
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2023) 14:3003–3023
https://doi.org/10.1007/s13042-023-01815-8

ORIGINAL ARTICLE

Learning positioning policies for mobile manipulation operations
with deep reinforcement learning

Ander Iriondo1,2  · Elena Lazkano2  · Ander Ansuategi1  · Andoni Rivera1  · Iker Lluvia1  · Carlos Tubío1 

Received: 24 February 2022 / Accepted: 28 February 2023 / Published online: 17 March 2023
© The Author(s) 2023

Abstract
This work focuses on the operation of picking an object on a table with a mobile manipulator. We use deep reinforcement
learning (DRL) to learn a positioning policy for the robot’s base by considering the reachability constraints of the arm. This
work extends our first proof-of-concept with the ultimate goal of validating the method on a real robot. Twin Delayed Deep
Deterministic Policy Gradient (TD3) algorithm is used to model the base controller, and is optimised using the feedback from
the MoveIt! based arm planner. The idea is to encourage the base controller to position itself in areas where the arm reaches
the object. Following a simulation-to-reality approach, first we create a realistic simulation of the robotic environment in
Unity, and integrate it in Robot Operating System (ROS). The drivers for both the base and the arm are also implemented.
The DRL-based agent is trained in simulation and, both the robot and target poses are randomised to make the learnt base
controller robust to uncertainties. We propose a task-specific setup for TD3, which includes state/action spaces, reward func-
tion and neural architectures. We compare the proposed method with the baseline work and show that the combination of
TD3 and the proposed setup leads to a 11% higher success rate than with the baseline, with an overall success rate of 97% .
Finally, the learnt agent is deployed and validated in the real robotic system where we obtain a promising success rate of 75%.

Keywords  Mobile manipulation · Pick and place · Deep reinforcement learning · Sim-to-real transfer

1  Introduction

Pick and place are basic operations in robotics applications,
whether in industrial setups (e.g., machine tending, assem-
bly, or bin-picking) or in service robotics domain (e.g. agri-
culture or home). Although in some structured scenarios
pick and place operations have shown a strong performance,
this is not the case in less structured uncertain environments.
The efficiency and robustness of the solutions are a bottle-
neck for industrial applications, and those have not reached
the market yet.

The majority of robotics applications focus either on navi-
gation aspects of mobile platforms (e.g. industrial transpor-
tation systems, guide robots), or the manipulation of goods
with robotic arms (e.g., bin-picking applications). Nonethe-
less, few applications consider mobile manipulation itself
combining both robotic tasks. Despite there are several com-
mercial mobile manipulators in the market, there is a lack
of real applications due to the complexity and uncertainty
introduced by combining both, manipulation and navigation.

The present work focuses on the picking operation
of a randomly placed object from a table with a mobile

 *	 Ander Iriondo
	 ander.iriondo@tekniker.es

	 Elena Lazkano
	 e.lazkano@ehu.eus

	 Ander Ansuategi
	 ander.ansuategi@tekniker.es

	 Andoni Rivera
	 andoni.rivera@tekniker.es

	 Iker Lluvia
	 iker.lluvia@tekniker.es

	 Carlos Tubío
	 carlos.tubio@tekniker.es

1	 Department of Autonomous and Intelligent Systems,
Tekniker - Basque Research and Technology Alliance
(BRTA), Iñaki Goenaga, 5, 20600 Eibar, Gipuzkoa, Spain

2	 Robotics and Autonomous Systems group (RSAIT),
Department of Computer Science and Artificial Intelligence,
University of the Basque Country (UPV/EHU), Po Manuel
Lardizabal,1, 20018 Donostia‑San Sebastián, Gipuzkoa,
Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-023-01815-8&domain=pdf
https://orcid.org/0000-0003-2760-435X
https://orcid.org/0000-0002-7653-6210
https://orcid.org/0000-0001-9777-9564
https://orcid.org/0000-0001-8550-5312
https://orcid.org/0000-0001-9192-3879
https://orcid.org/0000-0002-3763-5312

3004	 International Journal of Machine Learning and Cybernetics (2023) 14:3003–3023

1 3

manipulator. Due to the particular morphology of robotic
arms, their scope is limited, and not all the positions of the
base near the table enable a successful picking.

Traditionally, such mobile manipulation operations have
been solved using analytical planning and control methods
[1]. These methods require explicit programming of the
skills which can be very costly and error-prone particularly
in problems where decision making is complex. The per-
formance of these models depends on how well the reality
fits the assumptions made by the model. Due to the impos-
sibility of predicting all the cases that may occur in dynamic
and unstructured environments, these methods are generally
impractical.

In many explicitly programmed mobile manipulation
applications, the base navigates first to zones where the
object is within reach (only considering distance), and then
carry out the picking trial. However, other works such as the
one proposed by Stulp et al. in [2] challenge this and raise
the following questions: “Does well-in-reach always imply
that the target can really be reached, given the hardware
and control software of the robot?, Can we have a least-
commitment realisation of ’places’ such that the robot can
refine a ’place’ as it learns more about the context (e.g.
clutteredness) of the surroundings?, How can such a concept
of ’place’ take into account uncertainties about the robot’s
self-localisation and the estimated target position?”. As the
authors mention, explicit programming to account for these
factors is tedious and impractical, and more flexible solu-
tions are needed.

Alternatively, data-driven methods allow learning directly
from real data [3]. Recently, the combination of deep learn-
ing (DL) and reinforcement learning (RL), known as deep
reinforcement learning (DRL), has allowed to tackle com-
plex decision-making problems that were previously unfea-
sible [4]. In fact, DRL has proven to be the state-of-the-art
technology for learning complex robotic behaviours through
the interaction with the environment and solely guided by
a reward signal.

The proposed method was originally based on the idea
proposed in [2]. In that work authors propose to learn a data-
driven model of “place” (areas where the base of the mobile
manipulator has to be placed to guarantee the reach of the
arm to the object) by interacting with the environment and
using machine learning (ML). In that way, they take into
account the limits of the robot hardware as well as the uncer-
tainty in the localisation of both the robot and the target.
While ML-based methods are generally used for offline fore-
casting, DRL is generally used online in sequential decision-
making problems [5]. In fact, DRL allows to autonomously
learn complex control policies through trial and error and
only guided by a reward signal. In the case of robotics, the
most common use case is to use such algorithms to model
agents capable of performing continuous control of robots.

In a first proof-of-concept, we extended the idea and
learnt a positioning policy for the mobile manipulator’s base
using state-of-the-art DRL algorithms [6]. We proposed a
novel method which was based on learning a DRL-based
controller for the base taking into account the reachability
constraints of the arm. To do so, we proposed to use feed-
back from a traditional arm trajectory planner to optimise
the base controller. In fact, the learnt base controller was
able to drive the mobile manipulator to areas with a high
probability of picking success. Although we showed the
feasibility of applying DRL to learn such a complex behav-
iour, the experimentation was carried out only in a simplistic
simulated environment, which was far from reality.

Following the same idea, in this work we go one step
further and propose a fully improved DRL-based learning
framework for the mobile manipulation task, with the final
goal of deploying the learnt model in the real robot. The
contributions of this article are as follows:

1.	 Based on our previous work [6], we developed an
improved control architecture that allows learning the
task in simulation and an easy deployment in the real
system. In fact, the proposed approach combines the
Twin Delayed Deep Deterministic Policy Gradient
(TD3) [7] DRL algorithm to control the base with tradi-
tional planning and control algorithms for the arm. To
the best of our knowledge, this is the first time that TD3
has been applied to learn a mobile manipulation skill.

2.	 We propose a novel reward formulation, task-specific
state/action space definition, and neural architecture
selection for TD3 that lead to a robust and stable con-
troller. The reward function carefully combines dynamic
variables related to distance to target, speed/accelera-
tion, collision checking and feedback from the arm plan-
ner to encourage the robot to navigate towards areas with
a high probability of pick success.

3.	 We develop a realistic simulation of both the robot and
the environment in Unity [8] from scratch. The simu-
lation is integrated into the Robot Operating System
(ROS) [9] following the OpenAI Gym standard [10].
The drivers needed to command both the base and the
arm are also developed. Robot and target position ran-
domisation functionalities are also offered through ROS.

4.	 A thorough evaluation is conducted to assess the pro-
posed method and compare it with the baseline using
standard metrics. Finally, the learnt agent is deployed
and validated in the real system. The results obtained
show the feasibility of the proposed approach.

The mobile manipulator used was previously developed by
Tekniker and is depicted in Fig. 1.

The rest of the paper is organised as follows. Section 2
reviews the literature. Section 3 explains the details of the

3005International Journal of Machine Learning and Cybernetics (2023) 14:3003–3023	

1 3

design and implementation of the DRL-based control archi-
tecture for the mobile manipulator. In Sect. 4 we benchmark
our method with the baseline approach, using multiple DRL
algorithms. Then, details about the deployment and vali-
dation in the real robotic system are presented in Sect. 5.
Finally, in Sect. 6 some conclusions are drawn, and the next
steps are discussed.

2 � Literature review

Traditionally, well known planning and control methods
have been widely used for scheduling mobile manipulation
behaviours [11], for example using the ROS navigation stack
[12] for navigation and MoveIt! [13] for manipulation. For
instance, Dömel et al. [14] focus on fetch and carry opera-
tions in industrial environments. In that work, both the arm
and the base are considered as independent systems and,
although a reachability study is carried out, it is done offline
and thus ignoring the environment’s dynamics. In addition,
the reachability study is done for the sole purpose of estab-
lishing the design of the application. Xu et al. [15] propose
to use an inverse kinematics database to estimate the feasible
positions of the base to solve a pick-and-place operation with
objects stored in trays. However, the database of feasible
locations is composed of discrete poses that are estimated

offline, and consequently they also ignore the dynamics of
the environment. In other methods such as [16, 17, 18] both
the base and the arm are seen as one and also rely on tra-
ditional path planning and control methods to schedule the
task. Nevertheless, the computational cost of such a high
dimensional planning is very high and although they attempt
to model uncertainty in dynamic environments, the system
is limited to the expected casuistry when programming the
behaviour. Instead of considering the entire robot as a sin-
gle system, works such as [19, 20] treat the arm and base
independently, but use the force feedback from the arm to
generate velocity commands for the base.

Although traditional methods have led to promising
mobile manipulation skills in some specific tasks, they
require the explicit programming of hard-to-engineer behav-
iours and often fail in more complex tasks where the deci-
sion-making process is hard. In addition, such solutions are
generally very inflexible and error-prone due to the impossi-
bility of modelling all the uncertainty of dynamic industrial
environments when those are programmed.

