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Abstract
The classical automata, fuzzy finite automata, and rough finite state automata are some formal models of computing used 
to perform the task of computation and are considered to be the input device. These computational models are valid only 
for fixed input alphabets for which they are defined and, therefore, are less user-friendly and have limited applications. The 
semantic computing techniques provide a way to redefine them to improve their scope and applicability. In this paper, the 
concept of semantically equivalent concepts and semantically related concepts in information about real-world applications 
datasets are used to introduce and study two new formal models of computations with semantic computing (SC), namely, a 
rough finite-state automaton for SC and a fuzzy finite rough automaton for SC as extensions of rough finite-state automaton 
and fuzzy finite-state automaton, respectively, in two different ways. The traditional rough finite-state automata can not 
deal with situations when external alphabet or semantically equivalent concepts are given as inputs. The proposed rough 
finite-state automaton for SC can handle such situations and accept such inputs and is shown to have successful real-world 
applications. Similarly, a fuzzy finite rough automaton corresponding to a fuzzy automaton is also failed to process input 
alphabet different from their input alphabet, the proposed fuzzy finite rough automaton for SC corresponding to a given 
fuzzy finite automaton is capable of processing semantically related input, and external input alphabet information from the 
dataset obtained by real-world applications and provide better user experience and applicability as compared to classical 
fuzzy finite rough automaton.

Keywords Semantic computing · Semantic relations · Fuzzy finite automata · Rough finite state automata · Fuzzy finite 
rough automata

1 Introduction

Semantic computing is a technology that maps the seman-
tics of the user with that of content to design and operate 
computer content to satisfy the needs and intentions of users 

better and create a more meaningful user experience. SC 
addresses the derivation and matching of the semantics of 
computational content and that of naturally expressed user 
intentions and brings together those disciplines concerned 
with connecting the intentions of humans with computa-
tional content by retrieving, using and manipulating existing 
content according to user’s goals, and by creating, rear-
ranging and managing content that matches the author’s 
intentions (cf., [42]). SC technologies have been classified 
into five classes, namely, Semantic Analysis, Semantic Inte-
gration, Semantic Services, Service Integration, Semantic 
Interface (cf., [17, 42] for details) and shown useful in, 
Education [25], Business Intelligence [26], Healthcare [45], 
Internet of things [59], several branches of Computer Sci-
ence and Biomedical System [17], Speech and Language 
Processing [10], spoken document summarization [15], 
Theoretical Computer Science [20, 22, 61], and in many 
more disciplines for details see references of these cited 
work.
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The concept of semantic similarity and semantic related-
ness are two different research topics and play a significant 
role in many applications of SC. In fact, the semantic relat-
edness [2, 7, 14, 16, 46, 66] quantifies the likeness between 
two concepts like “person” and “student.” The semantic 
relatedness tries to compute the semantic proximity between 
two concepts which can be related but not similar, like “car 
and wheel” and “coffee and cup”. On the other hand, seman-
tic similarity identifies the concepts having common char-
acteristics. The computational methods of semantic similar-
ity developed so far use different information, knowledge 
resources and approaches, e.g., historical google search pat-
terns [13], feature-based approaches using Wikipedia [23], 
Wikipedia-based information [24], multiple information 
sources [27], contextual correlation [31, 37] and many of 
them have proven to be useful in some specific applications 
of computational intelligence. The task of SC is to extract 
information from databases in the sense of clarification of 
words and to explain the meaning of various constituents 
of sentences (words or phrases) or sentences themselves 
in a natural language via semantic relatedness or semantic 
similarity among constituents. In literature, commonly used 
word similarity datasets, are RG [37], MC [31], WordSim-
353 [12], MEN [7] and SimLex-999 [18]. The similarity data 
sets typically contain a broad range of semantic relations 
such as synonymy, antonymy, hypernymy, co-hypernymy, 
meronymy and topical relatedness (cf., [6]). Among the 
above-mentioned similarity data set SimLex-999, a standard 
gold resource for evaluating distributional semantic mod-
els in contrast to gold standards such as WordSim-353 and 
MEN explicitly quantifies similarity rather than association 
or relatedness so that pairs of entities that are associated but 
not actually similar (Freud, psychology) have a low rating 
(cf., [18]). The measurements of semantic similarity based 
on taxonomy, features or information content of concepts, 
are significant in various applications like natural language 
processing, synonym detection [28], key sentence extraction 
[66] and misspelling detection and correction. In most of the 
research work associated with SC, the word “computing” 
in the phrase “semantic computing’ means computational 
implementations of semantics reasoning (e.g., ontology 
reasoning, rule reasoning, semantic query, and semantic 
search) and is irrelevant to the formal theory of comput-
ing [22]. The methods of semantic similarities used in the 
literature have been classified into five categories (cf., [61]), 
but these methods of SC lack formal computation theory 
because these methods are based on experiments rather than 
computation. Jiang [22], first introduce formal models of 
computation for SC based on classical automata. The models 
of computing based on semantic similarity proposed by [20, 
22, 61] requires more support from the theories of com-
putation, whereas, before these work, most of the research 
about semantic similarity was done using experiments. It 

is worth mentioning here that our motive is not to get into 
details of SC or semantic relatedness methods of SC, but 
the main purpose of this paper is to use concepts of SC, 
equivalent concepts (which are special kind of semantic rela-
tions), and semantically related concepts of SC to propose 
new formal computational models which are efficient to 
capture incomplete or insufficient and vague information of 
dataset obtained from real-world applications rather define 
or propose new methods for SC. These proposed models 
are different from the formal computational models of SC 
proposed in [20, 22, 61] in the sense that our models handle 
incomplete or insufficient and vague information of datasets 
obtained from real-world applications.

The importance of classical automata in the theory 
of computation is well known. Since the notion of fuzzy 
sets was introduced by Zadeh [65] in 1965, for represent-
ing uncertainty, it has been extensively used in automata 
theory. The notion of fuzzy automata was first presented 
by Santos [38] in 1968, and the mathematical formulation 
of fuzzy automata was proposed by Wee [60]. After that, 
multidirectional research in the area of fuzzy automata and 
languages is reported in the literature. The algebraic aspects 
of fuzzy automata and languages have been studied in [32, 
51]. The minimal realization problem of fuzzy languages 
has been studied algebraically in [21], by category-theoretic 
approach in [50, 53, 55], and in bicategory theoretic setting 
in [52, 54, 63] to brings closer the gap between classical 
automata theory and natural languages. The fuzzy automata 
and languages have been shown helpful in many applications 
like supervisory control [43], learning systems [60], heart 
problem deduction [8]. Both finite automata [19] and fuzzy 
finite automata [9, 21] are the formal model of computation 
with values and therefore have limited applications. To over-
come this issue, Ying in [64], proposed new kind of fuzzy 
automata whose input may be a string of fuzzy subsets of 
the input alphabet, instead of a string of symbols from the 
input alphabet, under the name a formal model of computing 
with words. Recently, L. Wei et al. [61] proposed the concept 
of fuzzy automata under semantic similarity for comput-
ing with words, where “words” means probability distribu-
tions over the alphabet, and the proposed fuzzy automata 
can compute with vague and imprecise data as inputs. The 
author’s in [61] model a fuzzy automaton under semantic 
similarity having successful application in weather fore-
casting. Yuncheng Jiang [22], proposed a different under-
standing of “semantic computing” from computation theory 
perspective, where classical finite automata and fuzzy finite 
automata are redefined to accept equivalent concepts and 
semantically related concepts.

In general, the information about real-world application 
datasets is erroneous, inexact, or uncertain. We can under-
stand erroneous, inexact, or uncertain information about 
real-world applications datasets as follows. Given a data 
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set, a data error is an atomic value (or a cell) that is dif-
ferent from its given ground truth, it may be classified as 
either quantitative or qualitative ones, e. g., for the animal 
data set, one of the denial constraints states that “if there 
are two captures of the same animal indicated by the same 
tag number, then the first capture must be marked as origi-
nal”, in this case, any cell that participates in at least one 
violation is considered as erroneous [1]. The information 
that Mr. X will reach at place Y about 6 O’clock is inexact. 
To understand dataset uncertainty, we consider the case of 
observational gridded climate datasets from [68], where the 
general term “dataset uncertainty” is used to refer to both 
representational and non-representational uncertainty. Rep-
resentational uncertainty of a dataset is uncertainty regard-
ing how accurately the dataset represents the phenomenon 
it aims to measure. Non-representational uncertainties arise 
because abstract properties of datasets, for example, the res-
olution and the baseline period in global temperature data-
sets, are more or less adequate for a specific purpose. These 
non-representational uncertainties do not arise because of 
the dataset’s relationship with reality but because of the 
intended purpose to which the dataset is put [68]. In general, 
the uncertainty in information about real-world datasets may 
arise due to (i) sources that are difficult to trust, (ii) sources 
of data from where it comes or how it was calculated, and 
(iii) noise such as inaccurate posts in social media or infor-
mation posted by bots, (iv) abnormalities, e.g., when two 
trusted resources report different values for the same thing, 
(v) inherent uncertainty, e.g., probabilistic information, (vi) 
ambiguity, i.e., unclear data, e.g., a natural language filled 
with a vague statement.

An adequate tool to handle insufficient and incomplete 
information in the analysis of the various type of datasets 
obtained by real-world applications is the rough set theory 
(RST) introduced by Pawlak [35]. Like fuzzy set theory 
(which models the vagueness of information in the data-
set), RST is another extension of classical set theory used to 
enlist and model the knowledge from information contained 
in datasets [47]. The insufficient information in the dataset 
is encountered if there is an object in the dataset which have 
the same values for all features, but the associated outcome 
has a different value, while vagueness of information in the 
dataset is a result of an evaluation of subjective concepts 
like young, warm, beautiful, intelligent etc. The original 
definition of a rough set proposed by Pawlak was based on 
equivalence relation. But this confining demand for equiva-
lence limits the application scope of RST. For application 
purposes, many extensions of rough sets like fuzzy rough 
sets, rough fuzzy sets, IT2 fuzzy rough sets, IT2 rough fuzzy 
sets, tolerance rough fuzzy sets, rough sets based on Galois 
connections, soft rough fuzzy sets, and soft fuzzy rough sets 
have been studied (cf., [11, 29, 30, 39, 41, 62, 67]). RST 
has been proved an essential method in cognitive sciences, 

decision making, data mining, and artificial intelligence. The 
main advantage of using RST is that no preliminary infor-
mation about data is required. RST describes dependencies 
between attributes, evaluates the significance of attributes, 
and deals with inconsistent data. “RST grows on the assump-
tion that, with every object of the universe of discourse, one 
can associate some information (data, knowledge). Objects 
characterized by the same information are indiscernible in 
view of the available information about them. Any set of all 
indiscernible objects is called an elementary set and forms 
a basic granule of knowledge about the universe. Any set of 
objects, being a union of some elementary sets, is referred 
to as crisp (precise); otherwise, a set is rough (imprecise, 
vague). Consequently, each rough set has boundary-line 
cases. Therefore, a rough set can be replaced by a pair of 
crisp sets, called the lower and the upper approximation. 
The upper approximation contains objects which possibly 
belong to the set, and the lower approximation consists of 
all objects which undoubtedly belong to the set” [44]. The 
difference between the upper and lower approximation is 
called the boundary of the set. A set is said to be definable 
if its boundary is empty. Equivalently, a definable set is a 
union of elementary sets.

