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Abstract
The phenomenon of Adversarial Examples has become one of the most intriguing topics associated to deep learning. The 
so-called adversarial attacks have the ability to fool deep neural networks with inappreciable perturbations. While the 
effect is striking, it has been suggested that such carefully selected injected noise does not necessarily appear in real-world 
scenarios. In contrast to this, some authors have looked for ways to generate adversarial noise in physical scenarios (traffic 
signs, shirts, etc.), thus showing that attackers can indeed fool the networks. In this paper we go beyond that and show that 
adversarial examples also appear in the real-world without any attacker or maliciously selected noise involved. We show 
this by using images from tasks related to microscopy and also general object recognition with the well-known ImageNet 
dataset. A comparison between these natural and the artificially generated adversarial examples is performed using distance 
metrics and image quality metrics. We also show that the natural adversarial examples are in fact at a higher distance from 
the originals that in the case of artificially generated adversarial examples.
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1 Introduction

Adversarial examples are one the most clear examples of the 
current flaws in deep learning methods. They are images that 
are altered so that neural networks fail to classify them, even 
though they are identical for a human. The phenomenon is 
illustrated in Fig. 1.

Most of the methods related to this topic are based on 
crafting adversarial examples with artificial (calculated 
by algorithms) and carefully selected noise to make the 
networks fall into potential missclassifications [2]. Other 
works are aimed at increasing robustness to such adversarial 
“attacks”, so they are called adversarial “defenses”. Parallel 
to this, there is an intense discussion about the provenance 
of this phenomenon [1, 3], due to its importance in terms of 
security and reliability of systems that could govern future 
self-driving vehicles, access control or medical diagnosis 
systems.

It seems clear that further analysis on this phenomenon 
is important, since there are evident flaws in deep learning 

models that are not taken into consideration with current 
research of “traditional” attacks and defenses. It has deep 
impact on performance and security in systems that need to 
be reliable. For example, as [4] states, a classifier that per-
forms worse on a real-world distribution than on a hypotheti-
cal Lp radius ball of artificial perturbations, may be useless 
or not desirable.

On the other hand, it is not clear if these customized per-
turbations are relevant to critical systems such as autono-
mous vehicles. In works like [5], it is claimed that adversar-
ial examples are not much of a problem for such systems. In 
that work the authors contend that the continuous oscillation 
of the angle and viewing size of the objects mitigates their 
occurrence. However, even though this kind of noise does 
not manifest in real-world scenarios so frequently, it can be 
crafted so that it puts models at risk [6]. In this context, our 
work shows that this noise is present in the real world (and 
causes adversarial examples as well).

In the main line of research for adversarial examples, 
attack algorithms are developed to get information about 
the model. If they have access to the internal parameters, 
they are called white-box attacks. When they get informa-
tion only about the label decision they are called black-
box attacks. Independently of this, both approaches try to 
figure out how to perturb the original image to induce the 
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gradient of the model to flow towards another class differ-
ent than the original. If the resulting class does not matter, 
it is called an untargeted attack. If a specified output class 
is enforced, it is called a targeted attack.

In this paper, we study the phenomenon of adversarial 
examples that are produced without the intervention of any 
algorithm. They could appear, for example, because of the 
noise present in an image that is naturally introduced when 
captured from real world using any camera-like device. 
As a way to differentiate them from (artificial) adversarial 
examples, these are called “natural adversarial examples”. 
Therefore, this paper aims to develop further knowledge 
on natural adversarial examples. The main contributions 
are:

– Presentation of robust evidence of the existence of 
natural adversarial examples, including other domains 
different than those already studied in the state of the 
art .

– A new perspective to measure adversarial noise, using 
image quality metrics is proposed. This can be more 
informative than common metrics in the field (Euclid-
ean distance L2 metric and Lp metrics in general).

– It is shown how image quality perturbations are 
observed in both natural and artificial adversarial 
examples, which can be useful to detect them.

– It is shown that natural adversarial examples introduce 
larger perturbations than those present in artificial 
attacks.

The rest of the paper is organized as follows. Section 2 
contains a revision of the state of the art, regarding arti-
ficial and natural adversarial examples, as well as the use 
of image quality metrics to evaluate the noise introduced 
in adversarial images. Then, Sect. 3 details the datasets 
employed in this work, along with a revision of the qual-
ity metrics that are used. In Sect. 4, the experiments that 
are carried out are explained. The section also contains 
an extensive discussion about the results. Finally, Sect. 5 
highlights the main conclusions that can be extracted.