Alternatively, data-driven approaches address the main
limitations of traditional methods and propose to learn
robotic behaviours from real experience [3], thus alleviating
the cost of modelling complex behaviours. For instance, in
one of the first approaches Lin and Goldenberg [21] use DL
to model the motion control of a mobile manipulator using
real experience. This approach allows them to use deep neu-
ral networks to model the uncertainties of the environment,
which leads to a more robust controller compared to tradi-
tional ones. Later, Konidaris et al. [22] propose to use RL
to automatise the skill acquisition on a mobile manipulator.
Unlike DL, RL allows to automatically obtain the experience
needed to learn robotic skills through trial-and-error and
allows to learn complex decision-making policies.

Other works such as [2] use ML to learn the positioning
of a mobile manipulator. In that work Stulp et al. propose
to learn a concept of “place” (areas where the base of the
mobile manipulator has to be placed to guarantee the reach
of the arm to the object) for mobile manipulation operations
using ML. Specifically, the authors propose to learn a proba-
bilistic ML model using experience obtained through trial
and error. The learnt model allows them to predict offline
poses of the base which allow the arm to reach the object.
As the authors claim, the explicit modelling of the problem
is no longer required since the learnt models are grounded
in real experience.

Recently, the combination of DL and RL, also known as
DRL, has made it possible to tackle complex decision-mak-
ing problems that were previously unfeasible. It combines
the ability of DL to model very high dimensional data with
the ability of RL to model decision-making agents through
trial and error. In fact, it has become the technology of
choice for learning complex robotic behaviours using the

Fig. 1   The robot, developed by Tekniker, combines a commercial
Segway omnidirectional mobile platform and a KUKA iiwa arm

3006	 International Journal of Machine Learning and Cybernetics (2023) 14:3003–3023

1 3

experience gained through interaction with the environment
[23]. DRL has been successfully applied in a wide variety
of areas such as robotics, computer vision and gaming [4].
Taking into account the difficulty of modelling complex
decision-making robotic skills, DRL offers a promising
way to take advantage of the experience gathered interact-
ing with the environment to autonomously learn complex
robotic behaviours.

In particular, the field of DRL applied to robotics has
recently gained popularity due to the remarkable perfor-
mance obtained in applications with high decision-making
and control complexity. Applications range from manipula-
tion [24, 25], to autonomous navigation [26] and locomotion
[27, 28].

An example of the potential of DRL based methods
applied to robotic manipulation can be seen in [29]. In that
work Kalashnikov et al. propose a vision-based self-super-
vised DRL framework, called Qt-opt, to learn a hand-eye
coordinated grasping policy. In fact, they learn a controller
for a real robotic arm to pick both known and novel items,
by only using an over-the-shoulder RGB camera. Recently,
DRL has been applied to learn to manipulate nonrigid
objects such as cloths. Specifically, the method proposed by
Jangir et al. [30] is based on the Deep Deterministic Policy
Gradient (DDPG) [31] DRL algorithm and is only applied
in simulation. Recently, Kim et al. [32] used the TD3 DRL
algorithm to solve the path planning problem with 2/3-DoF
manipulators, and showed that TD3 can be used to plan
smoother paths compared to traditional algorithms such
as Probabilistic Roadmap Planning [33]. In that work the
experimentation is carried out fully in simulation.

DRL has also been successfully applied to learn robot
navigation policies. For instance the problem of mapless
navigation is tackled in [34], where a velocity controller for
the mobile base is learnt making use of an asynchronous
variant of DDPG. In fact, the controller is trained in simula-
tion using as input 10-dimensional laser sensor readings,
besides to the relative position of the robot with respect to
the target, and predicts the target linear and angular veloci-
ties for the mobile base. The method is finally assessed
in the real robotic system. The problem of large-scale 3D
navigation of unmanned aerial vehicles is also addressed
in [35] using a recurrent variant of the DDPG algorithm,
called RDPG. In that work, authors use RDPG to solve the
3D large scale navigation as a Partially Observable Markov
Decision Process (POMDP), with partially observable and
uncertain states. Their system is only assessed in simulation.

Concerning locomotion applications, TD3 has also
been successfully used to learn the continuous control of
biped and quadruped robots in simulation [36, 37]. Unlike
the general approach of training DRL agents in simula-
tion, Haarnoja et al. [27] showed that its possible to learn
complex control skills with real-world experience. In fact,

authors designed the Soft Actor Critic (SAC) sample effi-
cient algorithm and applied it to learn locomotion skills
in the real world.

Although much work was done in the fields of manipu-
lation, navigation and locomotion, the application of DRL
in mobile manipulation was a totally unexplored world
until recently. Seeing the excellent results that DRL has
given in the previously mentioned fields, in a first proof-
of-concept we demonstrated that it is possible to apply
DRL to learn mobile manipulation behaviours [6]. Based
on the idea proposed in [2], we learnt a DRL-based posi-
tioning policy to drive the robot’s base with speed com-
mands to areas that guarantee the reach of the arm to the
target object. Unlike the original work in which they learn
a classifier that is used offline to predict target poses from
the base, our goal was to learn an online control policy
for the robot. This approach allows the dynamics of the
environment to be taken into account, as decision-making
is reactive to the state of the environment. The aim of this
work was to demonstrate the feasibility of the approach
in simulation.

Subsequently, works such as [38, 39] tried to learn how
to jointly control both the base and the arm of a mobile
manipulator with DRL. On the one hand, Kindle et al. [38]
use the Proximal Policy Optimisation (PPO2) [40] algorithm
to perform the whole-body control of a holonomic mobile
manipulator to solve the task of picking up an object from
a shelf. On the other hand, the approach proposed by Wang
et al. [39] was similar to the previous one but applied to
a non-holonomic robot. In this case, they also use PPO2
to learn the task of picking up an object on a table. Both
applications follow the simulation-to-reality approach, so
they perform the training in simulation and then directly
transfer the learnt behaviour to reality. Nevertheless, in both
applications they limit the degrees of freedom of the arm to
simplify the control problem, which can greatly limit the
robot’s reach.

In this paper, we extend our first proof-of-concept
with the aim of improving the method to finally validate
it in a real environment. Contrary to some state-of-the-art
approaches that try to learn a whole-body reactive controller,
we propose to learn a positioning policy for the base taking
into account arm’s range constraints. To that end, we pro-
pose to combine a traditional path planner for the arm with
a DRL-based reactive controller for the base. In this way,
we avoid limiting the degrees of freedom of the robotic arm,
allowing for maximum flexibility in picking. We build on
the idea that traditional planning and control methods such
as the ones offered in MoveIt! provide the precision needed
to manipulate objects. In addition, using a DRL-based reac-
tive controller for the base allows us to take into account the
dynamics of the environment during positioning. In fact,
we believe that the feedback from the arm planner can help

3007International Journal of Machine Learning and Cybernetics (2023) 14:3003–3023	

1 3

optimise the base controller to take into account arm’s range
constraints.

For the first time we use the state-of-the-art TD3 algo-
rithm to model a mobile manipulation behaviour. Further-
more, we propose an improved setup composed of a reward
function, a definition of state/action spaces, and a selection
of neural architectures to learn a robust positioning policy
for the base. Following a simulation-to-reality approach,
we first train and validate the method in a realistic simula-
tion of the real workshop. In the benchmark carried out in
simulation between the baseline and our approach, we show
both, that TD3 and the proposed setup outperform the algo-
rithms and the setup proposed in the baseline work. Once
the performance and reliability of the controller is assessed
in simulation, the controller is deployed and validated in
the real robot.

3 � Methodological approach

The developed method focuses on the picking operation of
a randomly placed item on a table, using a mobile manipu-
lator. In particular, we concentrate on learning a reactive
controller for the base of the mobile manipulator, which by
sending velocity commands will drive the robot to areas
where the reachability of the arm to the object is ensured.
The key novelty of our method is that the velocity control-
ler for the base is optimised considering the feedback of the

arm’s path planner. The rationale behind our approach is to
encourage the base controller to position the robot’s base in
zones where the arm’s planner will likely succeed planning a
trajectory up to the target object. In fact, we propose to learn
the base controller with real experience obtained through the
interaction with the environment. By doing so (1) the robot
learns its own physical limitations; (2) it takes into account
the uncertainty in both the robot’s location and the target
object; and (3) the decision making is learnt automatically,
thus avoiding the programming of such behaviour.

The developed framework, depicted in Fig. 2, is based
on ROS [9] and all the modules of the system are imple-
mented as ROS nodes. The control architecture has been
designed with the possibility of being executed both in the
simulated and the real environments. On the one hand, we
call it agent to the set of software modules involved in the
decision-making of the actions to be executed by the robot.
On the other hand, we call it environment for all the modules
that participate in the execution of the predicted actions,
both in simulation and in reality.

As far as the agent is concerned, its main module is the
mobile manipulator base controller which is modelled using
the TD3 DRL algorithm. In our case, the aim is to train
TD3 to be a reactive controller to drive the robot’s base with
velocity commands and considering the scope of the arm.
More details about the agent are given in Sect. 3.2.

To model the environment, we follow the widely used
OpenAI Gym interface that is used in most state-of-the-art

ROS

AGENT

RL
 HELPER

ARM
 PATH PLANNER

Arm manager
Plan?

TF BROADCASTER

OpenAI
Gym

Simulation
Simulated base driver

Simulated arm driver

ENVIRONMENT

Reality
Base driver

Arm driver

Scene randomiser

Frame updater

at

st
rt

at
st

Arm planned trajectory

at st

TD3 DRL
 BASE CONTROLLER

Scene
 config

Robot pose,
target pose,

...

Fig. 2   Developed control framework. ROS nodes are represented with blue boxes. The main libraries used inside the ROS nodes are shown in
red. Black arrows indicate ROS service calls

3008	 International Journal of Machine Learning and Cybernetics (2023) 14:3003–3023

1 3

DRL algorithms [10]. OpenAI Gym is a library designed
to develop and compare DRL algorithms by providing a
standard API to communicate between learning algorithms
and environments. Indeed, this communication interface has
become a standard to design DRL algorithms and environ-
ments and most of the libraries follow it. The use of this API
eases the simulation-to-reality transfer of the learnt control-
ler and makes the environment being used transparent to the
agent. The details of the implementation of the environment
can be found in Sect. 3.1.

3.1 � Environment

As previously mentioned, the environment has been devel-
oped following the OpenAI Gym interface, which facili-
tates the integration with the agent. Furthermore, it makes
it transparent to the agent what type of environment the pre-
dicted actions are being executed in (simulated or reality),
as both the input and output always have the same format.

The main objective of this work is to demonstrate the
feasibility of the proposed method in a real environment.
Nonetheless, due to the material and time costs involved in
training DRL-based agents in a real environment, following
the general approach, it is proposed to do so in a simulated
environment. For this purpose, a simulation with a high
degree of realism has been developed, which is detailed in
Sect. 3.1.1. In addition to simulating the robot itself, we have
also implemented the necessary drivers to control both the
base and the arm of the mobile manipulator in the same way
than the real ones.

In order to reduce the gap between simulation and reality
and to learn an uncertainty-robust controller, the simulation
offers services to randomise both the pose of the robot and
the target object. The idea is to perform the training in the
realistic simulation, introducing a certain degree of randomi-
sation, so that the learnt controller can be used directly on
the real robot.