A dataset is said to be inconsistent if there is an object in 
the dataset which have the same values for all attributes, but 
the associated outcome has a different value. The outcome 
of such a dataset can not be decided precisely due to insuf-
ficient information about dataset attributes; the objects in the 
dataset characterized by the same information are indiscern-
ible because of the available information about them. In such 
a case, indiscernible relation defines a rough set on object 
class of dataset. The systems associated with such a dataset 
can not be modeled by any computational model, classical 
automata, or fuzzy finite-state automata. To overcome on 
such issues, Basu [5], proposed the concept of rough finite 
state automata (RFSA). In RFSA presented by Basu, the 
transition function was defined in such a way that in a given 
state, when an input is provided, the output next state is a 
rough set of the states in a certain way, and the idea was fur-
ther extended to design a ‘recognizer’ that accept imprecise 
statements. After that, Basu [4], introduced and studied the 
concept of rough grammar and rough languages generated by 
them, whereas the approximation of languages in the rough 
set was studied in [36]. The concept of rough finite-state 
machine introduced by Basu [5] is further studied by Sharan, 
Srivastava, and Tiwari [40] to characterize rough finite state 
automata, by Tiwari, Sharan and Singh [49] to discuss cov-
erings of product of rough transformation semigroup, and 
by Tiwari and Sharan [48] to introduce the concept of prod-
uct of rough finite state machine. R. Arulprakasam et al. 
[3] established a correspondence between rough languages 
generated by rough grammar and rough languages accepted 
by rough finite-state automata. Tyagi and Tripathi [56, 58], 
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introduced rough automata, rough grammar, and rough lan-
guages into a fuzzy environment. Recently, Pal et al. [34] 
described fuzzy rough automata corresponding to a fuzzy 
finite automata based on complete residuated lattices, where 
transition map, after given an input, returns L-fuzzy rough 
set of states as next state, and Swati et al. [62] introduced 
interval type-2 fuzzy finite rough automata having applica-
tion in COVID-19 patient deduction.

In the theory of computing, computations are mainly 
represented by effective models like classical automata, 
fuzzy finite automata, and rough finite-state automata. 
These models are considered input devices. However, these 
mathematical models are defined for fixed input alphabet 
or state set. In the case of some applications (see an exam-
ple of weather forecasting in [61]), where these compu-
tational models are applied, needs to change the states or 
the user wants to use any one of these automata. Still, with 
their input symbols/words that are different from the input 
symbols/words of automata considered, these automata fail 
to adjust according to such changes. We can’t change the 
behavior of these automata, but from the theories of seman-
tic similarity, there always exists a semantically similar 
state or input symbol, and we can use that semantic rela-
tion (cf., [57]) to extend these automata with similar state 
or input symbol. Thus the concept of semantic similarity 
facilitates the application of these automata in such appli-
cations. In 2019, Jiang [22], executed the idea of SC in 
formal computation theory and proposed formal models of 
SC, where classical automata, fuzzy finite automata, and 
pushdown automata have been extended for SC. Recently, 
in [61], a new generalization of fuzzy automata has been 
proposed for real-world applications (e.g., in weather fore-
casting, see [61]), where automata need to deal with new 
states that are not in the state set of automata.

The fact that mathematical models like classical 
automata, fuzzy finite automata, and rough finite state 
automata are input devices defined for fixed input alpha-
bet or state set and observation that SC-based models of 
classical automata and fuzzy finite automata proposed in 
[20, 22, 61] can use semantically equivalent and seman-
tically related input alphabet or state set from dataset to 
model real-world problems, motivate us to define new for-
mal computing models of SC based on rough finite state 
automata and fuzzy finite rough automata. The advantages 
of these two new standard models of computations with SC 
can be seen as follows:

• the introduced generalized rough finite-state automata 
for SC can accept semantically equivalent incomplete 
and insufficient input information (see Example 3.1), 
and the external inputs from the dataset obtained by 
real-world applications. In contrast, the computing 
model rough finite state automata in [5] accept only 

incomplete and insufficient input information from the 
dataset obtained from real-world applications, and the 
computing model finite automata based on SC in [22] 
accept only semantically equivalent input information 
and external input from the dataset obtained by real-
world applications.

• the introduced generalized fuzzy finite rough automata 
for SC can accept semantically related input (see Exam-
ples 4.1 and 4.2), and external input alphabet informa-
tion from the dataset obtained from real-world applica-
tions in vague and incomplete environment, whereas 
the computing model fuzzy finite state automata accept 
crisp input information from the dataset obtained by 
real-world applications and computing model finite 
automata based on SC in [22] accept crisp input and 
semantically related input, and external input alphabet 
information from the dataset obtained by real-world 
applications.

The structure of the paper is as follows: Sect. 2 consists of 
those primary notions and concepts which are required in 
subsequent sections. In Sect. 3, for a given rough finite-
state automaton, we introduce new formal models of com-
putation called rough finite-state automata for SC through 
two different approaches. In Sect. 4, corresponding to a 
fuzzy finite automaton, we introduce fuzzy finite rough 
automata for SC, one under semantically related concepts 
and another with respect to external alphabets. These two 
formal models of computation can deal with the concepts 
of ambiguity as well as impreciseness that arise in natural 
languages.

2  Preliminaries

This section briefly recalls basic definitions of rough sets, 
fuzzy sets, and rough sets and discusses some concepts 
related to rough finite state automata and SC.

2.1  Semantic Relationship

Semantic relationships are basically the interrelations that 
exist between the meanings of words (semantic relation-
ships at the word level), between meanings of phrases, 
and between meanings of sentences. This paper is mainly 
focused on the relationship between the meaning of words. 
At the word level, the semantic relationships of words like 
antonymy, synonymy, class inclusion, part-whole, and 
case relationships are studied. Antonymy and synonymy 
are the most general semantic relationships between words. 
Hyponymy or class inclusion is the semantic relationship 
that exists between two (or more) words in such a way 
that the meaning of one word includes (or contains) the 
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meaning of other words(s). The latter word is a general 
term referred to as hypernyms (or super-type, super-
concepts, super-categories). The former word is specific, 
referred to as hyponyms (or subtype, subconcepts, subcat-
egories). The semantic relatedness [2, 7, 14, 16, 46, 66], 
quantifies the likeness between two concepts and tries to 
compute the semantic proximity between two concepts 
which can be related but not similar. On the other hand, 
semantic similarity identifies the concepts having common 
characteristics. Now, we recall the following definition of 
SC from [61]

Definition 2.1 [61] Let U be a set of concepts or symbols. 
The semantic similarity of two concepts a, b ∈ U is defined 
as a function sim ∶ U × U → [0, 1] such that 

1. sim(a, a) = 1
2. sim(a, b) = sim(b, a).

2.2  Rough set, fuzzy set and fuzzy rough set

In this subsection, we recall those concepts from theory of 
rough sets, fuzzy sets and fuzzy rough sets from [11, 33, 35, 
65] which we need in subsequent sections.

Definition 2.2 [35] Let U be a non-empty universe and 
R ⊆ U × U  be an equivalence relation on U. The pair 
(U, R) is called an approximation space. For any u ∈ U , 
[u]R = {v ∈ U ∶ (u, v) ∈ R} is called an equivalence class or 
a block of u with respect to R. The family of all equivalence 
classes {[u]R ∶ u ∈ U} is called the quotient set denoted 
by U/R and it defines a partition of U over R. If u, v ∈ U 
belongs to the same equivalence class then they are said to 
be indiscernible.

Definition 2.3 [35] Let (U, R) be an approximation space 
and [u]R be the equivalence class of u under R. Given an 
arbitrary set E ⊆ U , E may not be described specifically in 
(U, R) and may be identified by a pair of lower and upper 
approximations defined as follows:

The pair (R(E),R(E)) is called a rough set in (U, R) if 
R(E) ⊆ R(E).

Remark 2.1 [40] (i) For E ⊆ U , lower and upper approxima-
tions of E in (U, R) can be denoted as E and E , in this case, 
a rough set in (U, R) can be viewed as a pair (E,E) . (ii) For 
all u ∈ U , if we denote its equivalence class [u]R in (U, R) 
simply by [u], then the pair ([u, [u]) is a rough set in (U, R) 
and that {u} = [u] = {u}.

R(E) = ∪{u ∈ U ∶ [u]R ⊆ E} = ∪{[u]R ∶ [u]R ⊆ E}

R(E) = ∪{u ∈ U ∶ [u]R ∩ E ≠ 𝜙} = ∪{[u]R ∶ [u]R ∩ E ≠ 𝜙}.

(iii) Given an approximation space (U, R) and E ⊆ U , E 
and E are interpreted as the collection of those elements of 
U that are definitely and possibly belongs to E, respectively. 
Further, E is called definable (or exact) in (U, R) iff E = E . 
For any E ⊆ U , E and E are definable sets in (U, R).

Remark 2.2 [35] The boundaryBnX of X is given by 
R(X) − R(X) , and thus consists of elements possibly, but not 
definitely, in X. A set X ⊆ U is said to be definable in (U, R) 
if and only if BnX = � . In particular, a definable set is union 
of equivalence classes or blocks in (U, R).

Definition 2.4 [65] Let U be a universe of discourse. Then 
a fuzzy subset of U is a mapping from U into unit interval 
[0, 1]. If A is a fuzzy subset of U and u ∈ U , then A(u) or 
�A(u) is the membership degree of u inA. We use F(U) to 
denote the set of all fuzzy subsets of U.

Suppose that � ∈ [0, 1] and A, B are fuzzy sets in U. Then 
we define the following operations of fuzzy sets, for each 
u ∈ U : 

1. scale product: (� ⋅ A)(u) = min{�,A(u)}.
2. union: (A ∪ B)(u) = max{A(u),B(u)}.
3. intersection: (A ∩ B)(u) = min{A(u),B(u)}.
4. multiplication: (� × A)(u) = � × A(u).

Definition 2.5 [33] Let U be a non-empty universe. Then a 
fuzzy relation on U is a map R ∶ U × U → [0, 1] . The fuzzy 
relation R is called 

 (i) reflexive if R(u, u) = 1 , ∀u ∈ U;
 (ii) symmetric if R(u1, u2) = R(u2, u1) , ∀u1, u2 ∈ U ; and
 (iii) transi t ive  i f  R(u1, u2) ∧ R(u2, u3) ≤ R(u1, u3) , 

∀u1, u2, u3 ∈ U.

A fuzzy relation R on U is called fuzzy equivalence rela-
tion on U, if it is reflexive, symmetric and transitive.

Generalizations of rough sets to the fuzzy environment 
was first initiated by Dubois and Prade [11]. They consid-
ered the approximation of rough sets in fuzzy approximation 
spaces and approximation of fuzzy sets in crisp approxima-
tion spaces. The former one gives us fuzzy rough set.

Definition 2.6 [11] Let U be a non-empty universe and R 
be a fuzzy binary relation on U such that (U, R) is the fuzzy 
approximation space. Then for any X ∈ F(U) , the fuzzy 
rough set of X is the pair (R(X),R(X)) , where R(X) and R(X) 
are fuzzy sets of U with membership functions defined, 
respectively, as
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where ∨ and ∧ denotes the join and meet operations, 
respectively.

2.3  Fuzzy finite automata

Herein, we recall the concepts of a fuzzy finite automaton 
and fuzzy languages from [32].