2  State of the art

The method proposed in [7] presented an approach to con-
ceive what could be a first instance of natural adversarial 
examples. In their interpretation, an algorithm is employed 
to produce an artificial noise, but it is carefully selected 
to be produced only on relevant areas of the object. As a 
result, the adversarial examples are similar to the original 
images and artifacts in non-relevant areas of the image are 
avoided. In this case the adversarial examples are gener-
ated using the same techniques as most artificial examples, 
only with a restriction in the perturbed areas. In this sense, 
they should not strictly be called natural.

As far as the authors know, the first work that stated the 
term and focused on natural adversarial examples was [8]. In 
that work, the authors conceive the natural adversarial exam-
ples as images that are hard to classify by current state of the 
art models. In their method, the natural adversarial images 
are carefully (and manually) chosen to present evident fea-
tures of a different class, so that errors are induced in this 
way. The authors developed a dataset inspired in ImageNet, 
called ImageNet-A, in which images from different sources 
(but same categories) were collected to produce adversarial 
results with unperturbed images. Some examples are shown 
in Fig. 2. They all should belong to “scorpion” class. How-
ever, the samples contain textures of other classes, so the 
model classifies them as other classes, such as quill, snail, 
manhole cover, spider web or washing machine. Although it 
is true that the images belong, in human-sense, to a different 
class, the fact is that they are very different from the original 
images which the network was trained with.

The work proposed in [8] introduces the concept of nat-
ural adversarial examples, but with a different perspective 

Fig. 1  Adversarial example. From left to right: original image (classi-
fied as “bus”), noise added, resulting adversarial image (classified as 
“ostrich”) [1]

Fig. 2  Samples from class ’scorpion’ in the Imagenet-A dataset by 
[8]. Pretrained Imagenet models classify them as (from left to right, 
top to bottom): quill, snail, washing machine, spider web, manhole 
cover and nail
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than our work. There, the authors perform an exhaustive 
search of images from the same categories of ImageNet, 
but taken from other sources, such as from Flicker, iNatu-
ralist and DuckDuckGo. The goal of this search was to 
discover images from one class that contained texture fea-
tures of other classes, in order to deceive the model. In 
our work, we do not perform any “malicious” search of 
borderline examples but compare identical images of the 
same object. Some are predicted correctly but others fool 
the network. The only difference between these subsets is 
the noise patterns introduced by the capture device.

Regarding the artificial adversarial examples, some 
of the most successful methods are used in this work and 
detailed as follows. The DeepFool method was one of the 
first attacks that achieved good results in complex datasets 
[9]. This method is based on an estimation of the bounded 
hyperplane in which a classifier predicts the same class. 
Taking advantage from this information, the attack aims to 
exceed this border, so it is finally calculating a perturbation 
that produces an adversarial example. Carlini and Wagner 
(CW), is one of the most successful attacks in the field. Pro-
posed in [10], it defines a cost function that calculates the 
perturbation to be introduced in the input of the network. 
The distance to the original sample has to be minimized 
so that the adversarial examples can be close to the origi-
nal inputs, and, at the same time, fool the network deci-
sion. In consequence, they are difficult to detect visually or 
through defense techniques. Finally, HopSkipJump attack 
[11] (previously called Boundary Attack). Only by querying 
the model with slight perturbations, this algorithm is able 
to estimate the responses of the model to new perturbations 
and compute them efficiently.

As opposed to the generation of artificial adversarial 
examples (for which several algorithms such as HopSkip-
Jump, Carlini and Wagner, DeepFool, Fast Gradient Sign 
Method, etc. are available), the study and generation of 
natural adversarial examples is in a more preliminary state. 
The seminal work [8] develops some procedures to guide 
the natural adversarial search in the input space domain. 
There, images collected from different sources were clas-
sified as natural adversarial examples depending on their 
prediction when compared with the groundtruth. However, 
the generation of this dataset was mostly hand-crafted and 
no fully automatic method has been proposed yet, as far 
as the authors know. In our work, a manual exploration of 
the microscopy field of view and the object video sources 
was needed to find which spots were suitable to generate 
the natural adversarial examples. However, the rest of the 
process including capture, analysis and metric quantifica-
tion was automatic. Recently, some works such as [12] have 
proposed the use of image detectors as a previous step to 
select the areas that can potentially contain these background 
textures mentioned before.