3.1.1 � Simulated environment in Unity

Unity is a real-time 3D development platform that consists
of a rendering and physics engine, in addition to a graphical
user interface [8]. Although this simulator has been used
extensively for game development, it has also been used in
many other areas such as the automotive, engineering, and
film industries. Unity allows the development of environ-
ments rich in visual, physical, and task complexity, which
is vital for robot-learning applications. It offers an easy inte-
gration and useful toolboxes to work with AI-based models.

The developed simulation has been integrated into
the ROS environment using the ROS# library for the C#

programming language [41] and following the OpenAI
Gym interface. Figure 3 shows the main components of
the simulated system, i.e. the mobile manipulator and the
table integrated in a realistic environment. The robot is
modelled following the URDF format, which is easily
loaded to the simulated environment using ROS#.

In order to be able to control the mobile base with
velocity commands, a low-level driver is developed tak-
ing the idea of the gazebo planar move plugin. This plugin
implements a simple controller that receives as input a
twist command and moves the simulated robot in the xy
plane. The idea is to replicate the real driver of the base of
the robot which allows it to be controlled by speed com-
mands. Additionally, we introduce accelerations to make
the simulation more realistic. The acceleration coeffi-
cient used has been experimentally measured in the real
robot. In addition, the simulated base driver is in charge
of publishing the localisation of the robot in the scene. It
is widely known that real localisation systems are noisy,
and therefore, the localisation is not perfect. However,
the simulation tool used does not introduce localisation
uncertainty. To somehow overcome this lack and make
the system robust to imprecise localisation we add Gauss-
ian noise to the robot pose given by the system at each
time step. The modifications made in the localisation are
detailed in Eq. 1.

To control the simulated 7-DoF arm, instead, we follow the
idea of the gazebo ros control [42] to implement a simulated
driver under the ROS control framework [43]. This driver
acts as a bridge between Unity and the joint trajectory con-
troller offered in MoveIt! and executes the trajectories given
by the joint trajectory controller in simulation.

(1)

xw
r
= xw

r
+N(0.0, 0.02)

yw
r
= yw

r
+N(0.0, 0.02)

�
w
r
= �

w
r
+N

(

0.0,
�

100

)

Fig. 3   Simulated environment in Unity

3009International Journal of Machine Learning and Cybernetics (2023) 14:3003–3023	

1 3

3.2 � Agent

According to Sutton and Barto [44], a RL solution to a
control problem is defined as a finite-horizon Markov Deci-
sion Process (MDP). At each discrete time-step t the agent
observes the current state of the environment st ∈ S , takes
an action at ∈ A(st) , receives a reward r ∶ S × A → ℝ and
observes the new state of the environment st+1 . At each epi-
sode of T time-steps, the environment and the agent are reset
to their initial poses. The goal of the agent is to find a policy,
deterministic �

�
(s) or stochastic �

�
(a|s) , parameterised by �

under which the expected reward is maximised.
In our case, we implement the DRL base control-

ler using the TD3 algorithm. At each time step t ∈ T the
algorithm takes as input the state of the environment st and
predicts the optimal velocity command at that leads to the
expected maximum reward at the end of the episode. In our
case, the maximum reward is achieved when the robot posi-
tions itself in a zone where the target is within the reach of
the arm.

Furthermore, we use two additional nodes that play a key
role during learning. On the one hand, we have Arm path
planner, which determines in each case whether the target is
within the reach of the robot arm. As it is later explained in
Sect. 3.2.1, the result of the arm planner is used to calculate
the reward for the base controller. If the base controller has
been able to drive the robot to an area where the arm is able
to reach the object, it will receive the maximum possible
reward. The idea is to encourage the base controller to drive
the robot to areas with a high probability of grasping suc-
cess. Arm’s path planning is done using the MoveIt! library
[13] which is, in fact, the default planning and control library
for manipulation applications in ROS.

On the other hand, the RL helper node is in charge
of orchestrating both the learning and the execution of
the agent and acts as a bridge to communicate with the
environment. The process runs as follows: In an episode
of T time-steps, at time instant t = 0 , it randomises both
the pose of the robot and the target using the “scene ran-
domiser” library. The goal is to introduce variability while
training to make the controller robust to uncertainties.
During the time instants t = 1 to t = T − 1 , it receives the
velocity commands at predicted by TD3 and executes them
in the environment (simulated or real). As a consequence,
it obtains the new state of the environment st+1 and on that
basis calculates the reward rt . In addition, using the “frame
updater” library, it obtains the state of the environment
and spreads the transformations between coordinate sys-
tems (robot pose, target, etc.) in ROS using the TF broad-
caster. The TF broadcaster node is built on top of the TF
library of ROS [45], and allows to dynamically modify
transformations between coordinate frames. Finally, at
the last instant of time of the episode t = T − 1 the robot

navigation is stopped. At this instant, the “arm manager”
library previously developed and with a higher abstraction
level than MoveIt!, calls the planner to see if the object
is in the scope of the arm to reward or penalise the base
controller accordingly.

3.2.1 � TD3 as base controller

To model the base velocity controller, the TD3 algorithm
has been chosen, which solves some major stability issues
of its predecessor DDPG. Although DDPG has shown great
performance learning some robotic skills, it usually tends
to be brittle with respect to the tuning hyper-parameters.
TD3 follows the actor-critic architecture and, similarly to
its predecessor, learns a deterministic policy �

�
 in an off-

policy way, called actor. Both DDPG and TD3 are derived
from the deterministic policy gradient theorem [46]. Based
on the idea of a deep Q network (DQN) [47], TD3 also uses
action-value functions Qw to guide the learning process, also
dubbed critic. Both the actor and the critic are parameter-
ised functions and usually are implemented as non-linear
function approximators. Similar to DDPG, TD3 is able to
learn robust value functions due to two innovations: First,
the networks are trained off-policy, getting experience sam-
ples from a replay buffer to eliminate temporal correlations.
In addition, target networks, �′ and Q′ are used for both the
actor and critic respectively, which are updated slower lead-
ing to consistent targets y during temporal difference (TD)
learning [48].

Figure 4 depicts the network architecture of TD3. TD3
introduces three main novelties: First, it uses a second critic
network to improve the stability of the learning process [7].
Thus, the actor is a parameterised policy �

�
(s) = a , and

critics are action-value functions, Qw1
(s, a) and Qw2

(s, a) ,
which evaluate the quality of the execution of action a in
state s. Second, the actor is trained slower than the critics.
These less frequent policy updates result in a lower vari-
ance action-value estimate that leads to a more robust policy.
And third, it adds noise to the action predicted by the target
policy, to make it harder to the policy to exploit Q-function
errors.

In short, TD3 is made up of one actor and two critic net-
works, plus the target network of each of them, resulting in
6 neural networks.

To train the networks, in each training iteration, a mini-
batch of N transitions (st, at, rt, st+1) is sampled from the
replay buffer. On the on hand, to update the weights of the
critics w the TD error is used [48], which can be seen in
Eq. 2. On the other hand, the actor is updated using the
deterministic policy gradient (DPG) theorem [46] which is
shown in Eq. 3. However, as previously mentioned the actor
is updated slower, usually once per two training steps.

3010	 International Journal of Machine Learning and Cybernetics (2023) 14:3003–3023

1 3

Concerning the target networks, those are a weighted copy
of the original networks and are usually updated at the same
frequency than the policy as shown in Eq. 4.

For this research, the implementation of the stable baselines
library is used [49], which already uses the OpenAI Gym
interface.

3.2.2 � State/action spaces and neural architectures

In the proposed setup, we model both the state and action as
continuous spaces as described in Eqs. 5 and 6 respectively.
The state observation s ∈ ℝ

13 is composed of the variables
defined in Table 1. We modify the baseline state space by
adding the observed robot’s velocity. It must be noted that

(2)

ã ← 𝜋
𝜃
� (s) + 𝜖, 𝜖 ≈ clip(N(0, 𝜎̃),−c, c)

y ← r + 𝛾mini=1,2Q
�

w�
i

(st+1, ã)

wi ← minwi

1

N

∑

(y − Qwi
(s, a))2

(3)∇
�
J(�) =

1

N

∑

∇aQw1
(s, a)|a=�

�
(s)∇�

�
�
(s)

(4)
w�

i
← �wi + (1 + �)w�

i

�
�

i
← ��i + (1 + �)��

i

in the baseline setup, the predicted action in the previous
time step at−1 and the observed velocity v′ are the same,
but this does not happen in our setup as accelerations are
considered. This modification lets the agent be aware of its
current velocity in order to decide the velocity command for
the next time-step.

The action a ∈ ℝ
3 , instead, is composed of the target

linear and angular velocities to be sent to the base of the
holonomic robot.

Concerning the implementation of both the actor and the
critics, both of them have been implemented as Multi Layer
Perceptron (MLP) feed-forward networks [50].

On the one hand, the MLP of the policy �(s) = a gets as
input the state observation s ∈ ℝ

13 in the input layer and it
is followed by two hidden layers, with 400 and 300 neurons
respectively. Finally, the output layer predicts the action
a ∈ ℝ

3 . The ReLU activation function is used for the hid-
den layers, and Tanh, instead, for the output layer to bind the
actions between –1 and 1. The variables that compose the
state observation s are normalised before feeding the policy

(5)s =

[

pw
r
, at−1, v

�
, pw

target
, dtarget

r
,
t

T

]

∈ ℝ
13

(6)a = [vx, vy,�z] ∈ ℝ
3

Fig. 4   Network architecture of
TD3 TD3

Qw1

Qw1'

Q-value

st

at

Qw2

TD error

Qw2'

MIN

Target yReplay buffer

πθ

πθ'

DPG error

CRITICACTOR

E
N

V
IR

O
N

M
E

N
T

ε

(st,at,rt,st+1)

atst

atst

Q-value
st
at

Q-value
st
at

Q-value
st
at

at

ã

Table 1   Variables that define
the environment state 1. The pose of the base of the arm with respect to the world that is composed of

the x and y coordinates and � rotation, where � is the rotation in z axis
pw
r
= [xw

r
, yw

r
, �w

r
]

2. The predicted action in the previous time-step at−1 = [vxt−1, vyt−1,�zt−1]

3. The observed linear and angular velocities v� = [vx�, vy�,�z�]

4. The position of the target with respect to the world pw
target

= [xw
target

, yw
target

]

5. The distance between the base of the arm and the target d
target
r

6. The normalised time-step in the episode t

T

3011International Journal of Machine Learning and Cybernetics (2023) 14:3003–3023	

1 3

MLP using the observation space limits shown in Table 2.
The opposite happens with the predicted action that origi-
nally is in the [–1,1] range and is converted to the action
space range (also shown in Table 2).