Definition 2.7 [32] A fuzzy-finite automaton (FFA) is a 
five-tuple M = (Q,X, �, I,H) , where 

1. Q is a finite non-empty set of states.
2. X is a finite input alphabet.
3. � ∶ Q × X → F(Q) is a mapping such that for any 

q ∈ Q and x ∈ X , �(q, x) is a fuzzy subset of Q.
4. I ∶ Q → [0, 1] is the fuzzy set of initial states, and
5. H ∶ Q → [0, 1] is the fuzzy set of final states.

Remark 2.3 [32] The transition function � is extended to 
�∗ ∶ Q × X∗

→ F(Q) such that for all q ∈ Q, � ∈ X∗(empty 
string),

for all w ∈ X∗ and x ∈ X.

Definition 2.8 [32] A fuzzy language accepted by M, 
denoted by fM is a fuzzy subset of X∗ , i.e., fM ∶ X∗

→ [0, 1] 
such that for any w ∈ X∗,

2.4  Rough finite state automata

Herein, we recall the concepts of rough finite state automata 
(rough automata) and rough languages from Basu [4, 5].

Definition 2.9 [5] A rough finite state automaton (RFSA) 
is a system M = (Q,R,X, �, I,H) , where 

 (i) Q is the finite non-empty set of states;
 (ii) R is an equivalence relation on Q, i.e., (Q, R) is an 

approximation space;
 (iii) X is the finite set of input symbols;
 (iv) I is a definable set in (Q, R), called the initial configu-

ration;

R(X)(u) = ∧
v∈U

{(1 − R(u, v)) ∨ �X(v)}

and R(X)(u) = ∨
v∈U

{R(u, v) ∧ �X(v)},

�∗(q, �) = {1∕q}

�∗(q,wx)(p) = ∨{�∗(q,w)(r) ∧ �(r, x)(p) ∶ r ∈ Q},

fM(w) = ∨{I(q) ∧ �∗(q,w)(p) ∧ H(p) ∶ q, p ∈ Q}.

 (v) H ⊆ Q is the set of final states or accepting states;
 (vi) � ∶ Q × X → A , where A = {(A,A) ∶ A ⊆ Q} , is a 

map called rough transition map of M such that for 
each (q, x) ∈ Q × X , 

 be a rough set of Q in (Q, R) with lower approxima-
tion �(q, x) and upper approximation �(q, x).

Remark 2.4 (i) Throughout, the set of all rough set 
{(A,A) ∶ A ⊆ Q} in the approximation space (Q, R) is just 
denoted by A.

(ii) Every finite state automaton can be viewed as an 
RFSA (cf., [40]).

Remark 2.5 In the above definition of RFSA, an input in 
a state result in a rough set of states called the lower and 
the upper approximation. It differs from both the concept of 
automaton and fuzzy automaton in the sense that input in a 
state in these cases results in a single state/subset of Q, or a 
fuzzy (sub)set of Q.

Definition 2.10 [3, 5, 40] Let M = (Q,R,X, �, I,H) be a 
RFSA and D be the class of all definable sets in (Q, R). Then, 
for any D� ∈ D , the block transition map of M is a map 
�D ∶ D × X → A defined as follows:

Throughout, or a nonempty set X, X∗ denote set of all 
words on X, i.e., finite strings of elements of X under concat-
enation of strings with empty string � ∈ X∗ . Now, we have 
the following definition.

Definition 2.11 [5, 40] The transition map � of M can be 
extended to �∗ ∶ Q × X∗

→ A in the following way: 

 (i) �∗(q, �) =
(
[q], [q]

)
 , for all q ∈ Q and empty string 

� ∈ X∗.
 (ii) For  a l l  q ∈ Q,w ∈ X∗, and x ∈ X  ,  

�∗(q,wx) =(
�∗(q,wx), �∗(q,wx)

)
 , where �∗(q,wx) = �D(�∗(q,w), x) 

and �∗(q,wx) = �D(�∗(q,w), x)

Definition 2.12 [3, 5, 40] Let M = (Q,R,X, �, I,H) be a 
RFSA and D be the class of all definable sets in (Q, R). 
Then the block transition map �D of M can be extended to 
�∗

D

∶ D × X∗
→ A such that for all D� ∈ D and w ∈ X∗:

�(q, x) = (A,A)

𝛿D(D�, x) =
(
𝛿D(D�, x), 𝛿D(D�, x)

)
, where

𝛿D(D�, x) = ∪{𝛿(q, x) ∶ q ∈ B ⊆ D�,B ∈ Q∕R}

and 𝛿D(D�, x) = ∪{𝛿(q, x) ∶ q ∈ B ⊆ D�,B ∈ Q∕R}.
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Definition 2.13 [40] Let M = (Q,R,X, �, I,H) be a RFSA, 
then for all D� ∈ D , w ∈ X∗ and a ∈ X,

Definition 2.14 [4, 5] Let M = (Q,R,X, �, I,H) be a RFSA. 
Then, the behaviour of M is a rough subset of X∗ denoted 
by �M = (�M , �M) , where �M = {w ∈ X∗ ∶ �∗(I,w) ∩ H ≠ �} 
is the set of strings definitely accepted by M, and 
�M = {w ∈ X∗ ∶ �∗(I,w) ∩ H ≠ �} is the set of strings pos-
sibly accepted by M.

Like classical automata and FFA, RFSA is also a math-
ematical model used for computation purposes in compu-
tational theory where data is given in the form of decision 
table having incomplete information. The automaton was 
presented as a recognizer of rough sets that accepts rough 
regular languages [3]. Formally, after an input set is pro-
vided the rough finite state automaton permits a state to tran-
sit to a rough set of states. Obviously, once RFSA is defined 
its input set is also fixed just like the case of finite automata.

Jiang [22] suggested interpretation of “semantic comput-
ing” in the view of formal computational theory, when clas-
sical automata is made to read some unknown symbol hav-
ing a semantic relation with the known symbol in alphabets 
of automata. For example, suppose a finite automata M is 
given with input alphabet Σ , and a transition �(q1,W) = q2 , 
where W ∈ Σ . Also, suppose that W and U are synonyms 
(i.e., W ≡ U ) or U is a subconcept of W (i.e., U ≤ W  ), but 
U ∉ Σ , so that M cannot deal with �(q1,U) since U ∉ Σ , 
however it is not true due to existence of some semantic 
relations between W and U such as W ≡ U , thus we have that 
�(q1,U) = �(q1,W) = q2 if W ≡ U . Thus, “semantic comput-
ing” can be considered as a mechanism of computing where 
inputs can be known or unknown symbols (cf., [22]). A new 
automata for SC having internal and external alphabets can 
be derived by extending classical automata using semantic 
similarity of words of automata and external words based 
on different ontologies. In this paper, we introduce a model 
of computation called rough automata for SC which deals 
with ambiguity and an other model of computation for SC 
which capture both ambiguity and impreciseness involved 
in natural languages.

𝛿∗
D

(D�,w) =
(
𝛿∗

D

(D�,w), 𝛿∗
D
(D�,w)

)
, where

𝛿∗
D

(D�,w) = ∪{𝛿∗(q,w) ∶ q ∈ B ⊆ D�,B ∈ Q∕R} and 𝛿∗
D
(D�,w)

= ∪{𝛿∗(q,w) ∶ q ∈ B ⊆ D�,B ∈ Q∕R}.

�∗
D

(D�,wa) =
(
�∗

D

(D�,wa), �∗
D
(D�,wa)

)
, where

�∗
D

(D�,wa) = �D(�∗(q,w), a)

and �∗
D
(D�,wa) = �D(�∗(q,w), a).

3  Rough finite state automata as a formal 
model for semantic computing

In this section, we extend RFSA to RFSA for SC. First, we 
shall use the equivalent concepts of words or symbols to 
extend RFSA to RFSA for SC. Later we shall use concepts 
of the external alphabet introduced in [22] to define rough 
finite-state automata for SC with respect to the external 
alphabet.

3.1  Rough finite state automata for SC using 
equivalent concept

Herein, corresponding to a given RFSA, a RFSA for SC 
under equivalent concepts is introduced.

Definition 3.1 Let M = (Q,R,X, �, I,H) be a RFSA defined 
in Definition 2.9. A rough finite state automaton for SC 
under equivalent concepts (RFSA)SCEC corresponding to M 
is the system M� = (Q,R,X, Y , �, � , I,H) , where 

 (i) Q, R, I, H are same as defined for rough automata. 
(see Definition 2.9)

 (ii) X is the internal alphabet of M.
 (iii) Y = {y|y ∈ Ω, y ∉ X and ∃ x ∈ X such that y ≡ x} is 

the external alphabet for M, where Ω is the set of all 
symbols.

 (iv) X ∪ Y  is the alphabet set for M′.
 (v) � ∶ Q × X → A is the internal rough transition func-

tion, i.e., transition map of M.
 (vi) � ∶ Q × Y → A is the external transition function of 

M defined as: 

�(q, y) = �(q, x) and �(q, y) = �(q, x) for some x ∈ X 
such that x ≡ y.

 (vii) � ∪ � ∶ Q × (X ∪ Y) → A is the transition map of M′.

Definition 3.2 Let M� = (Q,R,X, Y , �, � , I,H) be a RFSASCEC 
and D be the class of all definable sets in (Q, R). Then, the 
block transition map

 o f  M′  i s  d e f i n e d  ∀D� ∈ D, x ∈ X ∪ Y  a s : 
(� ∪ �)D(D�, x) =

(
(� ∪ �)D(D�, x), (� ∪ �)D(D�, x)

)
 ,    where

�(q, y) = (�(q, y), �(q, y)), where

(� ∪ �)D ∶ D × (X ∪ Y) → A
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Definition 3.3 The rough transition map � ∪ � of (RFSA)SCEC 
M′ can be extended to (� ∪ �)∗ ∶ Q × (X ∪ Y)∗ → A as 
follows: 

 (i) (� ∪ �)∗(q, �) =
(
[q], [q]

)
 for all q ∈ Q.

 (ii) (� ∪ �)∗(q,wx) =
(
(� ∪ �)∗(q,wx), (� ∪ �)∗(q,wx)

)
 , 

such that (� ∪ �)∗(q,wx) = (� ∪ �)D
(
(� ∪ �)∗(q,w), x

)
 

and (� ∪ �)∗(q,wx) = (� ∪ �)D
(
(� ∪ �)∗(q,w), x

)
 , for 

all q ∈ Q,w ∈ (X ∪ Y)∗ and x ∈ X ∪ Y .

Definition 3.4 Let  M� = (Q,R,X, Y , �, � , I,H) be a 
RFSASCEC . The rough language L(M�) accepted by M′ is a 
pair (L(M�),L(M�)) , where

where L(M�) is the set of strings definitely accepted by M′ 
and L(M�) is the set of strings possibly accepted by M′ . 
Language accepted by M is a rough subset of (X ∪ Y)∗ , called 
rough regular language.

Now, we provide a real-life example to demonstrate how 
proposed RFSA for SC under equivalent concepts corre-
sponding to a given RFSA can be used to decide the result of 
an interview. Suppose a RFSA M is defined to determine the 
results of an interview for conditional attributes and decision 
attribute of the dataset given in Table 1. This RFSA M can 

(𝛿 ∪ 𝛾)D(D�, x) = ∪{(𝛿 ∪ 𝛾)(q, x) ∶ q ∈ B ⊆ D�,B ∈ Q∕R}

and (𝛿 ∪ 𝛾)D(D�, x) = ∪{(𝛿 ∪ 𝛾)(q, x) ∶ q ∈ B ⊆ D�,B ∈ Q∕R}.

