.26 ± 1.66 96.48 ± 0.94 86.13 ± 7.47 86.06 ± 3.16

pL-UFG11.5 56.89 ± 1.17 ��.�� ± �.�� 40.95 ± 0.93 96.48 ± 1.07 87.00 ± 5.16 ��.�� ± �.��

pL-UFG12.0 56.24 ± 1.02 39.72 ± 1.86 40.95 ± 0.93 96.59 ± 0.72 86.50 ± 8.84 85.30 ± 2.35

pL-UFG12.5 56.11 ± 1.25 39.38 ± 1.78 41.04 ± 0.99 95.34 ± 1.64 89.00 ± 4.99 83.94 ± 3.53

pL-UFG21.0 55.51 ± 1.53 36.94 ± 5.69 29.28 ± 19.25 93.98 ± 2.94 85.00 ± 5.27 87.73 ± 2.49

pL-UFG21.5 57.22 ± 1.19 39.80 ± 1.42 40.89 ± 0.75 96.48 ± 0.94 87.63 ± 5.32 86.82 ± 1.67

pL-UFG22.0 56.19 ± 0.99 39.74 ± 1.66 41.01 ± 0.80 96.14 ± 1.16 86.50 ± 8.84 85.30 ± 2.35

pL-UFG22.5 55.69 ± 1.15 39.30 ± 1.68 40.86 ± 0.74 95.80 ± 1.44 86.38 ± 2.98 84.55 ± 3.31

pL-fUFG1.0 55.80 ± 1.93 38.43 ± 1.26 32.84 ± 16.54 93.98 ± 3.47 86.25 ± 6.89 87.27 ± 2.27

pL-fUFG1.5 55.65 ± 1.96 38.40 ± 1.52 41.00 ± 0.99 96.48 ± 1.29 87.25 ± 3.61 86.21 ± 2.19

pL-fUFG2.0 55.95 ± 1.29 38.33 ± 1.71 ��.�� ± �.�� ��.�� ± �.�� 88.75 ± 4.97 83.94 ± 3.78

pL-fUFG2.5 55.56 ± 1.66 38.39 ± 1.48 40.55 ± 0.50 95.28 ± 2.24 ��.�� ± �.�� 83.64 ± 3.88

Fig. 4   Changes of the denoising 
power by the quantity of p via 
homophilic graph
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investigations in several directions. For instance, delv-
ing into the intriguing mathematical properties of our 
model, including weak and strong convergence, analyz-
ing the behavior of (Dirichlet) energy, and establishing 
connections with non-linear diffusion equations, opens 
up fascinating avenues for future research.

Funding  Open Access funding enabled and organized by CAUL and 
its Member Institutions.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Ahmedt-Aristizabal D, Armin MA, Denman S, Fookes C, 
Petersson L (2021) Graph-based deep learning for medi-
cal diagnosis and analysis: past, present and future. Sensors 
21(14):4758

	 2.	 Assis AD, Torres LC, Araújo LR, Hanriot VM, Braga AP 
(2021) Neural networks regularization with graph-based local 
resampling. IEEE Access 9:50727–50737

	 3.	 Belkin M, Matveeva I, Niyogi P (2004) Tikhonov regularization 
and semi-supervised learning on large graphs. IEEE Int Conf 
Acoust Speech Signal Process 3:3–1000

Fig. 5   Changes of the denoising 
power by the quantity of p via 
heterophilic graph

Fig. 6   Denoising power on homophilic graph (Cora)

Fig. 7   Denoising power on heterophilic graph (Chameleon)

http://creativecommons.org/licenses/by/4.0/


1572	 International Journal of Machine Learning and Cybernetics (2024) 15:1553–1573

1 3

	 4.	 Bozorgnia F, Mohammadi SA, Vejchodskỳ T (2019) The first 
eigenvalue and eigenfunction of a nonlinear elliptic system. 
Appl Numer Math 145:159–174