On the other hand, the critics Q(s, a) get the [s, a] ∈ ℝ
16

feature vector as input. Then, the input layer is also followed
by two hidden layers with 400 and 300 neurons respectively
and, finally, the output layer predicts the ℝ1 Q-value for the
state-action pair. The ReLU activation function is used for
the hidden layers, and for the output layer, however, no acti-
vation function is used. In this case, the inputs s and a are
also normalised using their respective limits before feeding
the critic MLPs.

3.2.3 � Reward function

The design of the reward function is one of the most impor-
tant steps during the modelling of a DRL-based agent, as
it is the only signal that guides the learning process. As
explained above in Sect. 3.2.1, the rewards are used to
optimise the critic networks of TD3, the output of which
is then used to optimise the actor. The most logical thing
to do would be to reward the robot only when it achieves
the goal, i.e. to position itself in such a way that the target
object is within the arm’s reach. Nevertheless, this usually
does not work and it is necessary to reward the agent for
achieving sub-goals in order to guide the learning process
until an optimal one is achieved. This concept is known as
reward shaping [51]. In our case, in addition to rewarding
the agent when the main goal is met, we use other criteria
such as distance to the goal or speed/acceleration to “shape”
the reward function.

The designed reward function is detailed in Eq. 7 and its
main components are the following:

•	 Distance reward, D: The closer the robot is from the
target, the higher is the distance reward. When it gets
closer than dthresh , the distance reward becomes con-
stant to avoid crashing with the table. This component is
described in Eq. 8.

•	 Velocity penalty, V: The agent is penalised with a dis-
count factor for moving with high velocities, particularly
when the robot is closer than dthresh from the goal (see
Eq. 9). This discount factor is applied to D.

•	 Collision penalty, C: If there is a collision between the
robot and any element in the environment, this variable
takes the value 1. Otherwise, its value is 0.

•	 Acceleration penalty, W: The agent is penalised for
predicting consecutive actions that would require high
acceleration (Eq. 10). To this end, the L2 norm of the
difference between at and at−1 is used.

•	 Grasp reward, G: The robot tries to plan a trajectory up
to the target in the last time-step of the epoch t = T − 1 .
If planning succeeds, this variable takes the value 1 and,
instead, takes the value –1. In the other time-steps of the
episode its value is 0.

The weights wd,wc,ww,wg are used to determine the impor-
tance of each component of the reward function.

Both the weights of each component and the constant values
have been obtained experimentally and are shown in Table 3.

The most critical novelties introduced with respect to the
reward function used in [6] are related with the distance
reward and the velocity penalty.

On the one hand, in the baseline reward function the robot
is rewarded for getting as close as possible to the target.

(7)r =wd ⋅ D ⋅ V ⋅ (1 − C) − wc ⋅ C − ww ⋅W + wg ⋅ G

(8)D =

{

c1, if d
target
r < dthresh

1

d
target
r

, if d
target
r ≥ dthresh

(9)
V =

�

(c2 − min(‖v�‖2, c3))
𝛽 , if d

target
r < dthresh

(c4 − max(‖v�‖2, c5))
𝛽 , if d

target
r ≥ dthresh

where, 𝛽 =
c6

max(d
target
r , c7)

(10)W =‖at − at−1‖2

Table 2   Observation and action space limits

Observation space limits

xw
r

[−2.0, 5.6] m xw
target

[4.1, 4.2] m

yw
r

[−2.8, 2.8] m yw
target

[−0.7, 0.4] m

�
w
r

[−
�

2
,
�

2
] rad d

target
r

[0 − 6.26] m

vx�, vy�, vxt−1, vyt−1 [−0.5, 0.5] m∕s t

T
[0 − 1]

�z�,�zt−1 [−0.5, 0.5] rad∕s

Action space limits
vx, vy [−0.5, 0.5] m∕s �z [−0.5, 0.5] rad∕s

Table 3   Weights and constant
values used for the reward
function

Reward function weights and
constant values

wd 1.0 wc 1000.0
ww 10.0 wg 1000.0
c
1

100.0 c
2

1.0
c
3

1.0 c
4

2.0
c
5

0.5 c
6

2.0
c
7

0.65 dthresh 0.8

3012	 International Journal of Machine Learning and Cybernetics (2023) 14:3003–3023

1 3

However, this introduces a potential risk of collision with
the table and, in addition, this could prevent the arm from
successfully planning a trajectory to the target for being too
close to it.

On the other hand, the baseline simulated low-level driver
that is in charge of receiving velocity commands from the
DRL agent and moving the robot does not consider accelera-
tions. Because of this the robot is able to stop immediately
from one instant of time to another, regardless of its speed.
Nonetheless, this makes the baseline simulation to be far
from reality and the learnt behaviour in simulation is hardly
applicable in the real system. In fact, in the reward function
proposed in the baseline setup, the robot is not penalised
for moving fast near the goal, and this causes the robot to
aggressively approach the target when accelerations are con-
sidered, which leads to collisions with the table.

The simulation developed in this work it does consider
base accelerations and, thus, the aforementioned issues need
to be solved. To that end, on the one hand, we modify the
distance reward by giving a constant reward to the robot
when the target is within the robot arm’s reach. This helps to
reduce the importance of the distance at this point and gives
more importance the robot to reach to the last the time-step
of the episode to perform the grasp. On the other hand, we
introduce a velocity penalty to penalise the robot for moving
fast near the goal. The absence of the velocity discount fac-
tor produces aggressive approximation to the table at high
speed and thus, the probability of collision increases. The
main goal of this discount factor is to give higher rewards
for moving slowly near the target. Moreover, the smoother
approximation to the table leads to a better exploration
behaviour, and the robot becomes able to wait for the last
time-step of the episode in a correct grasping place.

3.3 � Training procedure

The training of the agent is done following an episodic
scheme. Each training episode consists of T = 512 discrete
time-steps, with a time-step duration of Ts = 30ms . The
duration of each episode is around 15 s. At each discrete
time-step of the episode t ∈ T  , the agent observes the envi-
ronment state st ∈ S (see Eq. 5), predicts an action at ∈ A(st)
(see Eq. 6), receives a reward signal rt ∶ S × A → ℝ (see
Eq. 7) and observes the new state of the environment st+1 . As
detailed in Sect. 3.2.1, the transition (st, at, rt, st+1) is finally
stored in the replay buffer. At the beginning of each epi-
sode, both for training and validation, the initial poses of the
robot and the target are randomly selected. The limits of the
observation and action spaces used are constant during all
the training episodes and are shown in Table 2. The detailed
training algorithm of the agent can be seen in Algorithm 1
of Appendix A.

In this way, at each episode the robot has T time-steps
to complete the positioning of the robot’s base in a suitable
zone for the arm to plan a trajectory up to the target. To
that end, at each time-step the base controller observes the
environment state, predicts the optimal velocity command,
and after executing the action, it receives a reward signal.
At time-step t = T − 1 the path planning trial is done with
the arm and the robot is rewarded or penalised depending on
whether the planning succeeds or not.

The localisation of the robot is published at ≈ 100Hz and
the robot control is done at ≈ 33Hz . The training is done
using an Intel Core i7-8700 CPU (@ 3.20 GHz x 12) with
a Nvidia Geforce GTX 1060 GPU and each training is exe-
cuted during 4 M steps in simulation. Whenever the agent
reaches a terminal state, the simulation is reset, and a new
episode starts. Three terminal states are considered:

1.	 A collision occurs between the robot and any other ele-
ment in the scene.

2.	 The localisation of the robot falls outside the limits
defined in the observation space.

3.	 The robot reaches the last time-step of the episode
t = T − 1.

The main hyper-parameters used to train the TD3 agent are
shown in Table 4.

4 � Benchmark in simulation

The main objective of the experimentation is to evaluate
the method we propose in comparison with the baseline [6].
First, we want to demonstrate that the TD3 algorithm fits
better to the problem at hand and allows learning a more
robust behaviour compared to DDPG and PPO2. And sec-
ond, we want to show that the setup (state/action spaces, the
reward function and neural architectures) we propose in this
work leads to better performing behaviour, regardless of the
DRL algorithm used.

To do this, in addition to TD3, we use the DDPG and
PPO2 algorithms proposed in the baseline work to model

Table 4   Training hyper-parameter for the TD3 algorithm

Learning rate ( �) 1e − 3 Gradient steps 100
Target network update

rate ( �)
5e − 3 Batch size (N) 128

Discount factor ( �) 0.99 Policy delay (d) 2
Replay buffer size 1e6 Action noise ( �) N(0, 0.2)

Learning starts 1e4 Target noise clip (c) 0.5
Training freq 100 Target policy noise ( �′) N(0, 0.2)

3013International Journal of Machine Learning and Cybernetics (2023) 14:3003–3023	

1 3

the base controller. We train each algorithm with both the
baseline setup and the one proposed in this paper in the real-
istic simulation detailed in Sect. 3.1.1. In this way, 6 training
runs are carried out in total, one per DRL algorithm/setup
combination, and as a result 6 trained agents are obtained.

During the benchmark, the performance and reliability of
the agents are quantitatively measured using standard met-
rics. On the one hand, the comparison during training gives
us an idea of the convergence of each algorithm with each
setup, as well as the reliability shown during learning. On
the other hand, the comparison during the evaluation (using
trained agents) shows the real performance and reliability of
the agents. The idea is, based on the latter, to select the best
algorithm/setup combination and then deploy and validate
it on the real robot.

The state/action spaces, reward function, and neural
architectures used to train the TD3-based agent are reported
in Sect. 3.2.1. In addition the hyperparameters used to tune
TD3 are detailed in Sect. 3.3. The baseline setup and the
hyperparameters used both for DDPG and PPO2 are those
reported in [6].

The algorithm used to evaluate the agents during both
training and evaluation can be found in Algorithm 2 of the
Appendix A.

4.1 � Training runs

While the agents are training, a 5-episode evaluation period
is performed at all 1e4 training steps to assess the quality of
the agent learnt at that time. The training procedure followed
is detailed in Sect. 3.3. In each evaluation episode, first both
the initial poses of the robot and the target are randomly
assigned, and then the agent is executed to carry out a pick-
ing trial. Taking into account these evaluation periods, the
performance and reliability of each algorithm/setup combi-
nation is analysed. On the one hand, performance is used to
see how fast each algorithm converges based on the chosen
setup. On the other hand, the reliability of the model shows
how stable the learning process is and what risk there is in
the short and long term of a large drop in performance. The
metrics used for this are defined in Sect. 4.1.1.

4.1.1 � Metrics

To measure the performance of the algorithm/setup combi-
nations while training the following metrics are used:

•	 Average accumulated rewards: In each evaluation episode
the accumulated reward (i.e. the sum of the rewards dur-
ing the T time-steps of the episode) is computed. Finally,
the average accumulated reward is calculated among the
5 evaluation episodes of each evaluation period.

•	 Success rates: Per each evaluation period of 5 episodes,
a success rate is computed which tells us how many
times the learnt base controller has been able to drive
the mobile manipulator’s base to areas where the target
is in the scope of the arm. For illustration purposes we
show the average success rates considering 5 evaluation
periods.

