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Abstract
This work focuses on the operation of picking an object on a table with a mobile manipulator. We use deep reinforcement 
learning (DRL) to learn a positioning policy for the robot’s base by considering the reachability constraints of the arm. This 
work extends our first proof-of-concept with the ultimate goal of validating the method on a real robot. Twin Delayed Deep 
Deterministic Policy Gradient (TD3) algorithm is used to model the base controller, and is optimised using the feedback from 
the MoveIt! based arm planner. The idea is to encourage the base controller to position itself in areas where the arm reaches 
the object. Following a simulation-to-reality approach, first we create a realistic simulation of the robotic environment in 
Unity, and integrate it in Robot Operating System (ROS). The drivers for both the base and the arm are also implemented. 
The DRL-based agent is trained in simulation and, both the robot and target poses are randomised to make the learnt base 
controller robust to uncertainties. We propose a task-specific setup for TD3, which includes state/action spaces, reward func-
tion and neural architectures. We compare the proposed method with the baseline work and show that the combination of 
TD3 and the proposed setup leads to a 11% higher success rate than with the baseline, with an overall success rate of 97% . 
Finally, the learnt agent is deployed and validated in the real robotic system where we obtain a promising success rate of 75%.

Keywords  Mobile manipulation · Pick and place · Deep reinforcement learning · Sim-to-real transfer

1  Introduction

Pick and place are basic operations in robotics applications, 
whether in industrial setups (e.g., machine tending, assem-
bly, or bin-picking) or in service robotics domain (e.g. agri-
culture or home). Although in some structured scenarios 
pick and place operations have shown a strong performance, 
this is not the case in less structured uncertain environments. 
The efficiency and robustness of the solutions are a bottle-
neck for industrial applications, and those have not reached 
the market yet.

The majority of robotics applications focus either on navi-
gation aspects of mobile platforms (e.g. industrial transpor-
tation systems, guide robots), or the manipulation of goods 
with robotic arms (e.g., bin-picking applications). Nonethe-
less, few applications consider mobile manipulation itself 
combining both robotic tasks. Despite there are several com-
mercial mobile manipulators in the market, there is a lack 
of real applications due to the complexity and uncertainty 
introduced by combining both, manipulation and navigation.

The present work focuses on the picking operation 
of a randomly placed object from a table with a mobile 
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manipulator. Due to the particular morphology of robotic 
arms, their scope is limited, and not all the positions of the 
base near the table enable a successful picking.

Traditionally, such mobile manipulation operations have 
been solved using analytical planning and control methods 
[1]. These methods require explicit programming of the 
skills which can be very costly and error-prone particularly 
in problems where decision making is complex. The per-
formance of these models depends on how well the reality 
fits the assumptions made by the model. Due to the impos-
sibility of predicting all the cases that may occur in dynamic 
and unstructured environments, these methods are generally 
impractical.

In many explicitly programmed mobile manipulation 
applications, the base navigates first to zones where the 
object is within reach (only considering distance), and then 
carry out the picking trial. However, other works such as the 
one proposed by Stulp et al. in [2] challenge this and raise 
the following questions: “Does well-in-reach always imply 
that the target can really be reached, given the hardware 
and control software of the robot?, Can we have a least-
commitment realisation of ’places’ such that the robot can 
refine a ’place’ as it learns more about the context (e.g. 
clutteredness) of the surroundings?, How can such a concept 
of ’place’ take into account uncertainties about the robot’s 
self-localisation and the estimated target position?”. As the 
authors mention, explicit programming to account for these 
factors is tedious and impractical, and more flexible solu-
tions are needed.

Alternatively, data-driven methods allow learning directly 
from real data [3]. Recently, the combination of deep learn-
ing (DL) and reinforcement learning (RL), known as deep 
reinforcement learning (DRL), has allowed to tackle com-
plex decision-making problems that were previously unfea-
sible [4]. In fact, DRL has proven to be the state-of-the-art 
technology for learning complex robotic behaviours through 
the interaction with the environment and solely guided by 
a reward signal.

The proposed method was originally based on the idea 
proposed in [2]. In that work authors propose to learn a data-
driven model of “place” (areas where the base of the mobile 
manipulator has to be placed to guarantee the reach of the 
arm to the object) by interacting with the environment and 
using machine learning (ML). In that way, they take into 
account the limits of the robot hardware as well as the uncer-
tainty in the localisation of both the robot and the target. 
While ML-based methods are generally used for offline fore-
casting, DRL is generally used online in sequential decision-
making problems [5]. In fact, DRL allows to autonomously 
learn complex control policies through trial and error and 
only guided by a reward signal. In the case of robotics, the 
most common use case is to use such algorithms to model 
agents capable of performing continuous control of robots.

In a first proof-of-concept, we extended the idea and 
learnt a positioning policy for the mobile manipulator’s base 
using state-of-the-art DRL algorithms [6]. We proposed a 
novel method which was based on learning a DRL-based 
controller for the base taking into account the reachability 
constraints of the arm. To do so, we proposed to use feed-
back from a traditional arm trajectory planner to optimise 
the base controller. In fact, the learnt base controller was 
able to drive the mobile manipulator to areas with a high 
probability of picking success. Although we showed the 
feasibility of applying DRL to learn such a complex behav-
iour, the experimentation was carried out only in a simplistic 
simulated environment, which was far from reality.

Following the same idea, in this work we go one step 
further and propose a fully improved DRL-based learning 
framework for the mobile manipulation task, with the final 
goal of deploying the learnt model in the real robot. The 
contributions of this article are as follows: 

1.	 Based on our previous work [6], we developed an 
improved control architecture that allows learning the 
task in simulation and an easy deployment in the real 
system. In fact, the proposed approach combines the 
Twin Delayed Deep Deterministic Policy Gradient 
(TD3) [7] DRL algorithm to control the base with tradi-
tional planning and control algorithms for the arm. To 
the best of our knowledge, this is the first time that TD3 
has been applied to learn a mobile manipulation skill.

2.	 We propose a novel reward formulation, task-specific 
state/action space definition, and neural architecture 
selection for TD3 that lead to a robust and stable con-
troller. The reward function carefully combines dynamic 
variables related to distance to target, speed/accelera-
tion, collision checking and feedback from the arm plan-
ner to encourage the robot to navigate towards areas with 
a high probability of pick success.

3.	 We develop a realistic simulation of both the robot and 
the environment in Unity [8] from scratch. The simu-
lation is integrated into the Robot Operating System 
(ROS) [9] following the OpenAI Gym standard [10]. 
The drivers needed to command both the base and the 
arm are also developed. Robot and target position ran-
domisation functionalities are also offered through ROS.

4.	 A thorough evaluation is conducted to assess the pro-
posed method and compare it with the baseline using 
standard metrics. Finally, the learnt agent is deployed 
and validated in the real system. The results obtained 
show the feasibility of the proposed approach.

The mobile manipulator used was previously developed by 
Tekniker and is depicted in Fig. 1.

The rest of the paper is organised as follows. Section 2 
reviews the literature. Section 3 explains the details of the 
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design and implementation of the DRL-based control archi-
tecture for the mobile manipulator. In Sect. 4 we benchmark 
our method with the baseline approach, using multiple DRL 
algorithms. Then, details about the deployment and vali-
dation in the real robotic system are presented in Sect. 5. 
Finally, in Sect. 6 some conclusions are drawn, and the next 
steps are discussed.

2 � Literature review

Traditionally, well known planning and control methods 
have been widely used for scheduling mobile manipulation 
behaviours [11], for example using the ROS navigation stack 
[12] for navigation and MoveIt! [13] for manipulation. For 
instance, Dömel et al. [14] focus on fetch and carry opera-
tions in industrial environments. In that work, both the arm 
and the base are considered as independent systems and, 
although a reachability study is carried out, it is done offline 
and thus ignoring the environment’s dynamics. In addition, 
the reachability study is done for the sole purpose of estab-
lishing the design of the application. Xu et al. [15] propose 
to use an inverse kinematics database to estimate the feasible 
positions of the base to solve a pick-and-place operation with 
objects stored in trays. However, the database of feasible 
locations is composed of discrete poses that are estimated 

offline, and consequently they also ignore the dynamics of 
the environment. In other methods such as [16, 17, 18] both 
the base and the arm are seen as one and also rely on tra-
ditional path planning and control methods to schedule the 
task. Nevertheless, the computational cost of such a high 
dimensional planning is very high and although they attempt 
to model uncertainty in dynamic environments, the system 
is limited to the expected casuistry when programming the 
behaviour. Instead of considering the entire robot as a sin-
gle system, works such as [19, 20] treat the arm and base 
independently, but use the force feedback from the arm to 
generate velocity commands for the base.