Even non artificial, Euclidean transformations to the 
images can affect the network decision. This is shown in 
works like [13, 14], in which rotations and other smooth 
natural changes are applied. They proved that, without 
altering the contents or adding noise to the image, it is 
possible to produce adversarial examples with similar 
effects on the behaviour of the model. This is an interest-
ing approach very close to out interpretation of natural 
adversarial examples. As no artificial noise is employed 
to produce the errors, these are more critical in real-time 
systems which are based on images, such as surveillance 
cameras.

All of the methods described above can not be considered 
as proper natural adversarial examples, since they induce the 
errors with iterative optimization algorithms. In our concept 
of natural adversarial examples, samples with real world 
noise (as the one from cameras, screens or even physical or 
natural changes in the objects and images) are better quali-
fied to belong to this category.

In order to increase the neural network robustness against 
this phenomenon, some techniques have been developed. 
One example is training the model with other adversarial 
examples. This idea was first proposed in [3], aiming to 
increase the accuracy of the model by performing data aug-
mentation with adversarial examples. After that, several 
works have expanded and applied this technique [15] for dif-
ferent datasets, models and attacks. However, the technique 
has already been circumvented by several works [16, 17], in 
which it is shown that any given adversarially trained model 
can be threatened again with adversarial examples crafted 
beyond the limits of those used for retraining.

In our work, the prospective benefit of its application 
would be even lower, since the natural adversarial can-
not be restricted to any specific parameters (as opposed to 
artificial attacks), so the potential input perturbation space 
would make it very difficult to enhance the model behaviour 
against these noise patterns. Moreover, the applications of 
this technique can also have other negative side effects in 
model accuracy, such as inducing overfitting due to the large 
number of similar images that are employed in the training 
phase.

Another aspect that is under research is the ability to 
quantify the distortion that is introduced with adversarial 
examples. This is interesting in order to evaluate whether the 
noise is noticeable to the human eye or even by the machine. 
Different metrics to quantify the distance between adver-
sarial examples and non-altered samples have been devel-
oped. Usually, traditional attacks and defenses employ Lp 
based distances ( L0 , L2 or Linf  ) [4]. More recently, [18, 19] 
introduced an interesting approach in which full reference 
quality metrics are also valid (and relevant) to be used in this 
context. In [20], for example, a custom metric is developed 
to evaluate models in terms of patch adversarial robustness. 
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A more theoretical comparison among these types of metrics 
can be found in [21].

Some works have tested the effects of different noise 
sources and the accuracy for deep learning models. For 
example, [22] employs impulse noise to perturb images 
from Google’s Cloud Vision API. This noise, which is not 
gradient-based (as usual in artificial examples algorithms), 
is able to fool the labels with similar capacity. This idea is 
more aligned with our work, since the kind of noise they use 
is more similar to random natural-occurring noise than in 
other works. However, with that method the resulting adver-
sarial images are often noticeable to the human eye.

3  Dataset and methods

The focus of this work is to show the phenomenon of natu-
ral adversarial examples. For this reason we employ two 
datasets from very different fields. The first one is related to 
microscopy, in which precise object identification is needed. 
Then a more general purpose dataset such as ImageNet is 
employed.

In both cases, the main reasons we suggest that can raise 
the natural adversarial examples are:

– Noise: when an image is captured from the real world in 
a digitalization process, artifacts may be introduced.

– Small alterations in images: due to unstable results in 
deep learning classifiers, small changes in the perspective 
or angle of objects can be translated into missing detec-
tion or changes in the class decision [13, 14].

These datasets are employed to test different approaches of 
deep learning image identification, such as classification or 
region-based detection. To assess the difference between 
potential natural adversarial examples and legitimate images, 
state of the art image quality metrics, along with Lp based 
distances, are employed.

In the two scenarios considered in our work (microscopy 
images and object detection) objects and backgrounds are 
static. Besides, the camera angles, illumination and similar 
parameters also remain the same.

Considering the previous conditions in our experimental 
set up, we can reach the following conclusions. Depending 
on a specific noise pattern randomly captured from a cam-
era, a deep learning classifier can predict an image incor-
rectly due to the strong reliance on low-level pixel patterns. 
This problem can also appear in a scenario in which a single 
photo of an object is taken. Depending on the noise pattern 
in this specific instance, the neural network can predict two 
identical objects correctly or not, independently of the accu-
racy of the model. This failure scenario without an evident 
cause is what we call natural adversarial examples.