To quantitatively measure and compare the reliability of the
algorithms during training, we use the metrics proposed in
[52], that focus on measuring the risk and the dispersion of
DRL algorithms:

•	 Dispersion across Time (DT): Measures the dispersion
of the average accumulated rewards during training. The
dispersion is measured using the inter-quartile range
(IQR) [53], in this case the distance between the 75th
and 25th percentiles. This metric measures the short-term
variability that corresponds to a noisy training.

•	 Short-term Risk across Time (SRT): The goal of this
metric is to measure the most extreme reward drop from
one evaluation step to the next. To that end, the con-
ditional value at risk (CVaR) or the expected shortfall
[54] of the differences in the rewards between successive
evaluations is measured. CVaR measures the expected
value below the �-quantile in the distribution formed by
the reward differences. In our experiments we used the
default value of � = 0.05.

•	 Long-term Risk across Time (LRT): This metric meas-
ures long-term risk during each training run by measur-
ing the most extreme drop in reward with respect to the
peak, also called drawdown [55]. In this case, CVaR is
applied to drawdown.

Because each setup has a different reward range, to compute
the reliability metrics across the setups, those are converted
into rankings as proposed in [52]. In fact, the rankings are
first calculated per setup, and finally, the across-setup mean
rankings are obtained.

4.1.2 � Results

The average accumulated rewards and the success rates
obtained during training are depicted in Fig. 5, both for the
baseline and the proposed setups.

As can be observed in Fig. 5a and b, in both the base-
line and the proposed setups, TD3 outperforms DDPG and
PPO2 algorithms by far. The average accumulated rewards
obtained by TD3 are much higher than the rest, indicat-
ing that from the beginning of learning, it has been able
to learn a considerably more robust behaviour. Although
looking at the rewards we can see the superior behaviour
of TD3, it is not easy to know at which points the robot

3014	 International Journal of Machine Learning and Cybernetics (2023) 14:3003–3023

1 3

has been able to successfully complete the task. This is
due to reward shaping, as in addition to rewarding the
robot for completing the task, it also rewards for a correct
approach. Thus, Fig. 5c and d show the average success
rates obtained during the training process. The success
rates confirm the clearly superior performance of TD3
during training.

Looking at the rewards it is difficult to assess in which
setup TD3 achieves better behaviour, as the reward scales
are different. However, in Fig. 5c and d it can be clearly seen
that with the proposed setup the success rates are higher
and more stable during the learning process. Additionally,
the combination of TD3 and the proposed setup leads to a
faster convergence. While the baseline setup achieves a suc-
cess rate higher than 80% around the 75th evaluation period,
the proposed setup achieves it around the 40th evaluation
period.

The dispersion and risk metrics rankings are shown in
Fig. 6. The DT metric indicates that the algorithm with the
highest dispersion across time is TD3, which can be clearly
seen in the average accumulated rewards of Figs. 5a and 5b.
Nonetheless, the SRT and LRT metrics indicate that it is the
algorithm with the lowest short-term and long-term risk.
Despite the less noisy average reward curves for DDPG and
PPO2 shown in Fig. 5a and b, success rates in Fig. 5c and d
indicate failure in solving the task. In contrast, the success
rates for TD3 in the proposed setup suggest a more stable
learning curve, with an average success rate above 80% for
almost all of the training process.

4.2 � Evaluation runs

Although the training performance and reliability metrics
give us an intuition of how good each algorithm/setup pair

(a) Average accumulated rewards per
each evaluation period, using the base-
line setup.

(b) Average accumulated rewards per
each evaluation period, using the pro-
posed setup.

(c) Average success rates per 5 evalua-
tion periods, using the baseline setup.

(d) Average success rates per 5 eval-
uation periods, using the proposed
setup.

Fig. 5   Training average rewards and success rates with PPO2, DDPG and TD3 algorithms with the baseline and the proposed setups

3015International Journal of Machine Learning and Cybernetics (2023) 14:3003–3023	

1 3

work while the policy is being trained, the final evaluation
must be done with fixed policies. Evaluation with fully
trained models will give a clear view of the real performance
and reliability of each agent. Therefore, once the training
runs are completed, for each algorithm/setup pair, we select
the model with the highest average accumulated reward for
the evaluation. To evaluate them, we run 100 episodes of T
time-steps with each fixed model. In each evaluation epi-
sode the initial pose of both the robot and the target box
are randomly selected before executing the picking trial.
Note that the randomly selected poses are common in all
the tests, the results to be comparable. This random selection
is done using the limits of the observation space (detailed
in Table 2).

4.2.1 � Metrics

During the evaluation of the trained models, the metrics used
to measure the performance were slightly different compar-
ing to those used during the training runs:

•	 Accumulated median rewards: Since a single evaluation
period of 100 episodes is carried out, we just measure the
median of accumulated rewards across all the runs.

•	 Success rate: This metric tells us how many times the
learnt base controller has been able to position the
mobile manipulator’s base in areas where the target is in
the scope of the arm. A single success rate is calculated
considering the 100 trials.

Similarly as in the training runs, we measure the reliability
of the algorithms during the evaluation using the following
metrics, also proposed in [52]:

•	 Dispersion across Fixed-Policy Rollouts (DF): This
metric measures the variability in performance when
the same policy is run multiple times. This variability

is measured using the IQR on the performance of the
evaluation runs.

•	 Risk across Fixed-Policy Rollouts (RF): This metric
measures the worst-case scenarios across the evaluation
runs under a fixed policy. To that end, CVaR is applied
to the performances in the evaluation runs.

4.2.2 � Results

As expected, the TD3 algorithm outperforms DDPG and
PPO2 and obtains a higher accumulated median reward in
both the baseline and the proposed setups (see Fig. 7). Simi-
lar to training, due to the reward shaping, only by looking at
the accumulated rewards we cannot know with which of the
two setups the TD3 algorithm performs better. Therefore,
considering the 100 evaluation runs, we also measure the
task success rates shown in Table 5. In contrast to training,
where success rates are calculated throughout the learning
process, in this case, the evaluation is performed on fixed
models that have already been trained, so we obtain a single
success rate per training.

The highest success rate is achieved by the combination
of TD3 and the proposed setup, and surprisingly, DDPG fails
to succeed in both cases. These results show how sensitive
DRL-based agents are both to the setup and to the environ-
ment in which the agents have been trained.

The reliability metric rankings obtained from the eval-
uation are shown in Fig. 8. The DF metric indicates that
the algorithm with the lowest variability in performance is
DDPG. However, its median performance leaves much to be
desired in both setups, and the success rates indicate failure
in solving the task. Furthermore, according to the RF met-
ric, the algorithm with the lowest risk is TD3, similar to the
training runs.

On the one hand, considering the performance and reli-
ability metrics it can be said that TD3 is the best algorithm
out of the 3 candidates to learn a positioning policy for the

Fig. 6   Mean across-setup reliability rankings of TD3, DDPG and PPO2 algorithms considering the average reward training curves. Rank 1
always means the best reliability

3016	 International Journal of Machine Learning and Cybernetics (2023) 14:3003–3023

1 3

mobile manipulator’s base that drives it to successful pick-
ing areas. On the other hand, the success rates show that
the proposed setup enables TD3 to better learn the mobile
manipulation task.

As the success rate indicates how many times the mobile
manipulator has positioned itself in zones that enable a suc-
cessful path planning for the arm up to the target, we also
assess the quality of the trajectories generated by each con-
troller. To that end, only focusing on the TD3-based agents,
we measure the average distance travelled, considering the

100 evaluation runs. The travelled distance is measured tak-
ing into account the 3-DoF of the omnidirectional base dur-
ing the positioning operation. Considering that both the set
of initial and target poses are common across tests, a shorter
average travelled distance indicates higher quality naviga-
tion. Since there are no obstacles between the initial pose
and the table on which the target is located, the shortest path
is always the best. As can be seen in Table 6, the combina-
tion of TD3 with the proposed setup leads to 8.3% shorter
trajectories on average.

5 � Validation in the real system

Details about the deployment and validation of the learnt
controller in the real robotic environment are explained in
this section.

(a) Accumulated median rewards dur-
ing the 100 evaluation periods with
the baseline setup.

(b) Accumulated median rewards dur-
ing the 100 evaluation periods with
the proposed setup.

Fig. 7   Accumulated median rewards during the 100 evaluation periods with TD3, DDPG and PPO2

Table 5   Success rates for each algorithm/setup combination during
the 100 evaluation periods

Success rates (%) TD3 DDPG PPO2

Baseline 86 0 0
Proposed 97 0 50

Fig. 8   Mean across-setup reli-
ability rankings of TD3, DDPG
and PPO2 algorithms consider-
ing the accumulated rewards
during the 100 evaluation runs.
Rank 1 always means the best
reliability

3017International Journal of Machine Learning and Cybernetics (2023) 14:3003–3023	

1 3

5.1 � Considerations before the deployment

5.1.1 � Localisation of the base

One of the most important issues is related to the localisation
of the robot. In the real robotic system, the pose of the robot
is provided by the odometry, which is known to contain a
cumulative error. Thus, we use a 2D localisation system with
the aim of correcting the robot’s pose given by the odometry
using a map of the environment.

To that end, the Adaptive Monte Carlo localisation
(AMCL) algorithm is used as the 2D localisation algorithm
for the robot [56]. This probabilistic algorithm represents
the localisation of the robot on a map as a particle filter. In
fact, it fuses multiple data sources such as the odometry or
laser scans to estimate the position of the robot in the map.
We created the map of the real workshop using the Gmap-
ping [57] algorithm (Fig. 9). Nevertheless, one of the main
limitations of AMCL is that the corrected odometry pose
is estimated at a very low frequency ( 3 − 7Hz ) due to the
computational load of the sensor fusion process.

5.1.2 � Arm’s path planning to the target

As in the simulation, the path planning for the real mobile
manipulator’s arm is performed using MoveIt!. The drift
between the real and the estimated robot’s pose provided by
AMCL, however, causes the estimation of the relative pose
between the base of the arm and the target not to be accurate
enough, and consequently, the planned path can be invalid
for manipulating the item. Indeed, an on-board vision system

would be needed to correct the localisation error and suc-
cessfully pick the part.

The main objective of this work is to demonstrate that the
DRL-based agent is able to position the mobile manipulator
in areas where the target object is within the range of the
arm. Therefore, in addition to using the base location given
by AMCL to perform the arm planning, we also use the real
location calculated manually for verification purposes. The
aim of doing this is to remove the localisation error from the
system to see if the object is really within range.

5.2 � Validation procedure

We select the TD3-based agent which has been trained with
the proposed setup to carry out the evaluation in the real
robotic system (see Fig. 10). The evaluation consists of 20
trials where the robot’s initial pose is randomly selected
in each trial, and the position of the target, instead, is ran-
domly selected once per 5 trials. The tests are carried out
as follows:

1.	 The robot is set in a randomly selected initial pose and
the DRL-based base controller is executed for T time-
steps.