Although traditional methods have led to promising 
mobile manipulation skills in some specific tasks, they 
require the explicit programming of hard-to-engineer behav-
iours and often fail in more complex tasks where the deci-
sion-making process is hard. In addition, such solutions are 
generally very inflexible and error-prone due to the impossi-
bility of modelling all the uncertainty of dynamic industrial 
environments when those are programmed.

Alternatively, data-driven approaches address the main 
limitations of traditional methods and propose to learn 
robotic behaviours from real experience [3], thus alleviating 
the cost of modelling complex behaviours. For instance, in 
one of the first approaches Lin and Goldenberg [21] use DL 
to model the motion control of a mobile manipulator using 
real experience. This approach allows them to use deep neu-
ral networks to model the uncertainties of the environment, 
which leads to a more robust controller compared to tradi-
tional ones. Later, Konidaris et al. [22] propose to use RL 
to automatise the skill acquisition on a mobile manipulator. 
Unlike DL, RL allows to automatically obtain the experience 
needed to learn robotic skills through trial-and-error and 
allows to learn complex decision-making policies.

Other works such as [2] use ML to learn the positioning 
of a mobile manipulator. In that work Stulp et al. propose 
to learn a concept of “place” (areas where the base of the 
mobile manipulator has to be placed to guarantee the reach 
of the arm to the object) for mobile manipulation operations 
using ML. Specifically, the authors propose to learn a proba-
bilistic ML model using experience obtained through trial 
and error. The learnt model allows them to predict offline 
poses of the base which allow the arm to reach the object. 
As the authors claim, the explicit modelling of the problem 
is no longer required since the learnt models are grounded 
in real experience.

Recently, the combination of DL and RL, also known as 
DRL, has made it possible to tackle complex decision-mak-
ing problems that were previously unfeasible. It combines 
the ability of DL to model very high dimensional data with 
the ability of RL to model decision-making agents through 
trial and error. In fact, it has become the technology of 
choice for learning complex robotic behaviours using the 

Fig. 1   The robot, developed by Tekniker, combines a commercial 
Segway omnidirectional mobile platform and a KUKA iiwa arm
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experience gained through interaction with the environment 
[23]. DRL has been successfully applied in a wide variety 
of areas such as robotics, computer vision and gaming [4]. 
Taking into account the difficulty of modelling complex 
decision-making robotic skills, DRL offers a promising 
way to take advantage of the experience gathered interact-
ing with the environment to autonomously learn complex 
robotic behaviours.

In particular, the field of DRL applied to robotics has 
recently gained popularity due to the remarkable perfor-
mance obtained in applications with high decision-making 
and control complexity. Applications range from manipula-
tion [24, 25], to autonomous navigation [26] and locomotion 
[27, 28].

An example of the potential of DRL based methods 
applied to robotic manipulation can be seen in [29]. In that 
work Kalashnikov et al. propose a vision-based self-super-
vised DRL framework, called Qt-opt, to learn a hand-eye 
coordinated grasping policy. In fact, they learn a controller 
for a real robotic arm to pick both known and novel items, 
by only using an over-the-shoulder RGB camera. Recently, 
DRL has been applied to learn to manipulate nonrigid 
objects such as cloths. Specifically, the method proposed by 
Jangir et al. [30] is based on the Deep Deterministic Policy 
Gradient (DDPG) [31] DRL algorithm and is only applied 
in simulation. Recently, Kim et al. [32] used the TD3 DRL 
algorithm to solve the path planning problem with 2/3-DoF 
manipulators, and showed that TD3 can be used to plan 
smoother paths compared to traditional algorithms such 
as Probabilistic Roadmap Planning [33]. In that work the 
experimentation is carried out fully in simulation.

DRL has also been successfully applied to learn robot 
navigation policies. For instance the problem of mapless 
navigation is tackled in [34], where a velocity controller for 
the mobile base is learnt making use of an asynchronous 
variant of DDPG. In fact, the controller is trained in simula-
tion using as input 10-dimensional laser sensor readings, 
besides to the relative position of the robot with respect to 
the target, and predicts the target linear and angular veloci-
ties for the mobile base. The method is finally assessed 
in the real robotic system. The problem of large-scale 3D 
navigation of unmanned aerial vehicles is also addressed 
in [35] using a recurrent variant of the DDPG algorithm, 
called RDPG. In that work, authors use RDPG to solve the 
3D large scale navigation as a Partially Observable Markov 
Decision Process (POMDP), with partially observable and 
uncertain states. Their system is only assessed in simulation.

Concerning locomotion applications, TD3 has also 
been successfully used to learn the continuous control of 
biped and quadruped robots in simulation [36, 37]. Unlike 
the general approach of training DRL agents in simula-
tion, Haarnoja et al. [27] showed that its possible to learn 
complex control skills with real-world experience. In fact, 

authors designed the Soft Actor Critic (SAC) sample effi-
cient algorithm and applied it to learn locomotion skills 
in the real world.

Although much work was done in the fields of manipu-
lation, navigation and locomotion, the application of DRL 
in mobile manipulation was a totally unexplored world 
until recently. Seeing the excellent results that DRL has 
given in the previously mentioned fields, in a first proof-
of-concept we demonstrated that it is possible to apply 
DRL to learn mobile manipulation behaviours [6]. Based 
on the idea proposed in [2], we learnt a DRL-based posi-
tioning policy to drive the robot’s base with speed com-
mands to areas that guarantee the reach of the arm to the 
target object. Unlike the original work in which they learn 
a classifier that is used offline to predict target poses from 
the base, our goal was to learn an online control policy 
for the robot. This approach allows the dynamics of the 
environment to be taken into account, as decision-making 
is reactive to the state of the environment. The aim of this 
work was to demonstrate the feasibility of the approach 
in simulation.

Subsequently, works such as [38, 39] tried to learn how 
to jointly control both the base and the arm of a mobile 
manipulator with DRL. On the one hand, Kindle et al. [38] 
use the Proximal Policy Optimisation (PPO2) [40] algorithm 
to perform the whole-body control of a holonomic mobile 
manipulator to solve the task of picking up an object from 
a shelf. On the other hand, the approach proposed by Wang 
et al. [39] was similar to the previous one but applied to 
a non-holonomic robot. In this case, they also use PPO2 
to learn the task of picking up an object on a table. Both 
applications follow the simulation-to-reality approach, so 
they perform the training in simulation and then directly 
transfer the learnt behaviour to reality. Nevertheless, in both 
applications they limit the degrees of freedom of the arm to 
simplify the control problem, which can greatly limit the 
robot’s reach.

In this paper, we extend our first proof-of-concept 
with the aim of improving the method to finally validate 
it in a real environment. Contrary to some state-of-the-art 
approaches that try to learn a whole-body reactive controller, 
we propose to learn a positioning policy for the base taking 
into account arm’s range constraints. To that end, we pro-
pose to combine a traditional path planner for the arm with 
a DRL-based reactive controller for the base. In this way, 
we avoid limiting the degrees of freedom of the robotic arm, 
allowing for maximum flexibility in picking. We build on 
the idea that traditional planning and control methods such 
as the ones offered in MoveIt! provide the precision needed 
to manipulate objects. In addition, using a DRL-based reac-
tive controller for the base allows us to take into account the 
dynamics of the environment during positioning. In fact, 
we believe that the feedback from the arm planner can help 
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optimise the base controller to take into account arm’s range 
constraints.