In order to give a more detailed description of the natu-
ral adversarial examples, we now explain the taxonomies 
in which they can be enclosed. According to the categories 
proposed in [23], they belong to the visual recognition 
field, specifically applied to Convolutional Neural Net-
works. No support from the game theory was employed 
in this method. Regarding the kind of data, since it is 
employed with test images it should be classified as an eva-
sion attack. Regarding the attacker’s knowledge, it should 
be considered as black box, since these natural adversarial 
examples can be produced with the only knowledge of the 
model predictions, and no further knowledge about the 
architecture or internal parameters is needed.

Regarding the attack specificity, it is indiscriminate, 
also known as untargeted. The underlying reason for this 
is that it is difficult to force the output to a specific class 
without a fully automated method to control the prediction 
gradient. As a result of this, the method mostly affects to 
the false negatives, as samples from a considered class will 
be predicted as another instead. Conversely, if the attack 
was targeted, it would affect the false positive metric. 
Regarding the attack mode, since it has been designed as a 
standalone technique, it can be considered a non-colluding 
method. Finally, regarding the evaluation approach, it has 
been developed as an experimental method in which the 
results are discovered when testing a model.

3.1  Microscopy

We focus initially on a microscopy problem, in which 
the instances of the different classes are very similar in 
appearance. The images chosen represent diatoms, a kind 
of algae of interest in biology for water quality assessment 
[24]. Biologist take slides from riverlands to count and 
label these organisms. This process is usually performed 
manually. For this reason, machine learning techniques are 
being applied to get more accurate and faster identifica-
tion. In Fig. 3, an example of these organisms is shown. 
The objective is to detect and classify the objects (dia-
toms), since there are myriads of different classes, depend-
ing on their shape and other representative features.

In order to process these slides, images are taken from 
the microscope in grayscale due to the nature of the stain-
ing process. An extensive experimentation about the topic, 
considering classic and deep learning techniques can be 
found in [25]. In our experiments, a YOLOv2 [26] object 
detector was trained. The source of data and parameter 
details were taken from the referenced work. The final 
model achieved 0.73 mAP, which can be considered a good 
detection rate because of the difficulty of this problem.
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3.2  ImageNet

ImageNet [27] is one of the most used datasets in com-
puter vision and deep learning. It contains 1000 classes of 
common objects, with more than a million of images to be 
trained with. For this reason, it has been a relevant data-
set also for adversarial attack and defense evaluation, when 
applied with the most useful models (Inception [28], VGG 
[29], ResNet [30], YOLO [31]). Figure 4 shows a representa-
tion of some of the categories included.

In the case of our experimentation, a pretrained Xception 
architecture [32] is selected. It is one of the best and most 
efficient networks, achieving 0.79 Top-1 and 0.945 Top-5 
accuracies.

3.3  Quality metrics

Image quality assessment is an important field to charac-
terize with how well an image represents what is actually 
perceived from the original visual source. The field contains 
several techniques to provide a measure of fidelity similar to 
that of human vision [33].

When applied to adversarial research, distance metrics are 
provided to show a measure of the real difference between 
the original image and the adversarial. This allows to com-
pare a method with others, since lower is better and, below 
a certain threshold, perturbations are no longer visible to 
human eye. To evaluate the difference between a reference 
image and natural adversarial examples, Lp based metrics 
are used, as summarized in Table 1. In our experiments, L2 
metric is used along with the rest of quality metrics exposed 
onwards.

As commented previously in the state of the art, image 
quality metrics have been recently proved recently to be 
useful to evaluate adversarial images, as such metrics are 
more aligned with the way a human perceives an image. 
For this reason, the following metrics are employed. They 
have been chosen as the best metrics to measure distance 

Fig. 3  Example of a diatom slide under the microscope

Fig. 4  Composition with some 
of the Imagenet classes
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between adversarial examples and original images according 
to human perception [18].

– Peak Signal to Noise Ratio (PSNR) [34]: this metric 
quantifies the maximum possible signal for the reference 
in comparison with the power of the distortion noise in 
the target image. It is measured in decibel (dB), since log-
arithmic expressions are used to calculate it. For exam-
ple, regarding image quality degradation, PSNR values 
range from 30 to 50 dB in 8-bit representation (usual for 
each RGB channel in color images, or the whole image 
when grayscale). This metric is defined in Eqs. (1) and 
(2). 

 For the Mean Squared Error (Eq. 1), the quadratic differ-
ence of two images I1 and I2 is calculated for each pixel 
coordinate m, n in the whole pixel space M, N. 

 In Eq. (2), R2 represents the maximum fluctuation of the 
image space (e.g. 28 for a 8-bit unsigned codified image) 
and MSE represents the Mean Squared Error in Eq. (1).