L(M�) = {w ∈ (X ∪ Y)∗| (� ∪ �)∗(I,w) ∩ H ≠ �}

and L(M�) = {w ∈ (X ∪ Y)∗| (� ∪ �)∗(I,w) ∩ H ≠ �},

not process the conditional attribute values Y if filled by a 
candidate, but M′

1
 the proposed RFSA for SC, can do it by 

using a semantically equivalent relationship present between 
elements of X and Y.

Example 3.1 (Example 5 of Ref. [5] continued) In the data 
Table 1 given below from an interview, we have qualifica-
tions of candidates as conditional attributes and selection/
rejection of candidate as decision attribute.

Then the rough finite state automaton that accept the 
result of the interview is M = (Q,R,X, �, I,H) , where  
Q = {q

0

, q
1

, q
2

, q
3

, q
4

, q
5

, q
6

, q
7

, q
8

} and R = {[q
0

], [q
1

], [q
2

], 
[q

3

, q
8

], [q
4

, q
6

], [q
5

], [q
7

]} , I = {[q
0

]},H = {q
3

, q
4

, q
6

, q
7

},

X = {�
1

, �
2

, �
3

, �
4

, �
5

, �
6

} , where �1 = (MBA, Medium, No), 
�2 = (MBA, Low, No), �3 = (MCE, Low, Yes), �4 = (M.Sc., 
High, Yes), �5 = (M.Sc., Medium, No), �6 = (MBA, High, 
No), and transition map � is defined in Table 2.

Then we can conclude that

Now, let a user want to use the above rough finite-state 
automaton M with the following conditional attribute val-
ues filled by a candidate of the interview, he/she fails to do 
so because the new input symbols are not in the alphabet of 
given rough finite-state automaton M.

 But concept of semantic similarity suggested that

 Therefore, he/she may obtain M� = (Q,R,X, Y , �, � , I,H) as 
semantic extension of M in following manner, the notions 
Q,R,X, �, I,H are same as defined for M. Let external alpha-
bet Y of M be given by Y = {�1, �2, �3, �4, �5, �6} and for the 
class of all definable set D of Q, the rough transition map 
� ∶ Q × Y → A of M′ be defined as

L(M) = {�4, �6} and L(M) = {�3, �4, �6}.

�1 = (Master of Business Administration, Average, No) ,

�2 = (Master of Business Administration, Poor, No) ,

�3 = (Master of Civil Engineering, poor, Yes) ,

�4 = (Master of Science, Great, Yes) ,

�5 = (Master of Science, Average, No) ,

�6 = (Master of Business Administration, Great, No) .

�1 ≡ �1, �2 ≡ �2, �3 ≡ �3, �4 ≡ �4, �5 ≡ �5, �6 ≡ �6.

Table 1  Decision table for Example 3.1

Diploma Experience Knowledge of 
English

Decision

x
1

MBA Medium No Reject
x
2

MBA Low No Reject
x
3

MCE Low Yes Accept
x
4

M.Sc. High Yes Accept
x
5

M.Sc. Medium No Reject
x
6

M.Sc. High Yes Accept
x
7

MBA High No Accept
x
8

MCE Low Yes Reject

Table 2  Transition table for 
Example 3.1

Q/X �
1

�
2

�
3

�
4

�
5

�
6

q
0

([q
1

], [q
1

]) ([q
2

], [q
2

]) ([q
1

], [q
3

, q
8

] ∪ [q
1

]) ([q
4

, q
6

], [q
4

, q
6

]) ([q
5

], [q
5

]) ([q
7

], [q
7

])
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Similarly,

 Then, user may conclude that L(M�) = {�4, �6} and 
L(M�) = {�3, �4, �6} . Thus, rough finite state automata 
equipped with semantic similarity concept, process seman-
tically equivalent concepts of inputs with same outcomes 
and provide a better user experience, while traditional rough 
finite automata M can not access the inputs from Y because 
members of Y are not in its original input set X.

Remark 3.1 For practical applications, the alphabet Y can 
be obtained through various methods by collecting informa-
tion from available knowledge sources like Wikipedia and 
Google or by exploiting linked data and using ontologies 
provided by users. An efficient and less time-consuming 
algorithm to define Y using description logic and ontolo-
gies has been described in [22].

Now, let a user wants to use the above rough finite-state 
automaton M with the following conditional attribute values 
filled by a candidate of the interview, he/she fails to do so 
because the new input symbols are not in the alphabet of 
given rough finite-state automaton M.

�(I, �1) = (�(I, �1), �(I, �1));

�(I, �1) = �(I, �1) = �(q0, �1) = [q1];

�(I, �1) = �(I, �1) = �(q0, �1) = [q1].

�(I, �2) = �(I, �2) = ([q2], [q2]);

�(I, �3) = �(I, �3) = ([q1], [q3, q8] ∪ [q1]);

�(I, �4) = �(I, �4) = ([q4, q6], [q4, q6]);

�(I, �5) = �(I, �5) = ([q5], [q5]);

�(I, �6) = �(I, �6) = ([q7], [q7]).

Theorem  3.1 Let M = (Q,R,X, �, I,H) be a RFSA and 
M� = (Q,R,X, Y , �, � , I,H) be RFSASCEC obtained by exten-
sion of M under equivalent concepts. Then M′ satisfies the 
following properties: 

1. For any w ∈ X∗ , if w ∈ L(M) (resp. L(M)) , then 
w ∈ L(M�) (resp. L(M�)).

2. For w� ∈ (X ∪ Y)∗ , if w� ∈ L(M�) (resp. L(M�)) then ∃ 
w ∈ X∗ such that w ∈ L(M) (resp. L(M))

Proof 

1. Let w ∈ X∗ ⊆ (X ∪ Y)∗ be such that w ∈ L(M) . Then by 
Definition 2.14, �∗(I,w) ∩ H ≠ � . Now, since w ∈ X∗ we 
get that 

 . Thus (� ∪ �)∗(I,w) ∩ H ≠ � as �∗(I,w) ∩ H ≠ � . Thus 
w ∈ L(M�) . Similarly, if w ∈ L(M) ⟹ �∗(I,w) ∩ H ≠ � 
⟹ (� ∪ �)∗(I,w) ∩ H ≠ � ⟹ w ∈ L(M�).

2. Let w� ∈ (X ∪ Y)∗ such that w� ∈ L(M�) (resp. L(M)) Then 
(� ∪ �)∗(I,w�) ∩ H ≠ � (resp. (� ∪ �)∗(I,w�) ∩ H ≠ �) . 
We have following cases: 

(a) If w� ∈ X∗ , then 

 Then for w� ∈ L(M�) , 

 and for w� ∈ L(M�) , 

(b) If w� ∉ X∗ . Let w� = a1a2 … an , where ai ∈ X ∪ Y  
for 1 ≤ i ≤ n . Consider, 

(� ∪ �)∗(I,w) = �∗(I,w) and (� ∪ �)∗(I,w) = �∗(I,w).

(� ∪ �)∗(I,w′) = �∗(I,w′) and

(� ∪ �)∗(I,w′) = �∗(I,w′).

�∗(I,w�) ∩ H ≠ � ⟹ w� ∈ L(M),

�∗(I,w�) ∩ H ≠ � ⟹ w� ∈ L(M).

(� ∪ �)∗(I,w′) = (� ∪ �)∗(I, a1a2 … an)

= (� ∪ �)D
(

(� ∪ �)∗(I, a1a2 … an−1), an
)

= (� ∪ �)D
(

(� ∪ �)D
(

(� ∪ �)∗(I, a1a2 … an−2), an−1
)

, an
)

⋮

= (� ∪ �)D
(

(� ∪ �)D
(

…(� ∪ �)D
(

(� ∪ �)(I, a1), a2
)

,… , an−1
)

, an
)

.
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 Now, if a1 ∈ X then (� ∪ �)(I, a1) = �(I, a1) . If 
not, then (� ∪ �)(I, a1) = �(I, a1) = �(I, b1) for 
some b1 ∈ X such that b1 ≡ a1 . Thus we will have 

 Continuing the same process for all remaining 
symbols we get; 

 Let w = b1b2 … bn and since bi ∈ X, 1 ≤ i ≤ n , 
we have w ∈ X∗ . Thus, finally we get that for 
w� = a1a2 … an ∈ (X ∪ Y)∗ ; 

 where,  w′ ≡ w  .  Since w
� ∈ L(M�) ⟹

(� ∪ �)∗(I,w�) ∩ H ≠ �  ⟹ �∗(I,w) ∩ H ≠ �

⟹ w ∈ L(M).
   Steps for the upper approximation follow in the simi-

lar manner.

3.2  Rough finite state automata for SC with respect 
to external alphabet

In Definition 3.1, we have taken X ∪ Y as the alphabet set for 
RFSA for SC M′ under equivalent concept and the transition 
map for M′ is � ∪ � . But in some problems, users may wish 
to use their own alphabets Y (external alphabet, cf., [22]) 
only. In that case, the RFSA for SC can be formulated as in 
Definition 3.5.

Definition 3.5 Let M = (Q,R,X, �, I,H) be a RFSA defined 
in Definition 2.9. A rough finite state automaton with 
respect to external alphabet Y (RFSA)SCEA is an eight-tuple 
M� = (Q,R,X, Y , �, � , I,H) , where 

 (i) Y and � are same as that of Definition 3.1.
 (ii) Y is the alphabet for M′ and � is the transition map for 

M′.

M′ is said to be semantic expansion of M w.r.t. external 
words or symbols.
Definition 3.6 The block transition map of M′ is 
�D ∶ D × Y → A defined for all blocks D� ∈ D , and y ∈ Y as:

(� ∪ �)D
(
(� ∪ �)D

(
…(� ∪ �)D

(
(� ∪ �)(I, a

1

), a
2

)
,… , a

n−1

)
, a

n

)

= (� ∪ �)D
(
(� ∪ �)D

(
…(� ∪ �)D

(
�(I, b

1

), a
2

)
,… , a

n−1

)
, a

n

)
.

(� ∪ �)D
(
(� ∪ �)D

(
…(� ∪ �)D

(
(� ∪ �)(I, a

1

), a
2

)
,… , a

n−1

)
, a

n

)

= �D
(
�D

(
… �D

(
�(I, b

1

), b
2

)
,… , b

n−1

)
, b

n

)

= �∗(I, b
1

b
2

… b
n
).

(� ∪ �)∗(I,w�) = �∗(I,w)

Definition 3.7 To define the notion of rough language 
accepted by M′ , the rough transition map � of M′ can be 
extended to �∗ ∶ Q × Y∗

→ A : 

 (i) �∗(q, �) =
(
[q], [q]

)
 , for all q ∈ Q.

 (ii) �∗(q,wy) =
(
�∗(q,wy), �∗(q,wy)

)
 , such that 

 for all q ∈ Q,w ∈ Y∗ and y ∈ Y .