2.	 After T time-steps of navigation, once the robot has been
positioned, at time-step t = T − 1 the arm tries to plan

Table 6   Median, mean and standard deviation of the distances trav-
elled by the base of the mobile manipulator during the 100 evaluation
periods with the TD3 algorithm

Travelled distance (m) d̃ d �

Baseline 5.787 6.084 1.543
Proposed 4.753 5.573 2.655

Fig. 9   Map of the real scenario

Fig. 10   Real scenario

3018	 International Journal of Machine Learning and Cybernetics (2023) 14:3003–3023

1 3

a trajectory up to the target. A successful plan indicates
that the target object is within the reach of the robot.
This first planning is done using the AMCL localisa-
tion. Finally, a success rate is computed considering the
results of the plans.

3.	 The localisation uncertainty makes it impossible to use
the robot’s pose to deduce whether the target is reachable
by the robot arm. Therefore, with the aim of removing
the localisation error, the real localisation of the robot
is manually measured. This lets us check whether the
target is really reachable by the arm according to the
arm’s planner, and to use it as ground truth.

During each test, we take the following measurements:

•	 Difference between the observed and the measured real
distance between the base of the arm and the target ( Δd
).

•	 Difference between the observed and real rotation on the
z axis of the base of the arm with respect to the target ( Δ�
).

•	 Whether the base of the robot collides with the table
when approaching the target (coll.).

•	 The attempt is considered successful if (1) there have
been no collisions during the positioning and (2), the
robot has been able to position itself in such a way that
the arm is able to plan a trajectory to the object. The
planning is done using both the localisation given by
AMCL ( amcl_success ) and the real measured localisa-
tion ( real_success).

5.3 � Results

The measurements taken in the real validation environment
are shown in Table 7. According to amcl_success , it can be
seen that in 75% of the trials the robot is able to position
itself in such a way that enables a successful planning of
the arm up to the target, considering the localisation given
by AMCL.

However, if we focus on the mean error between the esti-
mated and manually measured robot-target distances and
rotations at time-step t = T − 1 ( Δd and Δ� ), it can be seen
that in average there is an error of 0.055m and 0.084rad
respectively. At a glance, the average error magnitude seems
important enough to cause unsuccessful manipulations. Note
that the real execution of the manipulation plan is out of the
scope at this phase because we want to see the performance
of the base moving strategy itself. In fact, the main goal is
to see if the DRL controller guarantees the reachability of
the arm to the object.

Therefore, to eliminate the localisation error, in each test,
a new plan is performed with the arm, considering the manu-
ally measured real localisation of the robot ( real_success ). In

that case, the success rate is also 75% , which indicates that
whenever the robot succeeds the planning using the AMCL
localisation, it also succeeds with the real localisation. This
indicates that in all cases the object is really within arm’s
reach. Consequently, we can conclude that although there is
indeed an error in localisation, it is not large enough to cause
the object to move out of the arm’s reach.

The main decrease in performance is caused by small
brushes with the table. The main causes for those brushes
are the following:

Noisy localisation estimation: The localisation of the
robot has a huge importance in the state representation of the
base controller. Indeed, the reactive base controller makes
its decision at each time-step based on the observation of the
state. Although AMCL uses multiple data sources to correct
the odometry, it still introduces an error in the localisation.
This has a big effect, particularly when the robot navigates
near the table. In addition, the low refresh rate of AMCL
causes the localisation not to be updated in some iterations
of the control loop and, thus, the consequence of each action
of the robot is reflected with delay in the updated localisa-
tion. This delay in the localisation could cause the agent to
make sub-optimal decisions at some critical time-steps of
the positioning.

Learning to stop: Although the learnt controller success-
fully stops the robot when it is already positioned close to
the target in simulation, this is not the case in reality. Indeed,

Table 7   Measurements taken in the real environment

Trial Δd (m) Δ� (rad) coll. amcl_success real_success

1 0.051 0.088 False True True
2 0.092 0.060 True False False
3 0.021 0.091 False True True
4 0.048 0.072 True False False
5 0.187 0.178 True False False
6 0.018 0.082 False True True
7 0.047 0.065 False True True
8 0.003 0.125 False True True
9 0.032 0.260 False True True
10 0.083 0.059 False True True
11 0.034 0.061 False True True
12 0.056 0.057 False True True
13 0.037 0.047 False True True
14 0.019 0.040 False True True
15 0.050 0.066 True False False
16 0.040 0.081 False True True
17 0.088 0.062 False True True
18 0.052 0.090 False True True
19 0.087 0.097 True False False
20 0.053 0.078 False True True
Avg. 0.055 ± 0.039 0.084 ± 0.05 25% 75% 75%

3019International Journal of Machine Learning and Cybernetics (2023) 14:3003–3023	

1 3

the controller learns to send near-0 velocity commands to
stop the robot in simulation, but the real robot struggles to
stop and oscillates. This happens due to the noisy localisa-
tion estimates, which make the controller believe that the
robot is slightly moving when it is actually still. Therefore,
the controller tries to correct this error sending opposite
velocity commands and causes the robot to oscillate. This
effect is aggravated by the sim-to-real gap. Although we add
noise to the localisation to simulate this effect while training
the agent, the robot fails to properly stop, and this oscillation
near the goal sometimes causes the robot to brush the table.

6 � Discussion and future work

In this work we propose an improved method to learn a
mobile manipulation skill in simulation and show its fea-
sibility in a real robotic system. Specifically, we learn a
DRL-based reactive controller for the base which by sending
velocity commands is able to position the mobile manipu-
lator’s base in zones that enable a successful picking. The
rationale behind our approach is to encourage the base con-
troller to position the robot’s in zones where the arm’s plan-
ner will likely succeed planning a trajectory up to the target
object.

First, we develop a realistic simulation of the real envi-
ronment in Unity, which also requires the development of
simulated low-level drivers both for the mobile base and the
robotic arm. Then, the agent that is in charge of controlling
the robot’s base is modelled based on the TD3 state-of-the-
art DRL algorithm. We train it in simulation through the
interaction with the environment and by introducing basic
randomisation to make the learnt agent robust to uncertain-
ties. The successful training of the controller requires a care-
ful design of the reward function, as well as a correct defini-
tion of state/action spaces and neural architectures.

During the training process in simulation, we benchmark
our method with the baseline approach. First we compare the
training curves of TD3 with DDPG and PPO2 proposed in
the baseline work, with both the proposed and the baseline
setup, from the perspective of performance and reliability.
Then, the same comparison is done at evaluation, running
the trained models for 100 episodes. In both cases, TD3
showed to be the algorithm with the highest performance,
and also the most reliable. The success rates indicate that
the best performance is obtained by the combination of TD3
and the setup proposed in this work, with a success rate of
97% . Also the average travelled distances indicate that this
combination leads to shorter trajectories in average.

Finally, the learnt base controller is deployed and vali-
dated in the real system as well. Even though the per-
formance of the controller is remarkable in simulation, it
worsens in the real system. In fact, the most problematic
step of the execution of the task is when the robot’s base
needs to stop while positioning near the target. On the
one hand, the simulation-to-reality gap and the error intro-
duced by the AMCL cause an oscillation that prevents the
robot’s base from successfully stopping in the grasping
zone. This oscillation is the main source of the brushes
with the table and prevents the robot from staying still
until the grasping trial is performed. On the other hand,
although the manipulation itself is out of the scope of this
work, the drift introduced by AMCL in the localisation is
big enough to cause unsuccessful manipulations.

Therefore, to assess the real performance of the pro-
posed system, we measure the real position of the robot
and we use it as ground truth. By doing so, we intend
to effectively measure whether the target object is really
reachable for the robotic arm in spite of the localisation
error. The performed experiments show that the proposed
system successfully learns to position the robot’s base in
suitable picking areas with a success rate of 75% . Despite
the localisation error, the results show that in all cases the
object is really within arm’s reach. This means that the
use of a more accurate localisation system would allow
the object to be successfully grasped.

In summary, we show that the proposed system success-
fully positions the mobile manipulator in zones that ensure
the reachability of the arm to the target object. However,
due to the error introduced by current localisation systems,
the manipulator must have an on-board vision system to
be able to accurately estimate the relative pose between
the arm’s end effector and the target before executing
the grasp. In addition, the main future work lines will be
focused on adding more sensing capabilities to the agent
to increase the safety of the navigation, and on reducing
the simulation-to-reality gap. On the one hand, the use
of sensors such as lasers, cameras, etc. will let the agent
sense the dynamic elements in the environment to safely
navigate to the target. On the other hand, more advanced
domain randomisation techniques will let us reduce the
simulation-to-reality gap. Due to the difficulty in properly
simulating the physical properties of both the robot and the
environment, domain randomisation techniques suggest to
randomise these physical properties in simulation, assum-
ing that the real world properties are a particular case of
the randomised variables.

3020	 International Journal of Machine Learning and Cybernetics (2023) 14:3003–3023

1 3

Appendix A Agent training and evaluation algorithms

Algorithm 1 Training of TD3-based agent

1: Initialise critic networks Qw1 and Qw2 , and actor network πθ with random
parameters w1, w2, θ.

2: Initialise target networks w′
1 ← w1,w′

2 ← w2, θ′ ← θ
3: Initialise replay buffer B
4: env ← gym.environment()
5: i ← 0
6: while i < train steps do
7: randomiseScene()
8: st ← env.reset()
9: for t = 0 .. T − 1 do

10: Select action with exploration noise at ≈ πθ(st) + ε, ε ≈ N (0, σ)
11: st+1, rt, done ← env.step(at)
12: if t = T − 1 then
13: plan? ← doP ickingTrial()
14: if plan? then
15: rt ← rt +G
16: end if
17: end if
18: Store transition tuple (st, at, rt, st+1) in B
19: if done then
20: break
21: end if
22: end for
23: if i mod train freq then
24: Sample minibatch of N transitions (st, at, rt, st+1) from B
25: ã ← πθ′(s) + ε′, ε′ ≈ clip(N (0, σ̃),−c, c)
26: y ← r + γmini=1,2Q

′
w′

i
(st+1, ã)

27: Update the critics wi ← argminwi

1
N

∑
(y −Qwi(s, a))

2

28: if i mod d then
29: Update θ by the deterministic policy gradient
30: ∇θJ(θ) = 1

N

∑
∇aQw1(s, a)|a=πθ(s)∇θπθ(s)

31: Update the target networks:
32: w′

i ← τwi + (1 + τ)w′
i

33: θ′i ← τθi + (1 + τ)θ′i
34: end if
35: end if
36: i ← i+ t
37: st ← st+1

38: end while

3021International Journal of Machine Learning and Cybernetics (2023) 14:3003–3023	

1 3

Algorithm 2 Evaluation of TD3-based agent

1: Initialise actor network πθ with trained parameters θ.
2: accumulated rewards ← []
3: successes ← 0
4: env ← gym.environment()
5: for i = 0 .. eval episodes do
6: accumulated reward ← 0
7: randomiseScene()
8: st ← env.reset()
9: for t = 0 .. T − 1 do

10: Select optimal action at = πθ(st)
11: st+1, rt, done ← env.step(at)
12: if t = T − 1 then
13: plan? ← doP ickingTrial()
14: if plan? then
15: rt ← rt +G
16: successes ← successes+ 1
17: end if
18: end if
19: accumulated reward ← accumulated reward+ rt
20: if done then
21: break
22: end if
23: end for
24: accumulated rewards.append(accumulated reward)
25: end for
26: success rate ← successes

eval episodes

27: average accumulated reward ← average(accumulated rewards)

Acknowledgements  This publication has been funded by the Basque
Government - Department of Economic Development, Sustainability
and Environment - Aid program for collaborative research in strategic
areas - ELKARTEK 2021 Program (File KK-2021/00033 TREBEZIA),
and the project “5R- Red Cervera de Tecnologías robóticas en fabri-
cación inteligente”, contract number CER-20211007, under “Centros
Tecnológicos de Excelencia Cervera” programme funded by “The Cen-
tre for the Development of Industrial Technology (CDTI)”.