– Structure Similarity Index Method (SSIM) [35]: this 
metric evaluates changes in the perception through the 
structural information, expressed as the relationship 
between pixels that are spatially close or interdependant 
in any way. For this purpose, it defines some concepts 
such as luminancy masking (to evaluate the distortions 
that affects the edges of the image) and contrast masking 
(to evaluate the distortions produced in the textures of 
the image). Finally, the metric is a pondering of all these 
criteria. This metric is defined in Eq. (3). 

 For a pair images x and y, �x and �y are the averages 
of x and y, �2

x
 and sigma2

y
 are the covariances of x and 

y, �xy is the covariance of x and y. Finally, c1 and c2 are 
two variables two stabilize the division, when a weak 
denominator is present.

(1)MSE =

∑

M,N[I1(m, n) − I2(m, n)]
2

M ∗ N

(2)PSNR = 10log10

(

R2

MSE

)

(3)SSIM(x, y) =
(2�x�y + c1)(2�xy + c2)

(�2
x
+ �2

y
+ c1)(�

2
x
+ �2

y
+ c2)

– Information Fidelity Criterion (IFC) [36]: this metric is 
based on the information shared between the reference 
and target images with a particular vision. It detects the 
statistical information contained in the target image about 
the reference. In contrast, most of the previous methods 
relied only on the information that could flow from to 
reference to the target in a shared channel.

– Visual Information Fidelity (VIF) [37]: it is a metric 
derived from the Information Fidelity Criterion (IFC) 
presented previously by the same authors. Both meth-
ods measure the amount of information shared between 
the reference and target images, but the former is more 
advanced. It does not only quantify the shared informa-
tion but it also takes into account the rest of information 
that can be extracted from the target that is present on the 
reference.

– Most Apparent Distortion (MAD) [38]: this metric was 
developed to take into account different aspects pro-
posed by other metrics, at the same time. It joins the 
appearance-based strategy (looking for changes in local 
statistics of spatial frequency components), as well as an 
estimation of the perceived distortions (using local lumi-
nance and contrast masking). It is important to notice that 
this metric was the best correlated with human percep-
tion for adversarial examples, according to [18].

4  Experiments and results

In this section, the two main experiments carried out in this 
work are described. For each one, the environment and con-
ditions are detailed, along with a summary of the results and 
the visualization of the most interesting cases.

First, in both microscopy and object detection scenarios, 
a camera is placed at a fixed point. In the case of the micros-
copy, the camera is mounted in a specifically designed piece 
to attach it to the base. In the other case, the webcam has 
a base that allows to place it in a table and orient it in the 
desired direction. Then, a static object is placed in front of 
the camera, in order to take 100 frames of video. After that, 
images are classified with the corresponding neural network. 
Depending on the prediction output, they are categorized as 
regular images or natural adversarial examples. Using the 
subset of regular (non-adversarial) images, artificial adver-
sarial examples are crafted (CW, HopSkip, ...). Finally, for 
each regular or adversarial subset, Euclidean and quality 
metrics are extracted and summarized.

4.1  Microscopy dataset

When evaluating an instance in microscopy, as performed 
with usual non-expert image labeling, the quality of the 
image plays an important role in successful identification. 

Table 1  Lp norm metrics

Metric Calculation Explanation

L0 Non-zero elements Number of perturbed pixels
L2 Euclidean distance Distance in the image space
Linf Largest value Highest perturbation at any pixel
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However, in automatic identification, the task is conditioned 
by the following aspects:

– Classification of images with similar quality metrics, 
some correctly classified while others not. Considering 
that they are close in quality metrics and perceptually 
qualified by a human expert, the behaviour of the auto-

matic classifier is not reliable. This is shown in Fig. 5. 
Although the three images have similar values in quality 
metric and are almost identical to human perception, the 
algorithm gives different results.

– Detection that flickers or disappears, as shown in Fig. 6. 
The difference between both images are only minor cam-
era noise imperfections not visually appreciable. How-
ever, depending on the conditions, actual instances could 
not be detected due to this apparently random behaviour. 
This effect is also observed in a wider range of applica-
tion fields, such as in pedestrian detection, as shown in 
Fig. 7, where missing detections are produced in con-
secutive frames.

The experiment conditions are set up carefully for repro-
ducibility purposes. The equipment employed is a Brunel 
SP-30 optical microscope, with an Imaging Source DMK 
72BUC02 camera. A biological slide is then placed, adjust-
ing the augmentation and focus properly so that a single 
instance is clearly visible. Then, recording settings are 
defined to capture images at 1280 × 720 , and the central 
region with size 416 × 416 is cropped to isolate the object.