Definition 3.8 Let  M� = (Q,R,X, Y , �, � , I,H) be a 
RFSASCEA . The language accepted by M′ denoted as 
L(M�) = (L(M�),L(M�)) is a rough subset of Y∗ , where

The L(M�) is the set of strings definitely accepted by M′ 
and L(M�) is the set of strings possibly accepted by M′.

Suppose M = (Q,R,X, �, I,H) is a RFSA with input 
alphabet X = {x1, x2,… , xn} such that x1 ≢ x2 ≢ ⋯ ≢ xn . 
Let O be the ontology provided by some user willing to 
apply on M using his/her own symbols or words. Then 
an external alphabet Y = {y1, y2,… , ym} generated using 
algorithm given in [22] is subsumed by X in the sense of 
semantics denoted as Y ⊆s X , i.e., for any yi ∈ Y , 1 ≤ i ≤ m , 
∃ xj ∈ X, 1 ≤ j ≤ n such that xj ≡ yi in O. Thus |Y| ≤ |X| .

For semantic extension M� = (Q,R,X, Y , �, � , I,H) 
of RFSA M = (Q,R,X, �, I,H) with respect to external 
alphabet, the string w definitely (or possibly) accepted 
by RFSASCEA M′ is said to be definitely (or possibly) 
accepted by RFSA M at semantic level and denoted as 
w ∈s L(M) (or L(M)).

Theorem  3.2 Let M = (Q,R,X, �, I,H) be a RFSA 
and M� = (Q,R,X, Y , �, � , I,H) be a RFSASCEA , where 
X = {x1, x2,… , xn} and Y = {y1, y2,… , ym} . Then 

1. I f  Y ⊆s X  ,  then for any w� ∈ Y∗ such that 
w� ∈ L(M�) (or w� ∈ L(M�)) , there exists w ∈ X∗ such 
that w ∈ L(M) (or w ∈ L(M)).

2. If Y =s X . 

�D(D′, y) =
(

�D(D′, y), �D(D′, y)
)

, where

�D(D′, y) = ∪ {�(q, y):q ∈ B ⊆ D′,B ∈ Q∕R} and �D(D′, y)

= ∪ {�(q, y):q ∈ B ⊆ D′,B ∈ Q∕R}.

�∗(q,wy) = �D
(
�∗(q,w), y

)
and �∗(q,wy) = �D

(
�∗(q,w), y

)
,

L(M�) = {w ∈ Y∗| �∗(I,w) ∩ H ≠ �}

and L(M�) = {w ∈ Y∗| �∗(I,w) ∩ H ≠ �}.
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(a) for any w ∈ X∗ such that w ∈ L(M) (resp. L(M)) , ∃ 
w� ∈ Y∗ such that w� ∈ L(M�) (resp. L(M�)),

(b) for any w� ∈ Y∗ such that w� ∈ L(M�) (resp. L(M�)) , ∃ 
w ∈ X∗ such that w ∈ L(M) (resp. L(M)).

Proof 

1. Let Y ⊆s X and w� = y1y2 … yk , where yi ∈ Y , 1 ≤ i ≤ k . 
Then w� ∈ L(M�) implies that �∗(I,w�) ∩ H ≠ � . Now, 
by Definition 2.11

 and w� ∈ L(M�) implies that �∗(I,w�) ∩ H ≠ � . 

 Since Y ⊆s X , corresponding to each yi, 1 ≤ i ≤ k , ∃ 
xj ∈ X, 1 ≤ j ≤ k  s u c h  t h a t  xj ≡ yi  .  T h e n 
�(I, y1) = �(I, x1) (see Definition 3.1). Thus continuing 
the process for the rest symbols, we finally get a string 
w = x1x2 … xk ∈ X∗ such that 

 and 

�∗(I,w�) =�∗(I, y1y2 … yk)

=�D
(
�∗(I, y1y2 … yk−1), yk

)

=�D
(
�D

(
�∗(I, y1y2 … yk−2), yk−1

)
, yk

)

⋮

=�D
(
�D

(
… �D

(
�(I, y1), y2

)
,… , yk−1

)
, yk

)

�∗(I,w�) =�∗(I, y1y2 … yk)

=�D
(
�∗(I, y1y2 … yk−1), yk

)

=�D
(
�D

(
�∗(I, y1y2 … yk−2), yk−1

)
, yk

)

⋮

=�D
(
�D

(
… �D

(
�(I, y1), y2

)
,… , yk−1

)
, yk

)
.

�∗(I,w�) =�D
(
�D

(
… �D

(
�(I, y1), y2

)
,… , yk−1

)
, yk

)

=�D
(
�D

(
… �D

(
�(I, x1), x2

)
,… , xk−1

)
, xk

)

=�∗(I,w),

 T h e n 
w′ ∈ L(M′) ⟹ w ∈ L(M) a nd w′ ∈ L(M′) ⟹ w′ ∈ L(M).

2. If Y =s X . 

(a) Let w = x1x2 … xl; xi ∈ X, 1 ≤ i ≤ l be any string 
in X∗ such that w ∈ L(M) . Now, 

 Since Y =s X , corresponding to each xi, 1 ≤ i ≤ l , 
∃ yi ∈ Y  , 1 ≤ i ≤ l such that xi ≡ yi . Then 
�(I, x1) = �(I, y1) (see definition of � in Definition 
3.1). Thus continuing in this manner, we shall get 
a string w� = y1y2 … yl ∈ Y∗ such that 

 Similarly, �∗(I,w) = �∗(I,w�) . Now, 

 Thus, w� ∈ L(M�) , and in same manner, 
w ∈ L(M) ⟹ w� ∈ L(M�).

(b) Since Y =s X , this implies Y ⊆s X and we have 
proved in part 1 of this theorem that for any 
w� ∈ Y∗ such that w� ∈ L(M�) (resp. L(M�)) there 
exists w ∈ X∗ such that w ∈ L(M) (resp. L(M)).

�∗(I,w�) =�D
(
�D

(
… �D

(
�(I, y1), y2

)
,… , yk−1

)
, yk

)

=�D
(
�D

(
… �D

(
�(I, x1), x2

)
,… , xk−1

)
, xk

)

=�∗(I,w).

�∗(I,w) =�∗(I, x
1

x
2

… x
l
)

=�D
(
�∗(I, x

1

x
2

… x
l−1), xl

)

=�D
(
�D

(
�∗(I, x

1

x
2

… x
l−2), xl−1

)
, x

l

)

⋮

=�D
(
�D

(
… �D

(
�(I, x

1

), x
2

)
,… , x

l−1

)
, x

l

)
.

�∗(I,w) =�D
(

�D
(

… �D
(

�(I, x1), x2
)

,… , xl−1
)

, xl
)

=�D
(

�D
(

… �D
(

�(I, y1), y2
)

,… , yl−1
)

, yl
)

=�∗(I,w′).

w ∈ L(M) ⟹ �∗(I,w) ∩ H ≠ � ⟹ �∗(I,w′) ∩ H ≠ �.
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4  Fuzzy finite rough automata as a model 
for semantic computing

In previous section, we have extended the computational 
model RFSA to RFSA for SC under equivalent concepts 
which are special kind of semantic relations. In this section, 
we first define fuzzy finite rough automaton corresponding 
to a fuzzy finite automaton taking the membership values in 
unit interval [0, 1], which we further extend for models of 
SC through two different approaches.

4.1  Fuzzy finite rough automaton corresponding 
to a fuzzy finite automaton

Definition 4.1 Let M = (Q,X, �, I,H) be a FFA and 
let R be a fuzzy relation on Q such that (Q, R) being a 
fuzzy approximation space. Then the fuzzy finite rough 
automaton (FFRA) corresponding to M is a six-tuple 
M1 = (Q,R,X, �1, I1,H1) , where 

 (i) Q and X are same as in the case of FFA M of Defini-
tion 2.7.

 (ii) I1 ∈ [0, 1]Q × [0, 1]Q is a fuzzy rough set of initial 
states, i.e., I1 = (I1, I1) , where 

 (iii) H1 ∈ [0, 1]Q × [0, 1]Q is a fuzzy rough set of final 
states, i.e., H1 = (H1,H1) , where 

 (iv) �1 ∶ Q × X → [0, 1]Q × [0, 1]Q is the fuzzy transition 
map such that for each q ∈ Q and x ∈ X , 

 is a fuzzy rough set of states, where 

Remark 4.1 The fuzzy rough transition �1 can naturally be 
extended to

 and defined   as

and �∗
1
(q,wa) =

(
�∗
1
(q,wa), �∗

1
(q,wa)

)
 , where

I1(q) = R(I)(q), I1(q) = R(I)(q), ∀q ∈ Q.

H1(q) = R(H)(q), H1(q) = R(H)(q), ∀q ∈ Q.

�1(q, x) = (�1(q, x), �1(q, x))

�1(q, x)(p) = R(�(q, x))(p) and

�1(q, x)(p) = R(�(q, x))(p)

�1
∗ ∶ Q × X∗

→ [0, 1]Q × [0, 1]Q

(1)�∗
1
(q, �) =

(
1∕q, 1∕q

)
∀q ∈ Q

for all q ∈ Q, p ∈ Q,w ∈ X∗ and a ∈ X.

Definition 4.2 Let M = (Q,X, �, I,H) be a FFA and 
M1 = (Q,R,X, �1, I1,H1) be a FFRA corresponding to M and 
w ∈ X∗ , then the degree to which w is accepted definitely 
by M1 is:

and the degree to which w is accepted possibly by M1 is 
given by

Definition 4.3 The fuzzy rough language accepted by M1 
is L(M1) = (L(M1),L(M1)) , where L(M1) and L(M1) are 
fuzzy sets of X∗ and defined as

4.2  Fuzzy finite rough automata for SC 
under semantically related concepts

Fuzzy finite automata for SC under semantically related 
concepts is defined in Jiang [22]. Herein, we introduce and 
study fuzzy finite rough automata for SC under semantically 
related concepts. Now, we begin with following definition.

Definition 4.4 Let M1 = (Q,R,X, �1, I1,H1) be a (FFRA) 
corresponding to FFA M = (Q,X, �, I,H) . A fuzzy finite 
rough automaton for SC under semantically related con-
cepts (FFRA)SCRC is a system M�

1
= (Q,R,X, Y , �1, �1, I1,H1) , 

where 

 (i) Q,R, I1 and H1 are same as defined for FFRA in 
Definition 4.1

 (ii) X is the internal alphabet of M′
1
.

 (iii) Y ⊆ Ω is the external alphabet of M′
1
 , where Ω is the 

set of all words or symbols.
 (iv) X ∪ Y  is the alphabet for M′

1
.

 (v) �1 is the internal transition map for M′
1
.

 (vi) �1 ∶ Q × Y → [0, 1]Q × [0, 1]Q is the external transi-
tion map for M′ defined as: 

(2)
�∗
1
(q,wa)(p) = ∨{�∗

1
(q,w)(r) ∧ �1(r, a)(p) ∶ r ∈ Q}, and

(3)�∗
1
(q,wa)(p) = ∨{�∗

1
(q,w)(r) ∧ �1(r, a)(p) ∶ r ∈ Q},

dM1
(w) = ∨{I1(q) ∧ �∗

1
(q,w)(p) ∧ H1(p) ∶ q, p ∈ Q}

d
M1
(w) = ∨{I1(q) ∧ �∗

1
(q,w)(p) ∧ H1(p) ∶ q, p ∈ Q}.