	 5.	 Bronstein MM, Bruna J, LeCun Y, Szlam A, Vandergheynst P 
(2017) Geometric deep learning: going beyond Euclidean data. 
IEEE Signal Process Mag 34(4):18–42

	 6.	 Bruna J, Zaremba W, Szlam A, LeCun Y (2014) Spectral net-
works and locally connected networks on graphs. In: Proceed-
ings of International Conference on Learning Representations

	 7.	 Burda Z, Correia J, Krzywicki A (2001) Statistical ensemble of 
scale-free random graphs. Phys Rev E 64(4):046118

	 8.	 Candès EJ, Li X, Ma Y, Wright J (2011) Robust principal com-
ponent analysis? J ACM (JACM) 58(3):1–37

	 9.	 Chen J, Wang Y, Bodnar C, Liò P, Wang YG (2022) Dirichlet 
energy enhancement of graph neural networks by framelet aug-
mentation. https://yuguangwanggithubio/papers/EEConvpdf

	10.	 Chen Q, Wang Y, Wang Y, Yang J, Lin Z (2022) Optimization-
induced graph implicit nonlinear diffusion. In: Proceedings of 
the 39th International Conference on Machine Learning

	11.	 Cheng T, Wang B (2020) Graph and total variation regularized 
low-rank representation for hyperspectral anomaly detection. 
IEEE Trans Geosci Remote Sens 58(1):391–406. https://​doi.​
org/​10.​1109/​TGRS.​2019.​29366​09

	12.	 Chien E, Peng J, Li P, Milenkovic O (2021) Adaptive universal 
generalized pagerank graph neural network. In: Proceedings of 
International Conference on Learning Representations

	13.	 Ciotti V, Bonaventura M, Nicosia V, Panzarasa P, Latora V 
(2016) Homophily and missing links in citation networks. EPJ 
Data Sci 5:1–14

	14.	 Defferrard M, Bresson X, Vandergheynst P (2016) Convolu-
tional neural networks on graphs with fast localized spectral 
filtering. Advances in neural information processing systems. 
Springer, Cham, p 29

	15.	 Dong B (2017) Sparse representation on graphs by tight 
wavelet frames and applications. Appl Comput Harmon Anal 
42(3):452–479. https://​doi.​org/​10.​1016/j.​acha.​2015.​09.​005

	16.	 Fan W, Ma Y, Li Q, He Y, Zhao E, Tang J, Yin D (2019) Graph 
neural networks for social recommendation. In: Proceedings of 
WWW, pp 417–426

	17.	 Frecon J, Gasso G, Pontil M, Salzo S (2022) Bregman neural 
networks. International conference on machine learning. PMLR, 
pp 6779–6792

	18.	 Fu G, Zhao P, Bian Y (2022) p-Laplacian based graph 
neural networks. Proc Thirty-Nine Int Conf Mach Learn 
162:6878–6917

	19.	 Gasteiger J, Bojchevski A, Günnemann S (2019) Predict then 
propagate: graph neural networks meet personalized pager-
ank. In: Proceedings of International Conference on Learning 
Representations

	20.	 Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) 
Neural message passing for quantum chemistry. International 
conference on machine learning. PMLR, pp 1263–1272

	21.	 Gu F, Chang H, Zhu W, Sojoudi S, El Ghaoui L (2020) Implicit 
graph neural networks. Advances in neural information process-
ing systems. Springer

	22.	 Hammond DK, Vandergheynst P, Gribonval R (2011) Wavelets 
on graphs via spectral graph theory. Appl Comput Harmon Anal 
2:129–150

	23.	 Han A, Shi D, Shao Z, Gao J (2022) Generalized energy and 
gradient flow via graph framelets. arXiv:​2210.​04124

	24.	 He M, Wei Z, Xu H et al (2021) Bernnet: learning arbitrary 
graph spectral filters via Bernstein approximation. Adv Neural 
Inf Process Syst 34:14239–14251