Usually, when image classification tasks are performed, 
a single shot is taken so that this image will be used in the 
dataset, to train or test a model, after being labeled. How-
ever, in our experiment, a video is captured instead of a 
photo. Our aim is to observe how the noise from the cam-
era acts as a natural perturbation, making the detector fail 
in consecutive frames. These natural adversarial examples 
expose this behaviour: the model misses the detection or 
confuses the correct class with another, even when the 
environment is static (fixed camera in the microscope, and 
static object in the slide). In this case, natural adversarial 
examples exhibit the same behaviour as artificial adversarial 

Fig. 5  Different classifications. The images are taken in consecutive 
frames

Fig. 6  Detection flickering. Instances are detected and missing in 
consecutive frames with imperceptible differences in background 
noise

Fig. 7  Detection flickering. 
The pedestrians on the middle 
and right of the picture are not 
detected in these consecutive 
frames
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examples: small and imperceptible noise and changes in the 
image affect the final decision of the classifier.

To evaluate this natural adversarial phenomenon, we take 
the first frame of the video as reference. Since all the frames 
are almost identical, they should give the same output when 
fed to the model. In our experimentation, we observe that 
this was not the case. Instead, the noise produced by the 
camera makes the model to switch between different class 
predictions, or even miss the object of interest.

Firstly, we isolate each of these frames, so we are able to 
measure the distance among them, using different metrics 
described in Sect. 3.3. This allowed us to quantify the differ-
ence between frames that are classified correctly and those 
that are not. The latter could be considered as “sucessful” 
natural adversarial. Out of 90 frames, 33 produced wrong 
classifications, confusing “Cymbella” class samples with 
“Cocconeis” objects, even when the images are identical. 
Therefore, the natural adversarial success rate was 63%.

Secondly, we take each frame and try to craft an artificial 
example. For this purpose, we use a recent and powerful 
black-box attack method called HopSkipJump [11]. This 
method only requires calls to the model with various inputs 
to guess the trend in the model gradient and, therefore, pro-
duce the adversarial examples with the specific noise for the 
chosen target. As a black box attack, it is adequate to be eval-
uated on different kinds of architectures, such as detectors, 
classifiers, segmentation models... In our experimentation, 
the attack is untargeted. This means that the algorithm tries 
to fool the network with any class, the one closest in the data 
manifold, so the gradient tends to a class with the smallest 
changes possible. When the attack is targeted, the algorithm 
is forced to fool the network in a specific class. This has 
some benefits but often leads to more distance between the 
original and the adversarial. Finally, for computation pur-
poses, the maximum number of iterations allowed was 100, 
as a valid standard provided in the original publication. For 
the same 90 frames, the artificial attack correctly fools 69, 
so the attack rate is 77%.

The results of the experiment described above are shown 
in Table 2. In order to interpret the results, it is important to 
note that for SSIM, VIF, IFC greater values indicate more 
similarity, while for MAD, PSNR, L2 lower values indicate 
that the images are more similar. For the natural adversarial 
examples, the quality metrics show that the noise introduced 
by the camera is remarkable. The structural similarity is 
high, as the image throughout the frames is, essentially, the 
same. However, both VIF and ICF are indicating that the 
noise introduced by the camera is affecting the whole image. 
Regarding the L2 distance, it is not so high (6.8) considering 
that other metrics suggest it could be larger.

In the artificial adversarial examples, the change is 
notorius. Both SSIM and VIF are close to 1, meaning that 
the images are nearly identical. Also, the Most Apparent 

Distortion is much lower, so the perturbations are mini-
mal. Although PSNR values are similar, L2 distance is also 
decreased, although the high standard deviation means that 
there were some examples that required minimum distor-
tions to be fooled, while the hardest ones were close to the 
distance obtained for the natural adversarial examples. In 
conclusion, for these images and microscopical magnifica-
tion, the noise required for the artificial method was smaller 
than the one naturally produced by the camera.

4.2  ImageNet

In the case of this dataset, a similar set-up is proposed: a 
fixed camera is placed looking at a single object. The main 
example in this case is a single pen, which is centered in the 
image. The selected device is a Logitech C525 HD web-
cam, capturing RGB color images at 640 × 480 × 3 resolu-
tion, which is enough for the input required by the network 
( 299 × 299 × 3 pixels).