L(M1) = {(w, dM1
(w)) ∶ w ∈ X∗}

and L(M1) = {(w, d
M1
(w)) ∶ w ∈ X∗}.
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 where the terms 

 denote the multiplication of parameter sim(y, x) with 
fuzzy sets �1(q, x) and �1(q, x) , respectively.

 (vii) �1 ∪ �1 is the transition map for M′
1
.

Remark 4.2 The use of semantic similarity to define exter-
nal transition map �1 in Definition 4.4 may have different 
approaches as suggested in Remark 1 of [22].

R e m a r k  4 . 3  T h e  t r a n s i t i o n  m a p  �1 ∪ �1 o f 
(FFRA)SCRC  M′

1
 c an  fu r t he r  be  ex t ended  to 

(�1 ∪ �1)
∗ ∶ Q × (X ∪ Y)∗ → [0, 1]Q × [0, 1]Q as follows:

for all q ∈ Q, p ∈ Q,w ∈ (X ∪ Y)∗ and a ∈ (X ∪ Y).

Definition 4.5 Let M�
1
= (Q,R,X, Y , �1, �1, I1,H1) be a 

(FFRA)SCRC and w ∈ (X ∪ Y)∗ . Then the degree to whichw 
is accepted definitely by M′

1
 is defined as

and the degree to whichw is accepted possibly by M′
1
 is 

defined as

�1(q, y) = (�1(q, y), �1(q, y))

�1(q, y) = ∪
x∈X

{sim(y, x) × �1(q, x)}

�1(q, y) = ∪
x∈X

{sim(y, x) × �1(q, x)},

(sim(y, x) × �1(q, x))(p) = sim(y, x) × �1(q, x)(p),

(sim(y, x) × �1(q, x))(p) = sim(y, x) × �1(q, x)(p),∀p ∈ Q,

(�1 ∪ �1)
∗(q, �) =

(
1∕q, 1∕q

)
∀q ∈ Q

(�1 ∪ �1)
∗(q,wa) =

(
(�1 ∪ �1)

∗(q,wa), (�1 ∪ �1)
∗(q,wa)

)
, where

(4)
(�1 ∪ �1)

∗(q,wa)(p)

= ∨{(�1 ∪ �1)
∗(q,w)(r) ∧ (�1 ∪ �1)(r, a)(p) ∶ r ∈ Q}

(5)
(�1 ∪ �1)

∗(q,wa)(p)

= ∨{(�1 ∪ �1)
∗(q,w)(r) ∧ (�1 ∪ �1)(r, a)(p) ∶ r ∈ Q}

dM�
1
(w) = ∨{I1(q) ∧ (�1 ∪ �1)

∗(q,w)(p) ∧ H1(p) ∶ q, p ∈ Q}

Definition 4.6 The language accepted by (FFRA)SCRC M′
1
 is 

a  fuzzy rough subset  of  (X ∪ Y)∗ denoted by 
L(M�

1
) = (L(M�

1
),L(M�

1
)) , where L(M�

1
) and L(M�

1
) are fuzzy 

sets of (X ∪ Y)∗ and defined as

Following the notion of semantically related concepts 
introduced in Jiang [22], we now demonstrate how fuzzy 
finite rough automata for SC under semantically related 
concepts M′

1
 , corresponding to a fuzzy finite automaton M 

defined in Definition 4.4 can be designed to process an exter-
nal alphabet Y which is not the part of original alphabet X of 
M, but members of Y are semantically related with elements 
of original input alphabet X of M.

Example 4.1 Consider a FFA M = (Q,X, �, I,H) , where 
Q = {q0, q1, q2}, X = {a1, a2} , where a1=Artificial Intel-
ligence a2=Autoimmune Disease and

be the fuzzy sets of initial states and final states, respectively. 
The transition map for M is defined in the following diagram 
(Fig. 1):

The user may formulate FFRA M1 corresponding to M 
as follows.

Let R be a fuzzy relation defined on Q given by 
the Table  3. Then the FFRA corresponding to M is 
M1 = (Q,R,X, �1, I1,H1) , where Q and X are same as defined 

d
M�

1

(w) = ∨{I1(q) ∧ (�1 ∪ �1)
∗(q,w)(p) ∧ H1(p) ∶ q, p ∈ Q}.

L(M�
1
) = {(w, dM�

1
(w)) ∶ w ∈ (X ∪ Y)∗}

L(M�
1
) = {(w, d

M�
1

(w)) ∶ w ∈ (X ∪ Y)∗}.

I =
0.5

q1
, H =

0.8

q2

Fig. 1  Transition diagram for M for Example 4.1

Table 3  Fuzzy relation R for 
FFRA M

1

 Example 4.1
q
0

q
1

q
2

q
0

1 0.2 0.4
q
1

0.3 1 0
q
2

0 0.7 1

Table 4  Transition table for M
1

 Example 4.1

Q �
1

(q, a
1

) �
1

(q, a
2

)

q
0

(
0.6

q
1

,

0.2

q
0

+
0.6

q
1

+
0.6

q
2

) (
�,�

)

q
1

(
�,�

) (
0.3

q
2

,

0.4

q
0

+
0.6

q
2

)

q
2

(
0.3

q
2

,

0.4

q
0

+
0.4

q
2

) (
�,�

)
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for M and I1 being the fuzzy rough set of initial states such 
that:

and H1 ∈ [0, 1]Q × [0, 1]Q be the fuzzy rough set of final 
states of M1 such that

The fuzzy rough transition �1 for M1 obtained using Defini-
tion 4.1 is given in the Table 4 below:

The above designed FFRA M1 is able to process input 
from X and capture not only vagueness of next transi-
tion state but also the uncertainty involved in transi-
tion of M. Now, suppose a user want to use above fuzzy 
finite automata M1 with input alphabet Y = {b1, b} , where 
(b1 = Fuzzy Logic and b2 = Optic Neuritis) , then user fails 
to use it with input alphabet Y because Y is not the part of 
input set of M1 . But, from Wikipedia category structure user 
can identify that b1 is a subcategory of a1 (b1 < a1) and b2 is 
a subcategory of a2 (b2 < a2) and their semantic relatedness 
is defined as sim(ai, bi) = 0.8 for ai < bi or bi < ai otherwise, 
sim(ai, bj) = 0.2 ;i ≠ j . Then he/she may use Definition 4.4, 
to redefine M1 to produce FFRA for SC under semantically 
related concepts M′

1
 , with transition function given as

I1(q0) = R(I)(q0) = ∧
p∈Q

{(1 − R(q0, p)) ∨ �I(p)} = 0

I1(q1) = R(I)(q1) = ∧
p∈Q

{(1 − R(q1, p)) ∨ �I(p)} = 0.5

I1(q2) = R(I)(q2) = ∧
p∈Q

{(1 − R(q2, p)) ∨ �I(p)} = 0

I1(q0) = R(I)(q0) = ∨
p∈Q

{R(q0, p) ∧ �I(p)} = 0.2

I1(q1) = R(I)(q1) = ∨
p∈Q

{R(q1, p) ∧ �I(p)} = 0.5

I1(q2) = R(I)(q2) = ∨
p∈Q

{R(q2, p) ∧ �I(p)} = 0.5.

H1(q0) = R(H)(q0) = ∧
p∈Q

{(1 − R(q0, p)) ∨ �H(p)} = 0

H1(q1) = R(H)(q1) = ∧
p∈Q

{(1 − R(q1, p)) ∨ �H(p)} = 0

H1(q2) = R(H)(q2) = ∧
p∈Q

{(1 − R(q2, p)) ∨ �H(p)} = 0.3

H1(q0) = R(H)(q0) = ∨
p∈Q

{R(q0, p) ∧ �H(p)} = 0.4

H1(q1) = R(H)(q1) = ∨
p∈Q

{R(q1, p) ∧ �H(p)} = 0

H1(q2) = R(H)(q2) = ∨
p∈Q

{R(q2, p) ∧ �H(p)} = 0.8.

�1(q0, b1)(q1) =
(
sim(b1, a1) × �1(q0, a1)(q1)

)
∨
(
sim(b1, a2) × �1(q0, a2)(q1)

)
= 0.48

�1(q0, b2)(q1) =
(
sim(b2, a1) × �1(q0, a1)(q1)

)
∨
(
sim(b2, a2) × �1(q0, a2)(q1)

)
= 0.12

�1(q0, b1) =
(
sim(b1, a1) × �1(q0, a1)

)
∨
(
sim(b1, a2) × �1(q0, a2)

)
=

0.16

q0
+

0.48

q1
+

0.48

q2

�1(q0, b2) =
(
sim(b2, a1) × �1(q0, a1)

)
∨
(
sim(b2, a2) × �1(q0, a2)

)
=

0.04

q0
+

0.12

q1
+

0.12

q2
.

Thus, semantic extension of FFRA M1 is (FFRA)SCRC 
M�

1
= (Q,R,X, Y , �1, �1, I1,H1) , where external transition �1 

of M′
1
 is given in Table 5. 

Theorem 4.1 Let M1 = (Q,R,X, �1, I1,H1) be a FFRA cor-
responding to FFA M = (Q,X, �, I,H) and (FFRA)SCRC 
M�

1
= (Q,R,X, Y , �1, �1, I1,H1) be the semantic extension of 

M1 w.r.t. related concepts. Then the following properties 
hold: 

(1) For any w ∈ X∗ ; d
M
1

(w) = d
M

�
1

(w) and d
M1
(w) = d

M�
1

(w).
(2) For w� ∈ (X ∪ Y)∗ , if w′ is definitely (or possibly) 

accepted by M′
1
 with membership degree dM�

1
(w�) (resp. 

d
M�

1

(w�)) then there exists w ∈ X∗ such that 
dM�

1
(w�) ≤ dM1

(w) (resp. d
M�

1

(w�) ≤ d
M1
(w)).

Proof 

(1) Let w ∈ X∗ . Then (�1 ∪ �1)
∗(q,w) = �∗

1
(q,w) , 

(2) Let w� ∈ (X ∪ Y)∗ and w� = a1a2 … an such that 
ai ∈ (X ∪ Y), 1 ≤ i ≤ n . 

 (i) If w� ∈ X∗ . Then using part (1), we conclude that 

d
M�

1

(w) = ∨{I1(q) ∧ (�1 ∪ �1)
∗(q,w)(p) ∧ H1(p) ∶ q, p ∈ Q}

= ∨{I1(q) ∧ �∗
1
(q,w)(p) ∧ H1(p) ∶ q, p ∈ Q}

= d
M1

(w), and

dM�
1

(w) = ∨{I1(q) ∧ (�1 ∪ �1)
∗(q,w)(p) ∧ H1(p) ∶ q, p ∈ Q}

= ∨{I1(q) ∧ �∗
1
(q,w)(p) ∧ H1(p) ∶ q, p ∈ Q}

= dM1
(w).