For the first time we use the state-of-the-art TD3 algo-
rithm to model a mobile manipulation behaviour. Further-
more, we propose an improved setup composed of a reward 
function, a definition of state/action spaces, and a selection 
of neural architectures to learn a robust positioning policy 
for the base. Following a simulation-to-reality approach, 
we first train and validate the method in a realistic simula-
tion of the real workshop. In the benchmark carried out in 
simulation between the baseline and our approach, we show 
both, that TD3 and the proposed setup outperform the algo-
rithms and the setup proposed in the baseline work. Once 
the performance and reliability of the controller is assessed 
in simulation, the controller is deployed and validated in 
the real robot.

3 � Methodological approach

The developed method focuses on the picking operation of 
a randomly placed item on a table, using a mobile manipu-
lator. In particular, we concentrate on learning a reactive 
controller for the base of the mobile manipulator, which by 
sending velocity commands will drive the robot to areas 
where the reachability of the arm to the object is ensured. 
The key novelty of our method is that the velocity control-
ler for the base is optimised considering the feedback of the 

arm’s path planner. The rationale behind our approach is to 
encourage the base controller to position the robot’s base in 
zones where the arm’s planner will likely succeed planning a 
trajectory up to the target object. In fact, we propose to learn 
the base controller with real experience obtained through the 
interaction with the environment. By doing so (1) the robot 
learns its own physical limitations; (2) it takes into account 
the uncertainty in both the robot’s location and the target 
object; and (3) the decision making is learnt automatically, 
thus avoiding the programming of such behaviour.

The developed framework, depicted in Fig. 2, is based 
on ROS [9] and all the modules of the system are imple-
mented as ROS nodes. The control architecture has been 
designed with the possibility of being executed both in the 
simulated and the real environments. On the one hand, we 
call it agent to the set of software modules involved in the 
decision-making of the actions to be executed by the robot. 
On the other hand, we call it environment for all the modules 
that participate in the execution of the predicted actions, 
both in simulation and in reality.

As far as the agent is concerned, its main module is the 
mobile manipulator base controller which is modelled using 
the TD3 DRL algorithm. In our case, the aim is to train 
TD3 to be a reactive controller to drive the robot’s base with 
velocity commands and considering the scope of the arm. 
More details about the agent are given in Sect. 3.2.

To model the environment, we follow the widely used 
OpenAI Gym interface that is used in most state-of-the-art 

ROS

AGENT

RL
 HELPER

ARM
 PATH PLANNER

Arm manager
Plan?

TF BROADCASTER
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Gym 

Simulation
Simulated base driver 

Simulated arm driver

ENVIRONMENT
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Base driver
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Scene randomiser

Frame updater

at

st
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at st
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Fig. 2   Developed control framework. ROS nodes are represented with blue boxes. The main libraries used inside the ROS nodes are shown in 
red. Black arrows indicate ROS service calls
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DRL algorithms [10]. OpenAI Gym is a library designed 
to develop and compare DRL algorithms by providing a 
standard API to communicate between learning algorithms 
and environments. Indeed, this communication interface has 
become a standard to design DRL algorithms and environ-
ments and most of the libraries follow it. The use of this API 
eases the simulation-to-reality transfer of the learnt control-
ler and makes the environment being used transparent to the 
agent. The details of the implementation of the environment 
can be found in Sect. 3.1.

3.1 � Environment

As previously mentioned, the environment has been devel-
oped following the OpenAI Gym interface, which facili-
tates the integration with the agent. Furthermore, it makes 
it transparent to the agent what type of environment the pre-
dicted actions are being executed in (simulated or reality), 
as both the input and output always have the same format.

The main objective of this work is to demonstrate the 
feasibility of the proposed method in a real environment. 
Nonetheless, due to the material and time costs involved in 
training DRL-based agents in a real environment, following 
the general approach, it is proposed to do so in a simulated 
environment. For this purpose, a simulation with a high 
degree of realism has been developed, which is detailed in 
Sect. 3.1.1. In addition to simulating the robot itself, we have 
also implemented the necessary drivers to control both the 
base and the arm of the mobile manipulator in the same way 
than the real ones.

In order to reduce the gap between simulation and reality 
and to learn an uncertainty-robust controller, the simulation 
offers services to randomise both the pose of the robot and 
the target object. The idea is to perform the training in the 
realistic simulation, introducing a certain degree of randomi-
sation, so that the learnt controller can be used directly on 
the real robot.

3.1.1 � Simulated environment in Unity

Unity is a real-time 3D development platform that consists 
of a rendering and physics engine, in addition to a graphical 
user interface [8]. Although this simulator has been used 
extensively for game development, it has also been used in 
many other areas such as the automotive, engineering, and 
film industries. Unity allows the development of environ-
ments rich in visual, physical, and task complexity, which 
is vital for robot-learning applications. It offers an easy inte-
gration and useful toolboxes to work with AI-based models.

The developed simulation has been integrated into 
the ROS environment using the ROS# library for the C# 

programming language [41] and following the OpenAI 
Gym interface. Figure 3 shows the main components of 
the simulated system, i.e. the mobile manipulator and the 
table integrated in a realistic environment. The robot is 
modelled following the URDF format, which is easily 
loaded to the simulated environment using ROS#.

In order to be able to control the mobile base with 
velocity commands, a low-level driver is developed tak-
ing the idea of the gazebo planar move plugin. This plugin 
implements a simple controller that receives as input a 
twist command and moves the simulated robot in the xy 
plane. The idea is to replicate the real driver of the base of 
the robot which allows it to be controlled by speed com-
mands. Additionally, we introduce accelerations to make 
the simulation more realistic. The acceleration coeffi-
cient used has been experimentally measured in the real 
robot. In addition, the simulated base driver is in charge 
of publishing the localisation of the robot in the scene. It 
is widely known that real localisation systems are noisy, 
and therefore, the localisation is not perfect. However, 
the simulation tool used does not introduce localisation 
uncertainty. To somehow overcome this lack and make 
the system robust to imprecise localisation we add Gauss-
ian noise to the robot pose given by the system at each 
time step. The modifications made in the localisation are 
detailed in Eq. 1.

To control the simulated 7-DoF arm, instead, we follow the 
idea of the gazebo ros control [42] to implement a simulated 
driver under the ROS control framework [43]. This driver 
acts as a bridge between Unity and the joint trajectory con-
troller offered in MoveIt! and executes the trajectories given 
by the joint trajectory controller in simulation.

(1)
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)

Fig. 3   Simulated environment in Unity
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3.2 � Agent

According to Sutton and Barto [44], a RL solution to a 
control problem is defined as a finite-horizon Markov Deci-
sion Process (MDP). At each discrete time-step t the agent 
observes the current state of the environment st ∈ S , takes 
an action at ∈ A(st) , receives a reward r ∶ S × A → ℝ and 
observes the new state of the environment st+1 . At each epi-
sode of T time-steps, the environment and the agent are reset 
to their initial poses. The goal of the agent is to find a policy, 
deterministic �

�
(s) or stochastic �

�
(a|s) , parameterised by � 

under which the expected reward is maximised.
In our case, we implement the DRL base control-

ler using the TD3 algorithm. At each time step t ∈ T  the 
algorithm takes as input the state of the environment st and 
predicts the optimal velocity command at that leads to the 
expected maximum reward at the end of the episode. In our 
case, the maximum reward is achieved when the robot posi-
tions itself in a zone where the target is within the reach of 
the arm.

Furthermore, we use two additional nodes that play a key 
role during learning. On the one hand, we have Arm path 
planner, which determines in each case whether the target is 
within the reach of the robot arm. As it is later explained in 
Sect. 3.2.1, the result of the arm planner is used to calculate 
the reward for the base controller. If the base controller has 
been able to drive the robot to an area where the arm is able 
to reach the object, it will receive the maximum possible 
reward. The idea is to encourage the base controller to drive 
the robot to areas with a high probability of grasping suc-
cess. Arm’s path planning is done using the MoveIt! library 
[13] which is, in fact, the default planning and control library 
for manipulation applications in ROS.