	25.	 He X, Kempe D (2015) Stability of influence maximization. 
In: Proceedings of the 20th ACM International Conference on 
Knowledge Discovery and Data Mining, pp 1256–1265

	26.	 Ho J, Jain A, Abbeel P (2020) Denoising diffusion probabilistic 
models. Adv Neural Inf Process Syst 33:6840–6851

	27.	 Hu X, Sun Y, Gao J, Hu Y, Yin B (2018) Locality preserving 
projection based on F-norm. In: Proceedings of the Thirty-Sec-
ond AAAI Conference on Artificial Intelligence, pp 1330–1337

	28.	 Kipf TN, Welling M (2017) Semi-supervised classification with 
graph convolutional networks. In: Proceedings of International 
Conference on Learning Representations

	29.	 Leskovec J, Faloutsos C (2006) Sampling from large graphs. 
Proc ACM Int Conf Knowl Discov Data Min. https://​doi.​org/​
10.​1145/​11504​02.​11504​79

	30.	 Li J, Lin S, Blanchet J, Nguyen VA (2022) Tikhonov regulari-
zation is optimal transport robust under martingale constraints. 
2210.01413

	31.	 Lin L, Gao J (2023) A magnetic framelet-based convolutional 
neural network for directed graphs. IEEE Int Conf Acoust 
Speech Signal Process (ICASSP). https://​doi.​org/​10.​1109/​
ICASS​P49357.​2023.​10097​148

	32.	 Liu A, Li B, Li T, Zhou P, Wang R (2022) An-gcn: an anony-
mous graph convolutional network against edge-perturbing 
attacks. IEEE Trans Neural Netw Learn Syst. https://​doi.​org/​
10.​1109/​TNNLS.​2022.​31722​96

	33.	 Liu G, Lin Z, Yu Y (2010) Robust subspace segmentation by 
low-rank representation. In: Proceedings of the 27th Inter-
national Conference on Machine Learning (ICML-10), pp 
663–670

	34.	 Liu J, Kawaguchi K, Hooi B, Wang Y, Xiao X (2021) Eignn: 
efficient infinite-depth graph neural networks. Advances in neural 
information processing systems. Springer

	35.	 Liu X, Jin W, Ma Y, Li Y, Liu H, Wang Y, Yan M, Tang J (2021) 
Elastic graph neural networks. International conference on 
machine learning. PMLR, pp 6837–6849

	36.	 Luo D, Huang H, Ding CHQ, Nie F (2010) On the eigenvectors 
of p-Laplacian. Mach Learn 81(1):37–51

	37.	 Ly I (2005) The first eigenvalue for the p-Laplacian operator. 
JIPAM J Inequal Pure Appl Math 6:91

	38.	 Ma Y, Liu X, Zhao T, Liu Y, Tang J, Shah N (2021) A unified 
view on graph neural networks as graph signal denoising. https://​
openr​eview.​net/​forum?​id=​MD3D5​UbTcb1

	39.	 Manessi F, Rozza A, Manzo M (2020) Dynamic graph convolu-
tional networks. Pattern Recognit 97:107000

	40.	 Oka T, Yamada T (2023) Topology optimization method with non-
linear diffusion. Comput Methods Appl Mech Eng 408:115940. 
https://​doi.​org/​10.​1016/j.​cma.​2023.​115940

	41.	 Ortega A, Frossard P, Kovacević J, Moura JMF, Vandergheynst P 
(2018) Graph signal processing: overview, challenges, and appli-
cations. Proc IEEE 106(5):808–828

	42.	 Pandit S, Chau DH, Wang S, Faloutsos C (2007) Netprobe: a fast 
and scalable system for fraud detection in online auction networks. 
In: Proceedings of the 16th International Conference on World 
Wide Web, pp 201–210