Table 5  External transition of M′
1

 Example 4.1

Q �
1

(q, b
1

) �
1

(q, b
2

)

q
0

(
0.48

q
1

,

0.16

q
0

+
0.48

q
1

+
0.48

q
2

) (
0.12

q
1

,

0.04

q
0

+
0.12

q
1

+
0.12

q
2

)

q
1

(
0.06

q
2

,

0.08

q
0

+
0.12

q
2

) (
0.24

q
2

,

0.32

q
0

+
0.48

q
2

)

q
2

(
0.24

q
2

,

0.32

q
0

+
0.32

q
2

) (
0.06

q
2

,

0.08

q
0

+
0.08

q
2

)



4027International Journal of Machine Learning and Cybernetics (2022) 13:4013–4032 

1 3

 (ii) If w� ∉ X∗ . Let w′ be definitely accepted by M′
1
 

then we have that 

Also, by Equations 4 and 5, we have

Now, if a1 ∈ X then (�1 ∪ �1)(q, a1)(q1) = �1(q, a1)(q1) oth-
erwise we have

Then

Applying same condition to other symbols, we get

dM�
1
(w�) = dM1

(w�) and d
M�

1

(w�) = d
M1
(w�), i.e.,

dM�
1
(w�) ≤ dM1

(w�) and d
M�

1

(w�) ≤ d
M1
(w�).

dM�
1

(w�) = ∨{I
1

(q) ∧ (𝛿
1

∪ 𝛾
1

)∗(q,w)(p) ∧ H
1

(p) ∶ q, p ∈ Q} > 0.

(�
1

∪ �
1

)∗(q,w�)(p) = (�
1

∪ �
1

)∗(q, a
1

a
2

… an)(p)

= ∨
{
(�

1

∪ �
1

)∗(q, a
1

a
2

… an−1)(qn−1) ∧ (�
1

∪ �
1

)(qn−1, an)(p) ∶ qn−1 ∈ Q
}

= ∨
{(

∨ {(�
1

∪ �
1

)∗(q, a
1

a
2

… an−2)(qn−2) ∧ (�
1

∪ �
1

)(qn−2, an−1)(qn−1) ∶ qn−2 ∈ Q}
)
∧

(�
1

∪ �
1

)(qn−1, an)(p) ∶ qn−1 ∈ Q
}

⋮

= ∨

{(
∨

(
∨…

(
∨
{
(�

1

∪ �
1

)(q, a
1

)(q
1

) ∧ (�
1

∪ �
1

)(q
1

, a
2

)(q
2

) ∶ q
1

∈ Q
})

∧…

)
∧

(�
1

∪ �
1

)(qn−2, an−1)(qn−1) ∶ qn−2 ∈ Q

)
∧ (�

1

∪ �
1

)(qn−1, an)(p) ∶ qn−1 ∈ Q

}

= ∨
{
(�

1

∪ �
1

)(q, a
1

)(q
1

) ∧ (�
1

∪ �
1

)(q
1

, a
2

)(q
2

) ∧⋯ ∧ (�
1

∪ �
1

)(qn−1, an)(p) ∶ q
1

,… , qn−1 ∈ Q
}
.

(�1 ∪ �1)(q, a1)(q1) = �1(q, a1)(q1) = ∨
b1∈X

{sim(a1, b1) × �1(q, b1)(q1)}.

∨
{
(�

1

∪ �
1

)(q, a
1

)(q
1

) ∧ (�
1

∪ �
1

)(q
1

, a
2

)(q
2

) ∧⋯ ∧ (�
1

∪ �
1

)(qn−1, an)(p) ∶ q
1

,… , qn−1 ∈ Q
}

= ∨
{(

∨
b
1

∈X
{sim(a

1

, b
1

) × �
1

(q, b
1

)(q
1

)}
)
∧ (�

1

∪ �
1

)(q
1

, a
2

)(q
2

) ∧⋯∧

(�
1

∪ �
1

)(qn−1, an)(p) ∶ q
1

,… , qn−1 ∈ Q
}
.

(�
1

∪ �
1

)∗(q,w�)(p) = (�
1

∪ �
1

)∗(q, a
1

a
2

… an)(p)

= ∨
{
(�

1

∪ �
1

)(q, a
1

)(q
1

) ∧ (�
1

∪ �
1

)(q
1

, a
2

)(q
2

) ∧⋯ ∧ (�
1

∪ �
1

)(qn−1, an)(p) ∶ q
1

,… , qn−1 ∈ Q
}

= ∨
{(

∨
b
1

∈X
{sim(a

1

, b
1

) × �
1

(q, b
1

)(q
1

)}
)
∧
(

∨
b
2

∈X
{sim(a

2

, b
2

) × �
1

(q
1

, b
2

)(q
2

)}
)
∧…

∧
(

∨
bn∈X

{sim(an, bn) × �
1

(qn−1, bn)(p)}
)
∶ q

1

,… , qn−1 ∈ Q
}
.

Since dM�
1

(w�) = ∨{I
1

(q) ∧ (𝛿
1

∪ 𝛾
1

)∗(q,w�)(p) ∧ H
1

(p) ∶ q, p ∈ Q} > 0 , 
we have that sim(ai, bi) ∈ (0, 1] and for bi = ai ∈ X  , 
sim(ai, bi) = 1 . Let us denote w = b1b2 … bn . Then

C l e a r l y ,  s i n c e  sim(ai, bi) ∈ (0, 1]  ,  w e  h a v e 

(�1 ∪ �1)
∗(q,w�)(p) ≤ �∗

1
(q,w)(p) ,  i.e.,

�∗1 (q,w)(p) = �∗1 (q, b1b2 … bn)(p)

= ∨
{

�1(q, b1)(q1) ∧ �1(q1, b2)(q2)∧

⋯ ∧ �1(qn−1, bn)(p):q1,… , qn−1 ∈ Q
}

.

dM�
1
(w�) = ∨ {I1(q) ∧ (�1 ∪ �1)

∗(q,w)(p) ∧ H1(p) ∶ q, p ∈ Q}

≤ ∨ {I1(q) ∧ �∗
1
(q,w)(p) ∧ H1(p) ∶ q, p ∈ Q}

=dM1
(w).
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Thus, dM�
1
(w�) ≤ dM1

(w) . Similarly, if w′ is possibly accepted 
by M′

1
 then there exists w ∈ X∗ such that d

M�
1

(w�) ≤ d
M1
(w).

In Example 4.2, given below, we show that string 
b1a2b2 ∈ (X ∪ Y)∗ , the input alphabet of (FFRA)SCRC M′

1
 is 

definitely accepted by M′
1
 with degree 0.24 and it follows 

results in Theorem 4.1.

Example 4.2 Consider fuzzy finite rough automaton for SC 
defined in Example 4.1. Let w = b1a2b2 ∈ (X ∪ Y)∗ . Then 
by Definition 4.5,

By Equation (4), we have

Since b1, b2 ∈ Y  and a2 ∈ X;

Thus,

Then,

Also, we have

dM�
1
(w) = dM�

1
(b1a2b2)

= ∨{I1(q) ∧ (�1 ∪ �1)
∗(q, b1a2b2)(p) ∧ H1(p) ∶ q, p ∈ Q}

= I1(q0) ∧ (�1 ∪ �1)
∗(q0, b1a2b2)(q2) ∧ H1(q2).

(�1 ∪ �1)
∗(q0, b1a2b2)(q2) = ∨

{
(�1 ∪ �1)(q0, b1)(p) ∧ (�1 ∪ �1)(p, a2)(r) ∧ (�1 ∪ �1)(r, b2)(q2) ∶ p, r ∈ Q

}
.

(�1 ∪ �1)(q0, b1)(p) = �1(q0, b1)(p),

(�1 ∪ �1)(r, b2)(q2) = �1(r, b2)(q2),

(�1 ∪ �1)(p, a2)(r) = �1(p, a2)(r).

(�1 ∪ �1)
∗(q0, b1a2b2)(q2) = ∨{�1(q0, b1)(p) ∧ �1(p, a2)(r) ∧ �1(r, b2)(q2) ∶ p, r ∈ Q}

= �1(q0, b1)(q1) ∧ �1(q1, a2)(q2) ∧ �1(q2, b2)(q2)

= 0.48 ∧ 0.3 ∧ 0.24

= 0.24.

dM�
1
(b1a2b2) = I1(q0) ∧ (�1 ∪ �1)

∗(q0, b1a2b2)(q2) ∧ H1(q2)

= 0.5 ∧ 0.24 ∧ 0.3

= 0.24.

∨ {�1(q0, b1)(p) ∧ �1(p, a2)(r) ∧ �1(r, b2)(q2) ∶ p, r ∈ Q}

= ∨
{
∨ {sim(b1, a1) × �1(q0, a1)(p) ∶ a1 ∈ X} ∧ �1(p, a2)(r)∧

{∨{sim(b2, a1) × �1(r, a1)(q2) ∶ a1 ∈ X}} ∶ p, r ∈ Q
}

≤ ∨{�1(q0, a1)(p) ∧ �1(p, a2)(r) ∧ �1(r, a1)(q2) ∶ p, r ∈ Q}

= �∗(q0, a1a2a1)(q2),

i. e., corresponding to w = b1a2b2 ∈ (X ∪ Y)∗ ; we have 
w� = a1a2a1 ∈ X∗ with |w| = |w�| , and

 We conclude that dM�
1
(b1a2b2) ≤ dM1

(a1a2a1) . Similarly, one 
can verify that d

M�
1

(b1a2b2) ≤ d
M1
(a1a2a1).

For an FFRA for SC under semantically related concepts 
defined in Definition 4.4 user can use both alphabets X and 
Y just like in the case of RFSA for SC under equivalent 
concepts (Definition 3.1). Suppose, for some practical appli-
cations; any user wants to apply FFRA for SC with their 
alphabet (cf., [22] for details) only. Then similar to Defini-
tion 3.5, (FFRA)SCRC is formalized in a more general way in 
accordance with the present situation.

dM1
(a1a2a1) = I1(q0) ∧ �∗

1
(q, a1a2a1)(q2) ∧ H1(q2)

= 0.5 ∧ 0.3 ∧ 0.3

= 0.3.

4.3  Fuzzy finite rough automata for SC with respect 
to external alphabet

Herein, we define FFRA for SC with respect to external 
alphabets,

Definition 4.7 A fuzzy finite rough automaton for SC with 
respect to external alphabet (FFRA)SCEA is an eight tuples 

M�
1
= (Q,R,X, Y , �1, �1, I1,H1) , where 

 (i) M1 = (Q,R,X, �1, I1,H1) is a FFRA.
 (ii) Y and �1 are same as defined in Definition 4.4.
 (iii) Y is the alphabet of M′

1
.

 (vi) �1 ∶ Q × Y → [0, 1]Q × [0, 1]Q is the transition map 
for M′

1
.

The fuzzy rough transition map �1 of (FFRA)SCEA M′
1
 for 

SC w.r.t. external alphabet Y can further be extended to 
�∗
1
∶ Q × Y∗

→ [0, 1]Q × [0, 1]Q and defined as

�∗
1
(q, �) =

(
1∕q, 1∕q

)
∀q ∈ Q

�∗
1
(q,wa) =

(
�∗
1
(q,wa), �∗

1
(q,wa)

)
, where
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for all q ∈ Q, p ∈ Q,w ∈ Y∗ and a ∈ Y .