On the other hand, the RL helper node is in charge 
of orchestrating both the learning and the execution of 
the agent and acts as a bridge to communicate with the 
environment. The process runs as follows: In an episode 
of T time-steps, at time instant t = 0 , it randomises both 
the pose of the robot and the target using the “scene ran-
domiser” library. The goal is to introduce variability while 
training to make the controller robust to uncertainties. 
During the time instants t = 1 to t = T − 1 , it receives the 
velocity commands at predicted by TD3 and executes them 
in the environment (simulated or real). As a consequence, 
it obtains the new state of the environment st+1 and on that 
basis calculates the reward rt . In addition, using the “frame 
updater” library, it obtains the state of the environment 
and spreads the transformations between coordinate sys-
tems (robot pose, target, etc.) in ROS using the TF broad-
caster. The TF broadcaster node is built on top of the TF 
library of ROS [45], and allows to dynamically modify 
transformations between coordinate frames. Finally, at 
the last instant of time of the episode t = T − 1 the robot 

navigation is stopped. At this instant, the “arm manager” 
library previously developed and with a higher abstraction 
level than MoveIt!, calls the planner to see if the object 
is in the scope of the arm to reward or penalise the base 
controller accordingly.

3.2.1 � TD3 as base controller

To model the base velocity controller, the TD3 algorithm 
has been chosen, which solves some major stability issues 
of its predecessor DDPG. Although DDPG has shown great 
performance learning some robotic skills, it usually tends 
to be brittle with respect to the tuning hyper-parameters. 
TD3 follows the actor-critic architecture and, similarly to 
its predecessor, learns a deterministic policy �

�
 in an off-

policy way, called actor. Both DDPG and TD3 are derived 
from the deterministic policy gradient theorem [46]. Based 
on the idea of a deep Q network (DQN) [47], TD3 also uses 
action-value functions Qw to guide the learning process, also 
dubbed critic. Both the actor and the critic are parameter-
ised functions and usually are implemented as non-linear 
function approximators. Similar to DDPG, TD3 is able to 
learn robust value functions due to two innovations: First, 
the networks are trained off-policy, getting experience sam-
ples from a replay buffer to eliminate temporal correlations. 
In addition, target networks, �′ and Q′ are used for both the 
actor and critic respectively, which are updated slower lead-
ing to consistent targets y during temporal difference (TD) 
learning [48].

Figure 4 depicts the network architecture of TD3. TD3 
introduces three main novelties: First, it uses a second critic 
network to improve the stability of the learning process [7]. 
Thus, the actor is a parameterised policy �

�
(s) = a , and 

critics are action-value functions, Qw1
(s, a) and Qw2

(s, a) , 
which evaluate the quality of the execution of action a in 
state s. Second, the actor is trained slower than the critics. 
These less frequent policy updates result in a lower vari-
ance action-value estimate that leads to a more robust policy. 
And third, it adds noise to the action predicted by the target 
policy, to make it harder to the policy to exploit Q-function 
errors.

In short, TD3 is made up of one actor and two critic net-
works, plus the target network of each of them, resulting in 
6 neural networks.

To train the networks, in each training iteration, a mini-
batch of N transitions (st, at, rt, st+1) is sampled from the 
replay buffer. On the on hand, to update the weights of the 
critics w the TD error is used [48], which can be seen in 
Eq. 2. On the other hand, the actor is updated using the 
deterministic policy gradient (DPG) theorem [46] which is 
shown in Eq. 3. However, as previously mentioned the actor 
is updated slower, usually once per two training steps.
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Concerning the target networks, those are a weighted copy 
of the original networks and are usually updated at the same 
frequency than the policy as shown in Eq. 4.

For this research, the implementation of the stable baselines 
library is used [49], which already uses the OpenAI Gym 
interface.

3.2.2 � State/action spaces and neural architectures

In the proposed setup, we model both the state and action as 
continuous spaces as described in Eqs. 5 and 6 respectively. 
The state observation s ∈ ℝ

13 is composed of the variables 
defined in Table 1. We modify the baseline state space by 
adding the observed robot’s velocity. It must be noted that 

(2)

ã ← 𝜋
𝜃
� (s) + 𝜖, 𝜖 ≈ clip(N(0, 𝜎̃),−c, c)

y ← r + 𝛾mini=1,2Q
�

w�
i

(st+1, ã)

wi ← minwi

1

N

∑

(y − Qwi
(s, a))2

(3)∇
�
J(�) =

1

N

∑

∇aQw1
(s, a)|a=�

�
(s)∇�

�
�
(s)

(4)
w�

i
← �wi + (1 + �)w�

i

�
�

i
← ��i + (1 + �)��

i

in the baseline setup, the predicted action in the previous 
time step at−1 and the observed velocity v′ are the same, 
but this does not happen in our setup as accelerations are 
considered. This modification lets the agent be aware of its 
current velocity in order to decide the velocity command for 
the next time-step.

The action a ∈ ℝ
3 , instead, is composed of the target 

linear and angular velocities to be sent to the base of the 
holonomic robot.

Concerning the implementation of both the actor and the 
critics, both of them have been implemented as Multi Layer 
Perceptron (MLP) feed-forward networks [50].

On the one hand, the MLP of the policy �(s) = a gets as 
input the state observation s ∈ ℝ

13 in the input layer and it 
is followed by two hidden layers, with 400 and 300 neurons 
respectively. Finally, the output layer predicts the action 
a ∈ ℝ

3 . The ReLU activation function is used for the hid-
den layers, and Tanh, instead, for the output layer to bind the 
actions between –1 and 1. The variables that compose the 
state observation s are normalised before feeding the policy 

(5)s =

[

pw
r
, at−1, v

�
, pw

target
, dtarget

r
,
t

T

]

∈ ℝ
13

(6)a = [vx, vy,�z] ∈ ℝ
3

Fig. 4   Network architecture of 
TD3 TD3
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Table 1   Variables that define 
the environment state 1. The pose of the base of the arm with respect to the world that is composed of 

the x and y coordinates and � rotation, where � is the rotation in z axis
pw
r
= [xw

r
, yw

r
, �w

r
]

2. The predicted action in the previous time-step at−1 = [vxt−1, vyt−1,�zt−1]

3. The observed linear and angular velocities v� = [vx�, vy�,�z�]

4. The position of the target with respect to the world pw
target

= [xw
target

, yw
target

]

5. The distance between the base of the arm and the target d
target
r

6. The normalised time-step in the episode t

T
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MLP using the observation space limits shown in Table 2. 
The opposite happens with the predicted action that origi-
nally is in the [–1,1] range and is converted to the action 
space range (also shown in Table 2).

On the other hand, the critics Q(s, a) get the [s, a] ∈ ℝ
16 

feature vector as input. Then, the input layer is also followed 
by two hidden layers with 400 and 300 neurons respectively 
and, finally, the output layer predicts the ℝ1 Q-value for the 
state-action pair. The ReLU activation function is used for 
the hidden layers, and for the output layer, however, no acti-
vation function is used. In this case, the inputs s and a are 
also normalised using their respective limits before feeding 
the critic MLPs.

3.2.3 � Reward function

The design of the reward function is one of the most impor-
tant steps during the modelling of a DRL-based agent, as 
it is the only signal that guides the learning process. As 
explained above in Sect.  3.2.1, the rewards are used to 
optimise the critic networks of TD3, the output of which 
is then used to optimise the actor. The most logical thing 
to do would be to reward the robot only when it achieves 
the goal, i.e. to position itself in such a way that the target 
object is within the arm’s reach. Nevertheless, this usually 
does not work and it is necessary to reward the agent for 
achieving sub-goals in order to guide the learning process 
until an optimal one is achieved. This concept is known as 
reward shaping [51]. In our case, in addition to rewarding 
the agent when the main goal is met, we use other criteria 
such as distance to the goal or speed/acceleration to “shape” 
the reward function.

The designed reward function is detailed in Eq. 7 and its 
main components are the following:

•	 Distance reward, D: The closer the robot is from the 
target, the higher is the distance reward. When it gets 
closer than dthresh , the distance reward becomes con-
stant to avoid crashing with the table. This component is 
described in Eq. 8.

•	 Velocity penalty, V: The agent is penalised with a dis-
count factor for moving with high velocities, particularly 
when the robot is closer than dthresh from the goal (see 
Eq. 9). This discount factor is applied to D.