Data Availability  Data sharing not applicable to this article as no data-
sets were generated or analysed during the current study.

Declarations 

Conflict of interest  The authors have no competing interests to declare
that are relevant to the content of this article.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will

need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Sandakalum T, Ang MH Jr (2022) Motion planning for mobile
manipulators-a systematic review. Machines 10(2):97. https://​doi.​
org/​10.​3390/​machi​nes10​020097

	 2.	 Stulp F, Fedrizzi A, Mösenlechner L et al (2012) Learning and
reasoning with action-related places for robust mobile manipula-
tion. J Artif Intell Res 43:1–42. https://​doi.​org/​10.​1613/​jair.​3451

	 3.	 Kappler D, Pastor P, Kalakrishnan M, et al (2015) Data-driven
online decision making for autonomous manipulation. In:
Robotics: science and systems, https://​doi.​org/​10.​15607/​RSS.​
2015.​XI.​044

	 4.	 Arulkumaran K, Deisenroth MP, Brundage M et al (2017) Deep
reinforcement learning: a brief survey. IEEE Signal Process
Mag 34(6):26–38. https://​doi.​org/​10.​1109/​MSP.​2017.​27432​40

	 5.	 Yang X, Xu Y, Kuang L et al (2021) An information fusion
approach to intelligent traffic signal control using the joint
methods of multiagent reinforcement learning and artificial
intelligence of things. IEEE Trans Intell Transp Syst. https://​
doi.​org/​10.​1109/​TITS.​2021.​31054​26

	 6.	 Iriondo A, Lazkano E, Susperregi L et al (2019) Pick and place
operations in logistics using a mobile manipulator controlled

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/machines10020097
https://doi.org/10.3390/machines10020097
https://doi.org/10.1613/jair.3451
https://doi.org/10.15607/RSS.2015.XI.044
https://doi.org/10.15607/RSS.2015.XI.044
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1109/TITS.2021.3105426
https://doi.org/10.1109/TITS.2021.3105426

3022	 International Journal of Machine Learning and Cybernetics (2023) 14:3003–3023

1 3

with deep reinforcement learning. Appl Sci 9(2):348. https://​
doi.​org/​10.​3390/​app90​20348

	 7.	 Fujimoto S, Hoof H, Meger D (2018) Addressing function
approximation error in actor-critic methods. In: International
Conference on Machine Learning, PMLR, p 1587–1596, https://​
proce​edings.​mlr.​press/​v80/​fujim​oto18a.​html

	 8.	 Juliani A, Berges VP, Teng E, et al (2018) Unity: a general
platform for intelligent agents. arXiv preprint arXiv:​1809.​02627

	 9.	 Quigley M, Conley K, Gerkey B, et al (2009) Ros: an open-
source robot operating system. In: ICRA workshop on open
source software, Kobe, Japan, p 5, http://​robot​ics.​stanf​ord.​edu/​
~ang/​papers/​icrao​ss09-​ROS.​pdf

	10.	 Brockman G, Cheung V, Pettersson L, et al (2016) Openai gym.
arXiv preprint arXiv:​1606.​01540

	11.	 Siciliano B, Khatib O (2016) Springer handbook of robot-
ics. Springer, https://​link.​sprin​ger.​com/​conte​nt/​pdf/​10.​1007%​
2F978-3-​319-​32552-1.​pdf

	12.	 Marder-Eppstein E, Berger E, Foote T, et al (2010) The office
marathon: robust navigation in an indoor office environment.
In: IEEE international conference on robotics and automation,
IEEE, p 300–307, https://​doi.​org/​10.​1109/​ROBOT.​2010.​55097​
25

	13.	 Coleman D, Sucan I, Chitta S, et al (2014) Reducing the barrier
to entry of complex robotic software: a moveit! case study. arXiv
preprint arXiv:​1404.​3785https://​doi.​org/​10.​6092/​JOSER_​2014_​
05_​01_​p3

	14.	 Dömel A, Kriegel S, Kaßecker M et al (2017) Toward fully auton-
omous mobile manipulation for industrial environments. Int J Adv
Robot Syst 14(4):1729881417718588. https://​doi.​org/​10.​1177/​
17298​81417​718588

	15.	 Xu J, Harada K, Wan W, et al (2020) Planning an efficient and
robust base sequence for a mobile manipulator performing mul-
tiple pick-and-place tasks. In: IEEE International Conference on
Robotics and Automation (ICRA), IEEE, p. 11018–11024, https://​
doi.​org/​10.​1109/​ICRA4​0945.​2020.​91969​99

	16.	 Padois V, Fourquet JY, Chiron P (2006) From robotic arms to
mobile manipulation: On coordinated motion schemes. In: Intel-
ligent Production Machines and Systems. Elsevier, p 572–577,
https://​hal.​archi​ves-​ouver​tes.​fr/​hal-​00624​374/​file/​2006A​CTI14​
75.​pdf

	17.	 Tan J, Xi N, Wang Y (2003) Integrated task planning and control
for mobile manipulators. Int J Robot Res 22(5):337–354. https://​
doi.​org/​10.​1177/​02783​64903​02200​5004

	18.	 Berntorp K, Arzén KE, Robertsson A (2012) Mobile manipulation
with a kinematically redundant manipulator for a pick-and-place
scenario. In: Control Applications (CCA), 2012 IEEE Interna-
tional Conference on, IEEE, p 1596–1602, https://​doi.​org/​10.​
1109/​CCA.​2012.​64023​61

	19.	 Meeussen W, Wise M, Glaser S, et al (2010) Autonomous door
opening and plugging in with a personal robot. In: Robotics and
Automation (ICRA), IEEE International Conference on, IEEE, p
729–736, https://​doi.​org/​10.​1109/​ROBOT.​2010.​55095​56

	20.	 Ibarguren A, Daelman P (2021) Path driven dual arm mobile co-
manipulation architecture for large part manipulation in industrial
environments. Sensors 21(19):6620. https://​doi.​org/​10.​3390/​s2119​
6620

	21.	 Lin S, Goldenberg AA (2001) Neural-network control of mobile
manipulators. IEEE Trans Neural Netw 12(5):1121–1133. https://​
doi.​org/​10.​1109/​72.​950141

	22.	 Konidaris G, Kuindersma S, Grupen R, et al (2011) Autonomous
skill acquisition on a mobile manipulator. In: Twenty-Fifth AAAI
Conference on Artificial Intelligence, https://​doi.​org/​10.​1609/​aaai.​
v25i1.​7982

	23.	 Ibarz J, Tan J, Finn C et al (2021) How to train your robot with
deep reinforcement learning: lessons we have learned. Int J Robot

Res 40(4–5):698–721. https://​doi.​org/​10.​1177/​02783​64920​
987859

	24.	 Mohammed MQ, Chung KL, Chyi CS (2020) Review of deep
reinforcement learning-based object grasping: techniques, open
challenges and recommendations. IEEE Access. https://​doi.​org/​
10.​1109/​ACCESS.​2020.​30279​23

	25.	 Hansen J, Hogan F, Rivkin D, et al (2022) Visuotactile-rl: learning
multimodal manipulation policies with deep reinforcement learn-
ing. In: 2022 International Conference on Robotics and Automa-
tion (ICRA), IEEE, p 8298–8304, https://​doi.​org/​10.​1109/​ICRA4​
6639.​2022.​98120​19

	26.	 Zhu K, Zhang T (2021) Deep reinforcement learning based mobile
robot navigation: a review. Tsinghua Sci Technol 26(5):674–691.
https://​doi.​org/​10.​26599/​TST.​2021.​90100​12

	27.	 Haarnoja T, Ha S, Zhou A, et al (2018) Learning to walk via deep
reinforcement learning. arXiv preprint arXiv:​1812.​11103arXiv:​
org/​pdf/​1812.​11103​pdf

	28.	 Peng XB, Berseth G, Yin K et al (2017) Deeploco: dynamic
locomotion skills using hierarchical deep reinforcement learning.
ACM Trans Graphics (TOG) 36(4):1–13. https://​doi.​org/​10.​1145/​
30729​59.​30736​02

	29.	 Kalashnikov D, Irpan A, Pastor P, et al (2018) Scalable deep
reinforcement learning for vision-based robotic manipulation. In:
Conference on Robot Learning, PMLR, p 651–673, https://​proce​
edings.​mlr.​press/​v87/​kalas​hniko​v18a.​html

	30.	 Jangir R, Alenyà G, Torras C (2020) Dynamic cloth manipulation
with deep reinforcement learning. In: IEEE International Confer-
ence on Robotics and Automation (ICRA), IEEE, p 4630–4636,
https://​doi.​org/​10.​1109/​ICRA4​0945.​2020.​91966​59

	31.	 Lillicrap TP, Hunt JJ, Pritzel A, et al (2016) Continuous control
with deep reinforcement learning. arXiv preprint arXiv:​ 1509.​
02971

	32.	 Kim M, Han DK, Park JH et al (2020) Motion planning of robot
manipulators for a smoother path using a twin delayed deep deter-
ministic policy gradient with hindsight experience replay. Appl
Sci 10(2):575. https://​doi.​org/​10.​3390/​app10​020575

	33.	 Hsu D, Latombe JC, Kurniawati H (2006) On the probabilistic
foundations of probabilistic roadmap planning. Int J Robot Res
25(7):627–643. https://​doi.​org/​10.​1177/​02783​64906​067174

	34.	 Tai L, Paolo G, Liu M (2017) Virtual-to-real deep reinforce-
ment learning: Continuous control of mobile robots for mapless
navigation. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE, p 31–36, https://​doi.​org/​10.​
1109/​IROS.​2017.​82021​34