First, the device is placed on a fixed and static position, 
so any variation is only due to noise pattern inherent to the 
camera (if any). Once the environment has been set up, the 
object is placed in the scene. After that, a live visualization 
of the classification is performed, studying how the object 
position affects the decision. This is performed until a proper 
place is found (according to the goal of this work). That is, 
the output starts to flicker or jump between different classes. 
Then, a hundred consecutive frames are captured and classi-
fied, to further develop the rest of the methodology.

After that, the quality metrics are calculated for a set 
of 100 frames extracted from the scene. Then, artificial 
adversarial examples are also generated. The conditions 
are the same than in the previous experiment. In this case 
HopSkipJump, Carlini and Wagner and DeepFool untar-
geted attacks are employed, limited to 100 iterations to 
craft the adversarial examples. This is enough to achieve a 
100% adversarial success, so all the images are erroneously 
classified into other classes. The results from both kind of 
adversarial examples are shown in Tables 3, 4 and 5. These 

Table 2  Adversarial quality and distance metrics in microscopy

In order to interpret the results, it is important to note that for SSIM, 
VIF, IFC greater values indicate more similarity, while MAD, PSNR, 
L2 lower values point that the images are more similar as well

Metric Natural Artificial

SSIM 0.60 ± 0.001 0.97 ± 0.05
VIF 0.17 ± 0.002 0.90 ± 0.12
IFC 0.13 ± 0.004 0.52 ± 0.19
MAD 74.26 ± 2.20 4.41 ± 12.2
PSNR 44.39 ± 0.24 55.98 ± 6.37
L2 6.80 ± 0.02 2.07 ± 1.63
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three experiments are performed for different sets of images, 
whose groundtruth corresponds to categories ballpoint and 
whistle. The first and second one, contain a ballpoint with 
slightly different angles, which turns to different “natural 
adversarial examples” and class predictions. The third one 
substitutes the ballpoint object for a whistle, in a position 
which also conducts the model to adversarial predictions.

For the Imagenet dataset, the camera produced very small 
noise in the images, so they are practically identical. This is 
observed in the nearly 1 (0.96) value for SSIM and the very 
low value for L2 . Also, the MAD is very low in this case. 
This result is surprising, as the metrics indicate that all the 
frames are almost identical. However, as it will be shown in 
the rest of this section, the outputs given by the network are 
rather variable.

For the case of the artificial adversarial examples, the 
introduced distortions are even lower. The values provided 
by the quality metrics show that mostly imperceptible differ-
ences between the images are introduced. Very high values 
are present for SSIM, VIF and mostly in IFC. It is important 
to notice that they are in the range of what is normal for this 
kinds of attacks, which need very few pixels to induce the 
errors. Considering for example the L2 distance, the authors 
of the HopSkipJump attack report similar values (around 
2.3) when their algorithm is used in very deep convolutional 
networks for the ImageNet dataset. This is due to the com-
plexity of the model (Xception, as many others tested on 
Imagenet, is a very deep architecture) and the large size of 
the images. In some cases, up to 20,000 iterations are needed 
to produce very low perturbations. For our purpose, that was 
not necessary, considering that the adversarial success rate 
was already 100% with 100 iterations.

Next, a comprehensive visualization and summary of 
the different situations encountered with this dataset is per-
formed. The main classifications provided for consecutive 
frames are shown in Fig. 8. The frames are classified into 
several different classes, mostly as a “fountain pen”, which 
is in the same synset (concept or family of concepts, used 
regularly in the Imagenet terminology) of similar classes that 
this object could be classified, such as “quill” or “ballpoint”. 
If all the frames were classified as one of these three classes 
(considering a Top-5 classifications as usual in the state of 
the art), that could be considered a normal behaviour for this 
kind of networks pretrained on ImageNet. However, the fact 
is that revolver appears on 60% of the images as the Top-1 
prediction (and rifle is also present in the Top-5 for most of 
them), which can be considered as a (natural) adversarial 
behaviour.

After applying the artificial attack, all the examples are 
successfully fooled to other classes, such as: “paddle”, “pro-
jectile”, “letter opener” and “speedboat”. It is important to 
notice that they are the same classes achieved for natural 
adversarial examples in similar positions of the objects. 