•	 Collision penalty, C: If there is a collision between the 
robot and any element in the environment, this variable 
takes the value 1. Otherwise, its value is 0.

•	 Acceleration penalty, W: The agent is penalised for 
predicting consecutive actions that would require high 
acceleration (Eq. 10). To this end, the L2 norm of the 
difference between at and at−1 is used.

•	 Grasp reward, G: The robot tries to plan a trajectory up 
to the target in the last time-step of the epoch t = T − 1 . 
If planning succeeds, this variable takes the value 1 and, 
instead, takes the value –1. In the other time-steps of the 
episode its value is 0.

The weights wd,wc,ww,wg are used to determine the impor-
tance of each component of the reward function.

Both the weights of each component and the constant values 
have been obtained experimentally and are shown in Table 3.

The most critical novelties introduced with respect to the 
reward function used in [6] are related with the distance 
reward and the velocity penalty.

On the one hand, in the baseline reward function the robot 
is rewarded for getting as close as possible to the target. 

(7)r =wd ⋅ D ⋅ V ⋅ (1 − C) − wc ⋅ C − ww ⋅W + wg ⋅ G

(8)D =

{

c1, if d
target
r < dthresh

1

d
target
r

, if d
target
r ≥ dthresh

(9)
V =

�

(c2 − min(‖v�‖2, c3))
𝛽 , if d

target
r < dthresh

(c4 − max(‖v�‖2, c5))
𝛽 , if d

target
r ≥ dthresh

where, 𝛽 =
c6

max(d
target
r , c7)

(10)W =‖at − at−1‖2

Table 2   Observation and action space limits

Observation space limits

xw
r

[−2.0, 5.6] m xw
target

[4.1, 4.2] m

yw
r

[−2.8, 2.8] m yw
target

[−0.7, 0.4] m

�
w
r

[−
�

2
,
�

2
] rad d

target
r

[0 − 6.26] m

vx�, vy�, vxt−1, vyt−1 [−0.5, 0.5] m∕s t

T
[0 − 1]

�z�,�zt−1 [−0.5, 0.5] rad∕s

Action space limits
vx, vy [−0.5, 0.5] m∕s �z [−0.5, 0.5] rad∕s

Table 3   Weights and constant 
values used for the reward 
function

Reward function weights and 
constant values

wd 1.0 wc 1000.0
ww 10.0 wg 1000.0
c
1

100.0 c
2

1.0
c
3

1.0 c
4

2.0
c
5

0.5 c
6

2.0
c
7

0.65 dthresh 0.8
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However, this introduces a potential risk of collision with 
the table and, in addition, this could prevent the arm from 
successfully planning a trajectory to the target for being too 
close to it.

On the other hand, the baseline simulated low-level driver 
that is in charge of receiving velocity commands from the 
DRL agent and moving the robot does not consider accelera-
tions. Because of this the robot is able to stop immediately 
from one instant of time to another, regardless of its speed. 
Nonetheless, this makes the baseline simulation to be far 
from reality and the learnt behaviour in simulation is hardly 
applicable in the real system. In fact, in the reward function 
proposed in the baseline setup, the robot is not penalised 
for moving fast near the goal, and this causes the robot to 
aggressively approach the target when accelerations are con-
sidered, which leads to collisions with the table.

The simulation developed in this work it does consider 
base accelerations and, thus, the aforementioned issues need 
to be solved. To that end, on the one hand, we modify the 
distance reward by giving a constant reward to the robot 
when the target is within the robot arm’s reach. This helps to 
reduce the importance of the distance at this point and gives 
more importance the robot to reach to the last the time-step 
of the episode to perform the grasp. On the other hand, we 
introduce a velocity penalty to penalise the robot for moving 
fast near the goal. The absence of the velocity discount fac-
tor produces aggressive approximation to the table at high 
speed and thus, the probability of collision increases. The 
main goal of this discount factor is to give higher rewards 
for moving slowly near the target. Moreover, the smoother 
approximation to the table leads to a better exploration 
behaviour, and the robot becomes able to wait for the last 
time-step of the episode in a correct grasping place.

3.3 � Training procedure

The training of the agent is done following an episodic 
scheme. Each training episode consists of T = 512 discrete 
time-steps, with a time-step duration of Ts = 30ms . The 
duration of each episode is around 15 s. At each discrete 
time-step of the episode t ∈ T  , the agent observes the envi-
ronment state st ∈ S (see Eq. 5), predicts an action at ∈ A(st) 
(see Eq. 6), receives a reward signal rt ∶ S × A → ℝ (see 
Eq. 7) and observes the new state of the environment st+1 . As 
detailed in Sect. 3.2.1, the transition (st, at, rt, st+1) is finally 
stored in the replay buffer. At the beginning of each epi-
sode, both for training and validation, the initial poses of the 
robot and the target are randomly selected. The limits of the 
observation and action spaces used are constant during all 
the training episodes and are shown in Table 2. The detailed 
training algorithm of the agent can be seen in Algorithm 1 
of Appendix A.

In this way, at each episode the robot has T time-steps 
to complete the positioning of the robot’s base in a suitable 
zone for the arm to plan a trajectory up to the target. To 
that end, at each time-step the base controller observes the 
environment state, predicts the optimal velocity command, 
and after executing the action, it receives a reward signal. 
At time-step t = T − 1 the path planning trial is done with 
the arm and the robot is rewarded or penalised depending on 
whether the planning succeeds or not.

The localisation of the robot is published at ≈ 100Hz and 
the robot control is done at ≈ 33Hz . The training is done 
using an Intel Core i7-8700 CPU (@ 3.20 GHz x 12) with 
a Nvidia Geforce GTX 1060 GPU and each training is exe-
cuted during 4 M steps in simulation. Whenever the agent 
reaches a terminal state, the simulation is reset, and a new 
episode starts. Three terminal states are considered: 

1.	 A collision occurs between the robot and any other ele-
ment in the scene.

2.	 The localisation of the robot falls outside the limits 
defined in the observation space.

3.	 The robot reaches the last time-step of the episode 
t = T − 1.

The main hyper-parameters used to train the TD3 agent are 
shown in Table 4.

4 � Benchmark in simulation

The main objective of the experimentation is to evaluate 
the method we propose in comparison with the baseline [6]. 
First, we want to demonstrate that the TD3 algorithm fits 
better to the problem at hand and allows learning a more 
robust behaviour compared to DDPG and PPO2. And sec-
ond, we want to show that the setup (state/action spaces, the 
reward function and neural architectures) we propose in this 
work leads to better performing behaviour, regardless of the 
DRL algorithm used.

To do this, in addition to TD3, we use the DDPG and 
PPO2 algorithms proposed in the baseline work to model 

Table 4   Training hyper-parameter for the TD3 algorithm

Learning rate ( �) 1e − 3 Gradient steps 100
Target network update 

rate ( �)
5e − 3 Batch size (N) 128

Discount factor ( �) 0.99 Policy delay (d) 2
Replay buffer size 1e6 Action noise ( �) N(0, 0.2)

Learning starts 1e4 Target noise clip (c) 0.5
Training freq 100 Target policy noise ( �′) N(0, 0.2)



3013International Journal of Machine Learning and Cybernetics (2023) 14:3003–3023	

1 3

the base controller. We train each algorithm with both the 
baseline setup and the one proposed in this paper in the real-
istic simulation detailed in Sect. 3.1.1. In this way, 6 training 
runs are carried out in total, one per DRL algorithm/setup 
combination, and as a result 6 trained agents are obtained.

During the benchmark, the performance and reliability of 
the agents are quantitatively measured using standard met-
rics. On the one hand, the comparison during training gives 
us an idea of the convergence of each algorithm with each 
setup, as well as the reliability shown during learning. On 
the other hand, the comparison during the evaluation (using 
trained agents) shows the real performance and reliability of 
the agents. The idea is, based on the latter, to select the best 
algorithm/setup combination and then deploy and validate 
it on the real robot.