	43.	 Park J, Choo J, Park J (2021) Convergent graph solvers. In: Pro-
ceedings of International Conference on Learning Representations

	44.	 Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G 
(2009) The graph neural network model. IEEE Trans Neural Netw 
20(1):61–80

	45.	 Shi D, Shao Z, Guo Y, Zhao Q, Gao J (2023) Revisiting general-
ized p-Laplacian regularized framelet GCNs: convergence, energy 
dynamic and training with non-linear diffusion. https://​doi.​org/​10.​
48550/​arXiv.​2305.​15639

	46.	 Sweldens W (1998) The lifting scheme: a construction of second 
generation wavelets. SIAM J Math Anal 29(2):511–546. https://​
doi.​org/​10.​1137/​S0036​14109​52890​51

	47.	 Tenenbaum JB, Silva Vd, Langford JC (2000) A global geomet-
ric framework for nonlinear dimensionality reduction. Science 
290(5500):2319–2323

https://doi.org/10.1109/TGRS.2019.2936609
https://doi.org/10.1109/TGRS.2019.2936609
https://doi.org/10.1016/j.acha.2015.09.005
http://arxiv.org/abs/2210.04124
https://doi.org/10.1145/1150402.1150479
https://doi.org/10.1145/1150402.1150479
https://doi.org/10.1109/ICASSP49357.2023.10097148
https://doi.org/10.1109/ICASSP49357.2023.10097148
https://doi.org/10.1109/TNNLS.2022.3172296
https://doi.org/10.1109/TNNLS.2022.3172296
https://openreview.net/forum?id=MD3D5UbTcb1
https://openreview.net/forum?id=MD3D5UbTcb1
https://doi.org/10.1016/j.cma.2023.115940
https://doi.org/10.48550/arXiv.2305.15639
https://doi.org/10.48550/arXiv.2305.15639
https://doi.org/10.1137/S0036141095289051
https://doi.org/10.1137/S0036141095289051


1573International Journal of Machine Learning and Cybernetics (2024) 15:1553–1573	

1 3

	48.	 Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio 
Y (2018) Graph attention networks. In: Proceedings of Interna-
tional Conference on Learning Representations

	49.	 Wen H, Lin Y, Xia Y, Wan H, Zimmermann R, Liang Y (2023) 
Diffstg: probabilistic spatio-temporal graph forecasting with 
denoising diffusion models. arXiv preprint arXiv:​2301.​13629

	50.	 Wu F, Zhang T, Souza AHd, Fifty C, Yu T, Weinberger KQ (2019) 
Simplifying graph convolutional networks. In: Proceedings of 
International Conference on Machine Learning

	51.	 Wu J, Sun J, Sun H, Sun G (2021) Performance analysis of graph 
neural network frameworks. Proc IEEE Int Symp Perform Anal 
Syst Softw. https://​doi.​org/​10.​1109/​ISPAS​S51385.​2021.​00029

	52.	 Wu S, Sun F, Zhang W, Xie X, Cui B (2022) Graph neural net-
works in recommender systems: a survey. ACM Comput Surv 
55:1–37

	53.	 Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS (2020) A com-
prehensive survey on graph neural networks. IEEE Trans Neural 
Netw Learn Syst 32(1):4–24

	54.	 Xu K, Hu W, Leskovec J, Jegelka S (2018) How powerful are 
graph neural networks? In: Proceedings of International Confer-
ence on Learning Representations

	55.	 Xu K, Li C, Tian Y, Sonobe T, Kawarabayashi Ki, Jegelka S 
(2018) Representation learning on graphs with jumping knowl-
edge networks. In: Proceedings of International Conference on 
Machine Learning

	56.	 Yang M, Zheng X, Yin J, Gao J (2022) Quasi-Framelets: another 
improvement to graph neural networks. arXiv:​2201.​04728

	57.	 Zhang Q, Gu Y, Mateusz M, Baktashmotlagh M, Eriksson A 
(2003) Implicitly defined layers in neural networks. arxiv:​20030​
1822 