Definition 4.8 Let  M�
1
= (Q,R,X, Y , �1, �1, I1,H1) be 

a (FRA)SCEA and w ∈ Y∗ , then the degree to which w is 
accepted definitely by M′

1
 is

(6)�∗
1
(q,wa)(p) = ∨{�∗

1
(q,w)(r) ∧ �1(r, a)(p) ∶ r ∈ Q}

(7)�∗
1
(q,wa)(p) = ∨{�∗

1
(q,w)(r) ∧ �1(r, a)(p) ∶ r ∈ Q},

dM�
1
(w) = ∨{I1(q) ∧ �∗

1
(q,w)(p) ∧ H1(p) ∶ q, p ∈ Q}

Theorem 4.2 Let (FFRA)SCEA M�
1
= (Q,R,X, Y , �1, �1, I1,H1) 

be a semantic extension of FFRA M1 = (Q,R,X, �1, I1,H1) 
with respect to external alphabet. Then for any w� ∈ Y∗ such 
that dM�

1
(w�) > 0 or d

M�
1

(w�) > 0 , there exists a string w ∈ X∗ 
such that dM�

1
(w�) ≤ dM1

(w) or d
M�

1

(w�) ≤ d
M1
(w).

Proof Let w� = y1y2 … ym , where yi ∈ Y , 1 ≤ i ≤ m be defi-
nitely accepted by (FFRA)SCEA M′

1
 . i.e.,

Now,

dM�
1
(w�) = ∨{I1(q) ∧ 𝛾∗

1
(q,w�)(p) ∧ H1(p) ∶ q, p ∈ Q} > 0.

and the degree to whichw is accepted possibly by M′
1
 is

Definition 4.9 The language accepted by M′
1
 is a fuzzy 

rough subset of Y∗ denoted by L(M�
1
) = (L(M�

1
),L(M�

1
)) , 

where L(M�
1
) and L(M�

1
) are fuzzy sets of Y∗:

d
M�

1

(w) = ∨{I1(q) ∧ �∗
1
(q,w)(p) ∧ H1(p) ∶ q, p ∈ Q}.

L(M�
1
) = {(w, dM�

1
(w)) ∶ w ∈ Y∗}

L(M�
1
) = {(w, d

M�
1

(w)) ∶ w ∈ Y∗}.

�∗
1
(q,w�)(p) = �∗

1
(q, y1y2 … ym)(p)

= ∨
{
�∗
1
(q, y1y2 … ym−1)(qm−1) ∧ �1(qm−1, ym)(p) ∶ qm−1 ∈ Q

}

= ∨
{(

∨ {�∗
1
(q, y1y2 … ym−2)(qm−2) ∧ �1(qm−2, ym−1)(qm−1) ∶ qm−2 ∈ Q}

)
∧

�1(qm−1, am)(p) ∶ qm−1 ∈ Q
}

⋮

= ∨

{(
∨

(
∨…

(
∨
{
�1(q, y1)(q1) ∧ �1(q1, y2)(q2) ∶ q1 ∈ Q

})
∧…

)
∧

�1(qm−2, ym−1)(qm−1) ∶ qm−2 ∈ Q

)
∧ �1(qm−1, ym)(p) ∶ qm−1 ∈ Q

}

= ∨
{
�1(q, y1)(q1) ∧ �1(q1, y2)(q2) ∧⋯ ∧ �1(qm−1, ym)(p) ∶ q1,… , qm−1 ∈ Q

}
.

Now, by definition of �1 (Definition 4.4), we have

Also, since dM�
1
(w�) > 0 , we have sim(yi, xi) ∈ (0, 1] for 

1 ≤ i ≤ m . Thus,

�1(q, y1)(q1) = ∨
x1∈X

{sim(y1, x1) × �1(q, x1)(q1)}

�1(q1, y2)(q2) = ∨
x2∈X

{sim(y2, x2) × �1(q1, x2)(q2)}

⋮

�1(qm−1, ym)(p) = ∨
xm∈X

{sim(ym, xm) × �1(qm−1, xm)(p)}.

∨
{
�
1

(q, y
1

)(q
1

) ∧ �
1

(q
1

, y
2

)(q
2

) ∧⋯ ∧ �
1

(q
m−1, ym)(p) ∶ q

1

,… , q
m−1 ∈ Q

}

= ∨

{(
∨

x
1

∈X

{
sim(y

1

, x
1

) × �
1

(q, x
1

)(q
1

)
})

∧
(

∨
x
2

∈X

{
sim(y

2

, x
2

) × �
1

(q
1

, x
2

)(q
2

)
})

∧⋯∧

(
∨

x
m
∈X

{
sim(y

m
, x

m
) × �

1

(q
m−1, xm)(p)

})
∶ q

1

,… , q
m−1 ∈ Q

}

= ∨

{
∨
{(

sim(y
1

, x
1

) × �
1

(q, x
1

)(q
1

)
)
∧
(
sim(y

2

, x
2

) × �
1

(q
1

, x
2

)(q
2

)
)
∧⋯∧

(
sim(y

m
, x

m
) × �

1

(q
m−1, xm)(p)

)
∶ x

1

, x
2

,… , x
n
∈ X

}
∶ q

1

,… , q
m−1 ∈ Q

}

≤ ∨
{
�
1

(q, x
1

)(q
1

) ∧ �
1

(q
1

, x
2

)(q
2

) ∧⋯ ∧ �
1

(q
m−1, xm)(p) ∶ q

1

,… , q
m−1 ∈ Q

}

( since sim(y
i
, x

i
) ∈ (0, 1], 1 ≤ i ≤ m)

= �∗
1

(q, x
1

x
2

… x
m
)(p).
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Let us represent x1x2 … xm = w and clearly w ∈ X∗ . Thus, 
corresponding to w� = y1y2 … ym ∈ Y∗ , we got a string 
w ∈ X∗ with |w| = |w�| such that

   and   

(proceeding the same steps performed for transition of lower 
approximation). Then

and

 In Example 4.3, given below we show that string b1b2 ∈ Y∗ 
from the input alphabet Y of (FFRA)SCEA M′

1
 is defi-

nitely accepted by M′
1
 with degree 0.24, where as string 

w� = a1a2 ∈ X∗ from the input alphabet X of FFRA M1 is def-
initely accepted by M1 and it follows results in Theorem 4.2.

Example 4.3 Consider FFRA for SC defined in Example 4.1. 
Let w = b1b2 ∈ Y∗ . Then by Definition 4.8,

By Equation (6), we have

Then,

Also, we have

�∗
1
(q,w�)(p) ≤ �∗

1
(q,w)(p)

�∗
1
(q,w�)(p) ≤ �∗

1
(q,w)(p)

I1(q) ∧ �∗
1
(q,w�)(p) ∧ H1(p) ≤ I1(q) ∧ �∗

1
(q,w)(p) ∧ H1(p)

I1(q) ∧ �∗
1
(q,w�)(p) ∧ H1(p) ≤ I1(q) ∧ �∗

1
(q,w)(p) ∧ H1(p)

⟹ ∨{I1(q) ∧ �∗
1
(q,w�)(p) ∧ H1(p) ∶ q, p ∈ Q} ≤ ∨{I1(q) ∧ �∗

1
(q,w)(p) ∧ H1(p) ∶ q, p ∈ Q}

and ∨ {I1(q) ∧ �∗
1
(q,w�)(p) ∧ H1(p) ∶ q, p ∈ Q} ≤ ∨{I1(q) ∧ �∗

1
(q,w)(p) ∧ H1(p) ∶ q, p ∈ Q}

⟹ dM�
1
(w�) ≤ dM1

(w) and d
M�

1

(w�) ≤ d
M1
(w).

dM�
1
(w) = dM�

1
(b1b2)

= ∨{I1(q) ∧ �∗
1
(q, b1b2)(p) ∧ H1(p) ∶ q, p ∈ Q}

= I1(q0) ∧ �∗
1
(q0, b1b2)(q2) ∧ H1(q2).

�∗
1
(q0, b1b2)(q2) = ∨

{
�1(q0, b1)(p) ∧ �1(p, b2)(q2) ∶ p ∈ Q

}
.

dM�
1
(b1b2) = I1(q0) ∧ �1(q0, b1)(q1) ∧ �1(q1, b2)(q2) ∧ H1(q2)

= 0.5 ∧ 0.48 ∧ 0.24 ∧ 0.3

= 0.24.

(since b1, b2 ∈ Y  with semantic relation b1 < a1 , 
b2 < a2 and we have defined sim(bi, ai) = 0.8 , i ∈ 1, 2 
and sim(bi, aj) = 0.2 for i ≠ j ), i.e., corresponding to 
w = b1b2 ∈ Y∗ ; we have w� = a1a2 ∈ X∗ with |w| = |w�| , and

 Here, we conclude that dM�
1
(b1b2) ≤ dM1

(a1a2) . In a similar 
way, one can verify that d

M�
1

(b1b2) ≤ d
M1
(a1a2).

5  Conclusion

Motivated by the usefulness of semantic computing tech-
niques to handle information from the dataset obtained by 
real-world applications and their applications in the theory 
of computation proposed and studied in [20, 22, 61], we 
have introduced two new models of computation for SC, 
one is RFSA for SC, and another is FFRA for SC corre-
sponding to a given FFSA. The proposed RFSA for SC is 
a mathematical model of natural language, which not only 
captures the incomplete and insufficient information in 
the dataset obtained from real-world applications but also 
accepts semantically equivalent incomplete and insufficient 
input information (see Example 3.1), and also external input 
from the dataset obtained by real-world applications. How-
ever, traditional RFSA in [5] accepts only incomplete and 
insufficient input information from the dataset obtained from 
real-world applications, and computing model finite autom-
ata for SC in [22] accepts only semantically equivalent input 
information and external input from the dataset obtained by 
real-world applications. Our second proposed model FFRA 
for SC corresponding to a given FFSA, is another mathemat-
ical model of computation which can accept semantically 

∨ {�
1

(q
0

, b
1

)(p) ∧ �
1

(p, b
2

)(q
2

) ∶ p ∈ Q}

= ∨
{
∨ {sim(b

1

, a
1

) × �
1

(q
0

, a
1

)(p) ∶ a
1

∈ X}∧

{∨{sim(b
2

, a
2

) × �
1

(p, a
2

)(q
2

) ∶ a
2

∈ X}} ∶ p ∈ Q
}

≤ ∨{�
1

(q
0

, a
1

)(p) ∧ �
1

(p, a
2

)(q
2

)} = �∗(q
0

, a
1

a
2

)(q
2

),

dM1
(a1a2) = ∨{I1(q) ∧ �∗

1
(q, a1a2)(p) ∧ H1(p) ∶ q, p ∈ Q}

= 0.5 ∧ 0.3 ∧ 0.3

= 0.3.
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related input (see Examples 4.1 and 4.2), and external input 
alphabet information from the dataset obtained from real-
world applications, in the vague and incomplete environ-
ment, whereas the computing model FFSA accept crisp 
input information from the dataset obtained by real-world 
applications and computing model finite automata based on 
SC in [22] accept crisp input and semantically related input, 
and external input alphabet information from the dataset 
obtained by real-world applications. For an FFRA for SC 
under semantically related concepts defined in Definition 
4.4 user can use both alphabets X and Y just like in the case 
of RFSA for SC under equivalent concepts (Definition 3.1). 
Suppose, for some practical applications; any user wants to 
apply FFRA for SC with their alphabet (cf., [22] for details) 
only. Then similar to Definition 3.5, (FFRA)SCRC is formal-
ized in a more general way in accordance with the present 
situation. Moreover, We have shown that the proposed mod-
els of computations RFSA for SC and FFRA for SC provide 
better user experience and applications as compared to exist-
ing models of computations or existing models of computa-
tions for SC. We feel that concepts discussed in this paper 
help researchers to define more general hybrid models of 
computations for SC.
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