The state/action spaces, reward function, and neural 
architectures used to train the TD3-based agent are reported 
in Sect. 3.2.1. In addition the hyperparameters used to tune 
TD3 are detailed in Sect. 3.3. The baseline setup and the 
hyperparameters used both for DDPG and PPO2 are those 
reported in [6].

The algorithm used to evaluate the agents during both 
training and evaluation can be found in Algorithm 2 of the 
Appendix A.

4.1 � Training runs

While the agents are training, a 5-episode evaluation period 
is performed at all 1e4 training steps to assess the quality of 
the agent learnt at that time. The training procedure followed 
is detailed in Sect. 3.3. In each evaluation episode, first both 
the initial poses of the robot and the target are randomly 
assigned, and then the agent is executed to carry out a pick-
ing trial. Taking into account these evaluation periods, the 
performance and reliability of each algorithm/setup combi-
nation is analysed. On the one hand, performance is used to 
see how fast each algorithm converges based on the chosen 
setup. On the other hand, the reliability of the model shows 
how stable the learning process is and what risk there is in 
the short and long term of a large drop in performance. The 
metrics used for this are defined in Sect. 4.1.1.

4.1.1 � Metrics

To measure the performance of the algorithm/setup combi-
nations while training the following metrics are used:

•	 Average accumulated rewards: In each evaluation episode 
the accumulated reward (i.e. the sum of the rewards dur-
ing the T time-steps of the episode) is computed. Finally, 
the average accumulated reward is calculated among the 
5 evaluation episodes of each evaluation period.

•	 Success rates: Per each evaluation period of 5 episodes, 
a success rate is computed which tells us how many 
times the learnt base controller has been able to drive 
the mobile manipulator’s base to areas where the target 
is in the scope of the arm. For illustration purposes we 
show the average success rates considering 5 evaluation 
periods.

To quantitatively measure and compare the reliability of the 
algorithms during training, we use the metrics proposed in 
[52], that focus on measuring the risk and the dispersion of 
DRL algorithms:

•	 Dispersion across Time (DT): Measures the dispersion 
of the average accumulated rewards during training. The 
dispersion is measured using the inter-quartile range 
(IQR) [53], in this case the distance between the 75th 
and 25th percentiles. This metric measures the short-term 
variability that corresponds to a noisy training.

•	 Short-term Risk across Time (SRT): The goal of this 
metric is to measure the most extreme reward drop from 
one evaluation step to the next. To that end, the con-
ditional value at risk (CVaR) or the expected shortfall 
[54] of the differences in the rewards between successive 
evaluations is measured. CVaR measures the expected 
value below the �-quantile in the distribution formed by 
the reward differences. In our experiments we used the 
default value of � = 0.05.

•	 Long-term Risk across Time (LRT): This metric meas-
ures long-term risk during each training run by measur-
ing the most extreme drop in reward with respect to the 
peak, also called drawdown [55]. In this case, CVaR is 
applied to drawdown.

Because each setup has a different reward range, to compute 
the reliability metrics across the setups, those are converted 
into rankings as proposed in [52]. In fact, the rankings are 
first calculated per setup, and finally, the across-setup mean 
rankings are obtained.

4.1.2 � Results

The average accumulated rewards and the success rates 
obtained during training are depicted in Fig. 5, both for the 
baseline and the proposed setups.

As can be observed in Fig. 5a and b, in both the base-
line and the proposed setups, TD3 outperforms DDPG and 
PPO2 algorithms by far. The average accumulated rewards 
obtained by TD3 are much higher than the rest, indicat-
ing that from the beginning of learning, it has been able 
to learn a considerably more robust behaviour. Although 
looking at the rewards we can see the superior behaviour 
of TD3, it is not easy to know at which points the robot 
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has been able to successfully complete the task. This is 
due to reward shaping, as in addition to rewarding the 
robot for completing the task, it also rewards for a correct 
approach. Thus, Fig. 5c and d show the average success 
rates obtained during the training process. The success 
rates confirm the clearly superior performance of TD3 
during training.

Looking at the rewards it is difficult to assess in which 
setup TD3 achieves better behaviour, as the reward scales 
are different. However, in Fig. 5c and d it can be clearly seen 
that with the proposed setup the success rates are higher 
and more stable during the learning process. Additionally, 
the combination of TD3 and the proposed setup leads to a 
faster convergence. While the baseline setup achieves a suc-
cess rate higher than 80% around the 75th evaluation period, 
the proposed setup achieves it around the 40th evaluation 
period.

The dispersion and risk metrics rankings are shown in 
Fig. 6. The DT metric indicates that the algorithm with the 
highest dispersion across time is TD3, which can be clearly 
seen in the average accumulated rewards of Figs. 5a and 5b. 
Nonetheless, the SRT and LRT metrics indicate that it is the 
algorithm with the lowest short-term and long-term risk. 
Despite the less noisy average reward curves for DDPG and 
PPO2 shown in Fig. 5a and b, success rates in Fig. 5c and d 
indicate failure in solving the task. In contrast, the success 
rates for TD3 in the proposed setup suggest a more stable 
learning curve, with an average success rate above 80% for 
almost all of the training process.

4.2 � Evaluation runs

Although the training performance and reliability metrics 
give us an intuition of how good each algorithm/setup pair 

(a) Average accumulated rewards per
each evaluation period, using the base-
line setup.

(b) Average accumulated rewards per
each evaluation period, using the pro-
posed setup.

(c) Average success rates per 5 evalua-
tion periods, using the baseline setup.

(d) Average success rates per 5 eval-
uation periods, using the proposed
setup.

Fig. 5   Training average rewards and success rates with PPO2, DDPG and TD3 algorithms with the baseline and the proposed setups
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work while the policy is being trained, the final evaluation 
must be done with fixed policies. Evaluation with fully 
trained models will give a clear view of the real performance 
and reliability of each agent. Therefore, once the training 
runs are completed, for each algorithm/setup pair, we select 
the model with the highest average accumulated reward for 
the evaluation. To evaluate them, we run 100 episodes of T 
time-steps with each fixed model. In each evaluation epi-
sode the initial pose of both the robot and the target box 
are randomly selected before executing the picking trial. 
Note that the randomly selected poses are common in all 
the tests, the results to be comparable. This random selection 
is done using the limits of the observation space (detailed 
in Table 2).

4.2.1 � Metrics

During the evaluation of the trained models, the metrics used 
to measure the performance were slightly different compar-
ing to those used during the training runs:

•	 Accumulated median rewards: Since a single evaluation 
period of 100 episodes is carried out, we just measure the 
median of accumulated rewards across all the runs.

•	 Success rate: This metric tells us how many times the 
learnt base controller has been able to position the 
mobile manipulator’s base in areas where the target is in 
the scope of the arm. A single success rate is calculated 
considering the 100 trials.

Similarly as in the training runs, we measure the reliability 
of the algorithms during the evaluation using the following 
metrics, also proposed in [52]:

•	 Dispersion across Fixed-Policy Rollouts (DF): This 
metric measures the variability in performance when 
the same policy is run multiple times. This variability 

is measured using the IQR on the performance of the 
evaluation runs.

•	 Risk across Fixed-Policy Rollouts (RF): This metric 
measures the worst-case scenarios across the evaluation 
runs under a fixed policy. To that end, CVaR is applied 
to the performances in the evaluation runs.

4.2.2 � Results

As expected, the TD3 algorithm outperforms DDPG and 
PPO2 and obtains a higher accumulated median reward in 
both the baseline and the proposed setups (see Fig. 7). Simi-
lar to training, due to the reward shaping, only by looking at 
the accumulated rewards we cannot know with which of the 
two setups the TD3 algorithm performs better. Therefore, 
considering the 100 evaluation runs, we also measure the 
task success rates shown in Table 5. In contrast to training, 
where success rates are calculated throughout the learning 
process, in this case, the evaluation is performed on fixed 
models that have already been trained, so we obtain a single 
success rate per training.

The highest success rate is achieved by the combination 
of TD3 and the proposed setup, and surprisingly, DDPG fails 
to succeed in both cases. These results show how sensitive 
DRL-based agents are both to the setup and to the environ-
ment in which the agents have been trained.