	58.	 Zhang Z, Cui P, Zhu W (2022) Deep learning on graphs: a survey. 
IEEE Trans Knowl Data Eng 34(1):249–270. https://​doi.​org/​10.​
1109/​TKDE.​2020.​29813​33

	59.	 Zheng X, Liu Y, Pan S, Zhang M, Jin D, Yu PS (2021) Graph neu-
ral networks for graphs with heterophily: a survey. In: Proceedings 
of the AAAI Conference on Artificial Intelligence

	60.	 Zheng X, Zhou B, Gao J, Wang YG, Lio P, Li M, Montufar G 
(2021) How framelets enhance graph neural networks. In: Pro-
ceedings of International Conference on Machine Learning

	61.	 Zheng X, Zhou B, Wang YG, Zhuang X (2022) Decimated frame-
let system on graphs and fast g-framelet transforms. J Mach Learn 
Res 23:18–1

	62.	 Zhou B, Li R, Zheng X, Wang YG, Gao J (2021) Graph denoising 
with framelet regularizer. arXiv:​2111.​03264

	63.	 Zhou B, Liu X, Liu Y, Huang Y, Lio P, Wang Y (2021) Spectral 
transform forms scalable transformer. arXiv:​2111.​07602

	64.	 Zhou D, Schölkopf B (2005) Regularization on discrete spaces. 
DAGM Symp 3663:361–368

	65.	 Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, Wang L, Li C, 
Sun M (2020) Graph neural networks: a review of methods and 
applications. AI Open 1:57–81

	66.	 Zhu J, Yan Y, Zhao L, Heimann M, Akoglu L, Koutra D (2020) 
Beyond homophily in graph neural networks: current limitations 
and effective designs. Adv Neural Inf Process Syst 33:7793–7804

	67.	 Zhu M, Wang X, Shi C, Ji H, Cui P (2021) Interpreting and unify-
ing graph neural networks with an optimization framework. In: 
Proceedings of WWW​

	68.	 Zhu S, Pan S, Zhou C, Wu J, Cao Y, Wang B (2020) Graph 
geometry interaction learning. Adv Neural Inf Process Syst 
33:7548–7558

	69.	 Zou C, Han A, Lin L, Gao J (2022) A simple yet effective SVD-
GCN for directed graphs. arxiv:​22050​9335

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2301.13629
https://doi.org/10.1109/ISPASS51385.2021.00029
http://arxiv.org/abs/2201.04728
http://arxiv.org/abs/200301822
http://arxiv.org/abs/200301822
https://doi.org/10.1109/TKDE.2020.2981333
https://doi.org/10.1109/TKDE.2020.2981333
http://arxiv.org/abs/2111.03264
http://arxiv.org/abs/2111.07602
http://arxiv.org/abs/220509335

	Enhancing framelet GCNs with generalized p-Laplacian regularization
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Basic notations
	2.2 Consistency in graphs
	2.3 p-Laplacian operator
	2.4 Graph framelets
	2.5 Regularized graph neural network

	3 The proposed models
	3.1 p-Laplacian undecimated framelet GNN (pL-UFG)
	3.2 p-Laplacian Fourier undecimated framelet GNN (pL-fUFG)
	3.3 More general regularization
	3.4 The algorithm
	3.5 Interaction between p-Laplacian and framelets

	4 Discussions on the proposed model
	4.1 Discussion on the denoising power
	4.2 Discussion on the computational complexity
	4.3 Comparison with other regularizers and potential application scenarios
	4.4 Limitation and potential future studies

	5 Experiments
	5.1 Datasets, baseline models and the parameter setting
	5.2 Experiment results and discussion
	5.3 Visualization on the effect of p
	5.4 Experiments on denoising capacity
	5.5 Regarding to ablation study

	6 Conclusion and further work
	References