	35.	 Wang C, Wang J, Shen Y et al (2019) Autonomous navigation of
UAVs in large-scale complex environments: a deep reinforcement
learning approach. IEEE Trans Veh Technol 68(3):2124–2136.
https://​doi.​org/​10.​1109/​TVT.​2018.​28907​73

	36.	 Dankwa S, Zheng W (2019) Modeling a continuous locomotion
behavior of an intelligent agent using deep reinforcement tech-
nique. In: IEEE 2nd International Conference on Computer and
Communication Engineering Technology (CCET), p 172–175,
https://​doi.​org/​10.​1109/​CCET4​8361.​2019.​89891​77

	37.	 Khoi P, Giang N, Tan H (2021) Control and simulation of a 6-DOF
biped robot based on twin delayed deep deterministic policy gradi-
ent algorithm. Indian J Sci Technol 14(30):2460–2471. https://​doi.​
org/​10.​17485/​IJST/​v14i30.​1030

	38.	 Kindle J, Furrer F, Novkovic T, et al (2020) Whole-body control
of a mobile manipulator using end-to-end reinforcement learning.
arXiv preprint arXiv:​2003.​02637

	39.	 Wang C, Zhang Q, Tian Q et al (2020) Learning mobile manipu-
lation through deep reinforcement learning. Sensors 20(3):939.
https://​doi.​org/​10.​3390/​s2003​0939

	40.	 Schulman J, Wolski F, Dhariwal P, et al (2017) Proximal policy
optimization algorithms. p 1–12. 06347 arXiv preprint arXiv:​
1707.​06347

https://doi.org/10.3390/app9020348
https://doi.org/10.3390/app9020348
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html
http://arxiv.org/abs/1809.02627
http://robotics.stanford.edu/%7eang/papers/icraoss09-ROS.pdf
http://robotics.stanford.edu/%7eang/papers/icraoss09-ROS.pdf
http://arxiv.org/abs/1606.01540
https://link.springer.com/content/pdf/10.1007%2F978-3-319-32552-1.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-319-32552-1.pdf
https://doi.org/10.1109/ROBOT.2010.5509725
https://doi.org/10.1109/ROBOT.2010.5509725
http://arxiv.org/abs/1404.3785
https://doi.org/10.6092/JOSER_2014_05_01_p3
https://doi.org/10.6092/JOSER_2014_05_01_p3
https://doi.org/10.1177/1729881417718588
https://doi.org/10.1177/1729881417718588
https://doi.org/10.1109/ICRA40945.2020.9196999
https://doi.org/10.1109/ICRA40945.2020.9196999
https://hal.archives-ouvertes.fr/hal-00624374/file/2006ACTI1475.pdf
https://hal.archives-ouvertes.fr/hal-00624374/file/2006ACTI1475.pdf
https://doi.org/10.1177/0278364903022005004
https://doi.org/10.1177/0278364903022005004
https://doi.org/10.1109/CCA.2012.6402361
https://doi.org/10.1109/CCA.2012.6402361
https://doi.org/10.1109/ROBOT.2010.5509556
https://doi.org/10.3390/s21196620
https://doi.org/10.3390/s21196620
https://doi.org/10.1109/72.950141
https://doi.org/10.1109/72.950141
https://doi.org/10.1609/aaai.v25i1.7982
https://doi.org/10.1609/aaai.v25i1.7982
https://doi.org/10.1177/0278364920987859
https://doi.org/10.1177/0278364920987859
https://doi.org/10.1109/ACCESS.2020.3027923
https://doi.org/10.1109/ACCESS.2020.3027923
https://doi.org/10.1109/ICRA46639.2022.9812019
https://doi.org/10.1109/ICRA46639.2022.9812019
https://doi.org/10.26599/TST.2021.9010012
http://arxiv.org/abs/1812.11103
http://arxiv.org/1812.11103pdf
http://arxiv.org/1812.11103pdf
https://doi.org/10.1145/3072959.3073602
https://doi.org/10.1145/3072959.3073602
https://proceedings.mlr.press/v87/kalashnikov18a.html
https://proceedings.mlr.press/v87/kalashnikov18a.html
https://doi.org/10.1109/ICRA40945.2020.9196659
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
https://doi.org/10.3390/app10020575
https://doi.org/10.1177/0278364906067174
https://doi.org/10.1109/IROS.2017.8202134
https://doi.org/10.1109/IROS.2017.8202134
https://doi.org/10.1109/TVT.2018.2890773
https://doi.org/10.1109/CCET48361.2019.8989177
https://doi.org/10.17485/IJST/v14i30.1030
https://doi.org/10.17485/IJST/v14i30.1030
http://arxiv.org/abs/2003.02637
https://doi.org/10.3390/s20030939
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

3023International Journal of Machine Learning and Cybernetics (2023) 14:3003–3023	

1 3

	41.	 Bischof M (2018) ROS-SHARP. https://​github.​com/​sieme​ns/​ros-​
sharp, Accessed 16 Jan 2023

	42.	 Qian W, Xia Z, Xiong J, et al (2014) Manipulation task simula-
tion using ROS and gazebo. In: IEEE International Conference on
Robotics and Biomimetics (ROBIO 2014), IEEE, p 2594–2598,
https://​doi.​org/​10.​1109/​ROBIO.​2014.​70907​32

	43.	 Chitta S, Marder-Eppstein E, Meeussen W, et al. (2017) rocontrol:
a generic and simple control framework for ROS. The Journal
of Open Source Software. DOIurlhttps://​doi.​org/​10.​21105/​joss.​
00456

	44.	 Sutton RS, Barto AG (1998) Reinforcement learning: an introduc-
tion, vol 1. MIT press Cambridge, https://​web.​stanf​ord.​edu/​class/​
psych​209/​Readi​ngs/​Sutto​nBart​oIPRL​Book2​ndEd.​pdf

	45.	 Foote T (2013) tf: The transform library. In: Technologies for
Practical Robot Applications (TePRA), 2013 IEEE International
Conference on, Open-Source Software workshop, p 1–6, https://​
doi.​org/​10.​1109/​TePRA.​2013.​65563​73

	46.	 Silver D, Lever G, Heess N, et al (2014) Deterministic policy
gradient algorithms. In: Proceedings of the 31st International
Conference on International Conference on Machine Learning,
Vol. 32, ICML’14, p I-387-I-395, http://​proce​edings.​mlr.​press/​
v32/​silve​r14.​pdf

	47.	 Mnih V, Kavukcuoglu K, Silver D et al (2015) Human-level con-
trol through deep reinforcement learning. Nature 518(7540):529–
533. https://​doi.​org/​10.​1038/​natur​e14236

	48.	 Sutton RS (1988) Learning to predict by the methods of temporal
differences. Mach Learn 3(1):9–44. https://​doi.​org/​10.​1007/​BF001​
15009

	49.	 Hill A, Raffin A, Ernestus M, et al (2018) Stable baselines. https://​
github.​com/​hill-a/​stable-​basel​ines

	50.	 Murtagh F (1991) Multilayer perceptrons for classification and
regression. Neurocomputing 2(5–6):183–197. https://​doi.​org/​10.​
1016/​0925-​2312(91)​90023-5

	51.	 Ng AY, Harada D, Russell S (1999) Policy invariance under
reward transformations: theory and application to reward shap-
ing. In: ICML, p 278–287

	52.	 Chan SC, Fishman S, Canny J, et al (2020) Measuring the reliabil-
ity of reinforcement learning algorithms. In: International Confer-
ence on Learning Representations, Addis Ababa, Ethiopia, https://​
openr​eview.​net/​pdf?​id=​SJlpY​JBKvH

	53.	 Riaz M (2015) On enhanced interquartile range charting for pro-
cess dispersion. Qual Reliab Eng Int 31(3):389–398. https://​doi.​
org/​10.​1002/​qre.​1598

	54.	 Acerbi C, Tasche D (2002) Expected shortfall: a natural coherent
alternative to value at risk. Econ Notes 31(2):379–388. https://​doi.​
org/​10.​1111/​1468-​0300.​00091

	55.	 Chekhlov A, Uryasev S, Zabarankin M (2005) Drawdown meas-
ure in portfolio optimization. Int J Theor Appl Financ 8(01):13–
58. https://​doi.​org/​10.​1142/​S0219​02490​50027​67

	56.	 Fox D, Burgard W, Dellaert F, et al (1999) Monte carlo localiza-
tion: Efficient position estimation for mobile robots. AAAI/IAAI
(343-349):2–2. http://​robots.​stanf​ord.​edu/​papers/​fox.​aaai99.​pdf

	57.	 Grisetti G, Stachniss C, Burgard W (2007) Improved techniques
for grid mapping with Rao-Blackwellized particle filters. IEEE
Trans Robot 23(1):34–46. https://​doi.​org/​10.​1109/​TRO.​2006.​
889486

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://github.com/siemens/ros-sharp
https://github.com/siemens/ros-sharp
https://doi.org/10.1109/ROBIO.2014.7090732
https://doi.org/10.21105/joss.00456
https://doi.org/10.21105/joss.00456
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://doi.org/10.1109/TePRA.2013.6556373
https://doi.org/10.1109/TePRA.2013.6556373
http://proceedings.mlr.press/v32/silver14.pdf
http://proceedings.mlr.press/v32/silver14.pdf
https://doi.org/10.1038/nature14236
https://doi.org/10.1007/BF00115009
https://doi.org/10.1007/BF00115009
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://doi.org/10.1016/0925-2312(91)90023-5
https://doi.org/10.1016/0925-2312(91)90023-5
https://openreview.net/pdf?id=SJlpYJBKvH
https://openreview.net/pdf?id=SJlpYJBKvH
https://doi.org/10.1002/qre.1598
https://doi.org/10.1002/qre.1598
https://doi.org/10.1111/1468-0300.00091
https://doi.org/10.1111/1468-0300.00091
https://doi.org/10.1142/S0219024905002767
http://robots.stanford.edu/papers/fox.aaai99.pdf
https://doi.org/10.1109/TRO.2006.889486
https://doi.org/10.1109/TRO.2006.889486

	Learning positioning policies for mobile manipulation operations with deep reinforcement learning
	Abstract
	1 Introduction
	2 Literature review
	3 Methodological approach
	3.1 Environment
	3.1.1 Simulated environment in Unity

	3.2 Agent
	3.2.1 TD3 as base controller
	3.2.2 Stateaction spaces and neural architectures
	3.2.3 Reward function

	3.3 Training procedure

	4 Benchmark in simulation
	4.1 Training runs
	4.1.1 Metrics
	4.1.2 Results

	4.2 Evaluation runs
	4.2.1 Metrics
	4.2.2 Results

	5 Validation in the real system
	5.1 Considerations before the deployment
	5.1.1 Localisation of the base
	5.1.2 Arm’s path planning to the target

	5.2 Validation procedure
	5.3 Results

	6 Discussion and future work
	Appendix A Agent training and evaluation algorithms
	Acknowledgements
	References