The reliability metric rankings obtained from the eval-
uation are shown in Fig. 8. The DF metric indicates that 
the algorithm with the lowest variability in performance is 
DDPG. However, its median performance leaves much to be 
desired in both setups, and the success rates indicate failure 
in solving the task. Furthermore, according to the RF met-
ric, the algorithm with the lowest risk is TD3, similar to the 
training runs.

On the one hand, considering the performance and reli-
ability metrics it can be said that TD3 is the best algorithm 
out of the 3 candidates to learn a positioning policy for the 

Fig. 6   Mean across-setup reliability rankings of TD3, DDPG and PPO2 algorithms considering the average reward training curves. Rank 1 
always means the best reliability
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mobile manipulator’s base that drives it to successful pick-
ing areas. On the other hand, the success rates show that 
the proposed setup enables TD3 to better learn the mobile 
manipulation task.

As the success rate indicates how many times the mobile 
manipulator has positioned itself in zones that enable a suc-
cessful path planning for the arm up to the target, we also 
assess the quality of the trajectories generated by each con-
troller. To that end, only focusing on the TD3-based agents, 
we measure the average distance travelled, considering the 

100 evaluation runs. The travelled distance is measured tak-
ing into account the 3-DoF of the omnidirectional base dur-
ing the positioning operation. Considering that both the set 
of initial and target poses are common across tests, a shorter 
average travelled distance indicates higher quality naviga-
tion. Since there are no obstacles between the initial pose 
and the table on which the target is located, the shortest path 
is always the best. As can be seen in Table 6, the combina-
tion of TD3 with the proposed setup leads to 8.3% shorter 
trajectories on average.

5 � Validation in the real system

Details about the deployment and validation of the learnt 
controller in the real robotic environment are explained in 
this section.

(a) Accumulated median rewards dur-
ing the 100 evaluation periods with
the baseline setup.

(b) Accumulated median rewards dur-
ing the 100 evaluation periods with
the proposed setup.

Fig. 7   Accumulated median rewards during the 100 evaluation periods with TD3, DDPG and PPO2

Table 5   Success rates for each algorithm/setup combination during 
the 100 evaluation periods

Success rates (%) TD3 DDPG PPO2

Baseline 86 0 0
Proposed 97 0 50

Fig. 8   Mean across-setup reli-
ability rankings of TD3, DDPG 
and PPO2 algorithms consider-
ing the accumulated rewards 
during the 100 evaluation runs. 
Rank 1 always means the best 
reliability
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5.1 � Considerations before the deployment

5.1.1 � Localisation of the base

One of the most important issues is related to the localisation 
of the robot. In the real robotic system, the pose of the robot 
is provided by the odometry, which is known to contain a 
cumulative error. Thus, we use a 2D localisation system with 
the aim of correcting the robot’s pose given by the odometry 
using a map of the environment.

To that end, the Adaptive Monte Carlo localisation 
(AMCL) algorithm is used as the 2D localisation algorithm 
for the robot [56]. This probabilistic algorithm represents 
the localisation of the robot on a map as a particle filter. In 
fact, it fuses multiple data sources such as the odometry or 
laser scans to estimate the position of the robot in the map. 
We created the map of the real workshop using the Gmap-
ping [57] algorithm (Fig. 9). Nevertheless, one of the main 
limitations of AMCL is that the corrected odometry pose 
is estimated at a very low frequency ( 3 − 7Hz ) due to the 
computational load of the sensor fusion process.

5.1.2 � Arm’s path planning to the target

As in the simulation, the path planning for the real mobile 
manipulator’s arm is performed using MoveIt!. The drift 
between the real and the estimated robot’s pose provided by 
AMCL, however, causes the estimation of the relative pose 
between the base of the arm and the target not to be accurate 
enough, and consequently, the planned path can be invalid 
for manipulating the item. Indeed, an on-board vision system 

would be needed to correct the localisation error and suc-
cessfully pick the part.

The main objective of this work is to demonstrate that the 
DRL-based agent is able to position the mobile manipulator 
in areas where the target object is within the range of the 
arm. Therefore, in addition to using the base location given 
by AMCL to perform the arm planning, we also use the real 
location calculated manually for verification purposes. The 
aim of doing this is to remove the localisation error from the 
system to see if the object is really within range.

5.2 � Validation procedure

We select the TD3-based agent which has been trained with 
the proposed setup to carry out the evaluation in the real 
robotic system (see Fig. 10). The evaluation consists of 20 
trials where the robot’s initial pose is randomly selected 
in each trial, and the position of the target, instead, is ran-
domly selected once per 5 trials. The tests are carried out 
as follows: 

1.	 The robot is set in a randomly selected initial pose and 
the DRL-based base controller is executed for T time-
steps.

2.	 After T time-steps of navigation, once the robot has been 
positioned, at time-step t = T − 1 the arm tries to plan 

Table 6   Median, mean and standard deviation of the distances trav-
elled by the base of the mobile manipulator during the 100 evaluation 
periods with the TD3 algorithm

Travelled distance (m) d̃ d �

Baseline 5.787 6.084 1.543
Proposed 4.753 5.573 2.655

Fig. 9   Map of the real scenario

Fig. 10   Real scenario
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a trajectory up to the target. A successful plan indicates 
that the target object is within the reach of the robot. 
This first planning is done using the AMCL localisa-
tion. Finally, a success rate is computed considering the 
results of the plans.

3.	 The localisation uncertainty makes it impossible to use 
the robot’s pose to deduce whether the target is reachable 
by the robot arm. Therefore, with the aim of removing 
the localisation error, the real localisation of the robot 
is manually measured. This lets us check whether the 
target is really reachable by the arm according to the 
arm’s planner, and to use it as ground truth.

During each test, we take the following measurements:

•	 Difference between the observed and the measured real 
distance between the base of the arm and the target ( Δd
).

•	 Difference between the observed and real rotation on the 
z axis of the base of the arm with respect to the target ( Δ�
).

•	 Whether the base of the robot collides with the table 
when approaching the target (coll.).

•	 The attempt is considered successful if (1) there have 
been no collisions during the positioning and (2), the 
robot has been able to position itself in such a way that 
the arm is able to plan a trajectory to the object. The 
planning is done using both the localisation given by 
AMCL ( amcl_success ) and the real measured localisa-
tion ( real_success).

5.3 � Results

The measurements taken in the real validation environment 
are shown in Table 7. According to amcl_success , it can be 
seen that in 75% of the trials the robot is able to position 
itself in such a way that enables a successful planning of 
the arm up to the target, considering the localisation given 
by AMCL.

However, if we focus on the mean error between the esti-
mated and manually measured robot-target distances and 
rotations at time-step t = T − 1 ( Δd and Δ� ), it can be seen 
that in average there is an error of 0.055m and 0.084rad 
respectively. At a glance, the average error magnitude seems 
important enough to cause unsuccessful manipulations. Note 
that the real execution of the manipulation plan is out of the 
scope at this phase because we want to see the performance 
of the base moving strategy itself. In fact, the main goal is 
to see if the DRL controller guarantees the reachability of 
the arm to the object.

Therefore, to eliminate the localisation error, in each test, 
a new plan is performed with the arm, considering the manu-
ally measured real localisation of the robot ( real_success ). In 

that case, the success rate is also 75% , which indicates that 
whenever the robot succeeds the planning using the AMCL 
localisation, it also succeeds with the real localisation. This 
indicates that in all cases the object is really within arm’s 
reach. Consequently, we can conclude that although there is 
indeed an error in localisation, it is not large enough to cause 
the object to move out of the arm’s reach.

The main decrease in performance is caused by small 
brushes with the table. The main causes for those brushes 
are the following:

Noisy localisation estimation: The localisation of the 
robot has a huge importance in the state representation of the 
base controller. Indeed, the reactive base controller makes 
its decision at each time-step based on the observation of the 
state. Although AMCL uses multiple data sources to correct 
the odometry, it still introduces an error in the localisation. 
This has a big effect, particularly when the robot navigates 
near the table. In addition, the low refresh rate of AMCL 
causes the localisation not to be updated in some iterations 
of the control loop and, thus, the consequence of each action 
of the robot is reflected with delay in the updated localisa-
tion. This delay in the localisation could cause the agent to 
make sub-optimal decisions at some critical time-steps of 
the positioning.

Learning to stop: Although the learnt controller success-
fully stops the robot when it is already positioned close to 
the target in simulation, this is not the case in reality. Indeed, 

Table 7   Measurements taken in the real environment

Trial Δd (m) Δ� (rad) coll. amcl_success real_success

1 0.051 0.088 False True True
2 0.092 0.060 True False False
3 0.021 0.091 False True True
4 0.048 0.072 True False False
5 0.187 0.178 True False False
6 0.018 0.082 False True True
7 0.047 0.065 False True True
8 0.003 0.125 False True True
9 0.032 0.260 False True True
10 0.083 0.059 False True True
11 0.034 0.061 False True True
12 0.056 0.057 False True True
13 0.037 0.047 False True True
14 0.019 0.040 False True True
15 0.050 0.066 True False False
16 0.040 0.081 False True True
17 0.088 0.062 False True True
18 0.052 0.090 False True True
19 0.087 0.097 True False False
20 0.053 0.078 False True True
Avg. 0.055 ± 0.039 0.084 ± 0.05 25% 75% 75%
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the controller learns to send near-0 velocity commands to 
stop the robot in simulation, but the real robot struggles to 
stop and oscillates. This happens due to the noisy localisa-
tion estimates, which make the controller believe that the 
robot is slightly moving when it is actually still. Therefore, 
the controller tries to correct this error sending opposite 
velocity commands and causes the robot to oscillate. This 
effect is aggravated by the sim-to-real gap. Although we add 
noise to the localisation to simulate this effect while training 
the agent, the robot fails to properly stop, and this oscillation 
near the goal sometimes causes the robot to brush the table.

6 � Discussion and future work

In this work we propose an improved method to learn a 
mobile manipulation skill in simulation and show its fea-
sibility in a real robotic system. Specifically, we learn a 
DRL-based reactive controller for the base which by sending 
velocity commands is able to position the mobile manipu-
lator’s base in zones that enable a successful picking. The 
rationale behind our approach is to encourage the base con-
troller to position the robot’s in zones where the arm’s plan-
ner will likely succeed planning a trajectory up to the target 
object.

First, we develop a realistic simulation of the real envi-
ronment in Unity, which also requires the development of 
simulated low-level drivers both for the mobile base and the 
robotic arm. Then, the agent that is in charge of controlling 
the robot’s base is modelled based on the TD3 state-of-the-
art DRL algorithm. We train it in simulation through the 
interaction with the environment and by introducing basic 
randomisation to make the learnt agent robust to uncertain-
ties. The successful training of the controller requires a care-
ful design of the reward function, as well as a correct defini-
tion of state/action spaces and neural architectures.

During the training process in simulation, we benchmark 
our method with the baseline approach. First we compare the 
training curves of TD3 with DDPG and PPO2 proposed in 
the baseline work, with both the proposed and the baseline 
setup, from the perspective of performance and reliability. 
Then, the same comparison is done at evaluation, running 
the trained models for 100 episodes. In both cases, TD3 
showed to be the algorithm with the highest performance, 
and also the most reliable. The success rates indicate that 
the best performance is obtained by the combination of TD3 
and the setup proposed in this work, with a success rate of 
97% . Also the average travelled distances indicate that this 
combination leads to shorter trajectories in average.

Finally, the learnt base controller is deployed and vali-
dated in the real system as well. Even though the per-
formance of the controller is remarkable in simulation, it 
worsens in the real system. In fact, the most problematic 
step of the execution of the task is when the robot’s base 
needs to stop while positioning near the target. On the 
one hand, the simulation-to-reality gap and the error intro-
duced by the AMCL cause an oscillation that prevents the 
robot’s base from successfully stopping in the grasping 
zone. This oscillation is the main source of the brushes 
with the table and prevents the robot from staying still 
until the grasping trial is performed. On the other hand, 
although the manipulation itself is out of the scope of this 
work, the drift introduced by AMCL in the localisation is 
big enough to cause unsuccessful manipulations.

Therefore, to assess the real performance of the pro-
posed system, we measure the real position of the robot 
and we use it as ground truth. By doing so, we intend 
to effectively measure whether the target object is really 
reachable for the robotic arm in spite of the localisation 
error. The performed experiments show that the proposed 
system successfully learns to position the robot’s base in 
suitable picking areas with a success rate of 75% . Despite 
the localisation error, the results show that in all cases the 
object is really within arm’s reach. This means that the 
use of a more accurate localisation system would allow 
the object to be successfully grasped.

In summary, we show that the proposed system success-
fully positions the mobile manipulator in zones that ensure 
the reachability of the arm to the target object. However, 
due to the error introduced by current localisation systems, 
the manipulator must have an on-board vision system to 
be able to accurately estimate the relative pose between 
the arm’s end effector and the target before executing 
the grasp. In addition, the main future work lines will be 
focused on adding more sensing capabilities to the agent 
to increase the safety of the navigation, and on reducing 
the simulation-to-reality gap. On the one hand, the use 
of sensors such as lasers, cameras, etc. will let the agent 
sense the dynamic elements in the environment to safely 
navigate to the target. On the other hand, more advanced 
domain randomisation techniques will let us reduce the 
simulation-to-reality gap. Due to the difficulty in properly 
simulating the physical properties of both the robot and the 
environment, domain randomisation techniques suggest to 
randomise these physical properties in simulation, assum-
ing that the real world properties are a particular case of 
the randomised variables.
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Appendix A Agent training and evaluation algorithms

Algorithm 1 Training of TD3-based agent

1: Initialise critic networks Qw1 and Qw2 , and actor network πθ with random
parameters w1, w2, θ.

2: Initialise target networks w′
1 ← w1,w′

2 ← w2, θ′ ← θ
3: Initialise replay buffer B
4: env ← gym.environment()
5: i ← 0
6: while i < train steps do
7: randomiseScene()
8: st ← env.reset()
9: for t = 0 .. T − 1 do

10: Select action with exploration noise at ≈ πθ(st) + ε, ε ≈ N (0, σ)
11: st+1, rt, done ← env.step(at)
12: if t = T − 1 then
13: plan? ← doP ickingTrial()
14: if plan? then
15: rt ← rt +G
16: end if
17: end if
18: Store transition tuple (st, at, rt, st+1) in B
19: if done then
20: break
21: end if
22: end for
23: if i mod train freq then
24: Sample minibatch of N transitions (st, at, rt, st+1) from B
25: ã ← πθ′(s) + ε′, ε′ ≈ clip(N (0, σ̃),−c, c)
26: y ← r + γmini=1,2Q

′
w′

i
(st+1, ã)

27: Update the critics wi ← argminwi

1
N

∑
(y −Qwi(s, a))

2

28: if i mod d then
29: Update θ by the deterministic policy gradient
30: ∇θJ(θ) = 1

N

∑
∇aQw1(s, a)|a=πθ(s)∇θπθ(s)

31: Update the target networks:
32: w′

i ← τwi + (1 + τ)w′
i

33: θ′i ← τθi + (1 + τ)θ′i
34: end if
35: end if
36: i ← i+ t
37: st ← st+1

38: end while
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Algorithm 2 Evaluation of TD3-based agent

1: Initialise actor network πθ with trained parameters θ.
2: accumulated rewards ← []
3: successes ← 0
4: env ← gym.environment()
5: for i = 0 .. eval episodes do
6: accumulated reward ← 0
7: randomiseScene()
8: st ← env.reset()
9: for t = 0 .. T − 1 do

10: Select optimal action at = πθ(st)
11: st+1, rt, done ← env.step(at)
12: if t = T − 1 then
13: plan? ← doP ickingTrial()
14: if plan? then
15: rt ← rt +G
16: successes ← successes+ 1
17: end if
18: end if
19: accumulated reward ← accumulated reward+ rt
20: if done then
21: break
22: end if
23: end for
24: accumulated rewards.append(accumulated reward)
25: end for
26: success rate ← successes

eval episodes

27: average accumulated reward ← average(accumulated rewards)
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