Again, as in the previous experiment, this suggests that 
these classes in particular are close in the gradient manifold 
for both natural and artificial adversarial examples. This is 
observed in Table 7, where all the classes predicted by the 
natural and artificial adversarial examples are shown. In 
order to have the same number of examples in each column, 
the average of a hundred executions has been calculated for 
the natural adversarial examples, with different subsets in 
each case. Moreover, the significance of each distribution is 
calculated with the Pearson coeficient as well as the p-value. 
The results, shown in Table 8, indicate that positive correla-
tion is observed, with high significance for the Carlini and 
DeepFool attacks.

In order to check the artificial noise that is introduced by 
the artificial attacks, the difference between an original and 
a perturbed image is calculated. The same operation is per-
formed with a natural adversarial. In this way, we compare 
both natural noise and adversarial noise in Fig. 9 for the 
ballpoint experiment and in Fig. 10 for the whistle experi-
ment. As it can be observed, most of the distortions (lighter 
areas) are in the area where the object is present. This kind 
of noise follows the same pattern as the adversarial examples 
generated in [7]. Also, it is important to note that adversarial 
noise is larger (lighter) than natural noise, as extracted from 
metrics. Moreover, the perturbed images have also been 
extracted, in order to check if any of the perturbations are 
visually percetible. They are shown in Fig. 11 for the ball-
point experiment and in Fig. 12 for the whistle experiment.

It is important to notice that very similar images are pro-
vided in the Imagenet training set, so the examples obtained 
in this work can also match the concept of natural adver-
sarial provided by [8]. In Figure 13 we show some of them.

Checking other positions and angles as explored in [13], 
it is possible to find other natural adversarial examples in 
which, with an static camera, the classification fluctuates 
among screw, paddle, projectile, speedboat or letter opener. 
In Fig. 14 some of these cases are shown. The objects for 
the whistle experiment show the same behaviour in Fig. 15 
where some of them are presented. A whistle, with different 
perspectives, can be classified by the network as a “cup” 
(also a screw! sometimes), when the previous “identical” 

Fig. 8  Natural adversarial of a ballpoint which are classified as a 
fountain pen, but also as a revolver!
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frame was classified as a “whistle”. The angle in which the 
object is presented makes it look like a kind of cup. For this 
reason, this adversarial can be considered similar as in the 
line of work of [8], where objects with “features” of other 
objects are useful to craft natural adversarial examples.

In order to increase the significance of the results, an 
additional experiment has been carried out. There, a new 
camera has been employed (a Logitech C170 model), but 
the rest of environmental conditions remain the same. 
Moreover, we keep the experimental scheme applied in the 
rest of the work. That is: a hundred of frames from a single 
object (a ballpoint, for better comparison with the previous 
experiments) were taken, with fixed spatial position and 
no other source of illumination noise or any other kind. 
In this case, nearly a half of the images were predicted by 

Fig. 9  Absolute difference between original and adversarial images 
for the ballpoint experiment. From left to right, top to bottom: Natu-
ral, CW, DeepFool, HopSkipJump

Fig. 10  Absolute difference between original and adversarial images 
for the whistle experiment. From left to right, top to bottom: Natural, 
CW, DeepFool, HopSkipJump

Fig. 11  Visualization of reconstructed images from adversarial 
attacks for ballpoint experiment. From left to right, top to bottom: 
Natural, CW, DeepFool, HopSkipJump

Fig. 12  Visualization of reconstructed images from adversarial 
attacks for whistle experiment. From left to right, top to bottom: Nat-
ural, CW, DeepFool, HopSkipJump

Fig. 13  Imagenet training samples similar to the object in our experi-
ment
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the model (we also keep the pretrained Xception) with a 
wrong class, despite all the set of images being visually 
identical. The quantified results (Table 6) show that there 
are only slight differences between this experiment and 
the previous ones. Specifically, L2 distance and quality 
metrics remain in the same ranges for both the natural and 
artificially crafted adversarial examples. As a result, it is 
shown how the appearance of this kind of noise turns out 

to be independent from the considered device or kind of 
images.

5  Conclusions

In this work we present “really natural adversarial exam-
ples” that may be a very powerful tool to continue exploit-
ing deep neural networks flaws in high dimensionality 
problems such as ImageNet. It should be kept in mind 
that they are produced in an environment which should be 

Fig. 14  Collection of natural adversarial examples in frames for a 
fixed position (speedboat, paddle, letter opener and projectile)

Fig. 15  Whistle in different angles being confused with a cup and a 
screw!

Table 3  Adversarial quality and distance metrics in ImageNet for 
Experiment 1

In order to interpret the results, it is important to note that for SSIM, 
VIF, IFC greater values indicate more similarity, while for MAD, 
PSNR, L2 lower values indicate that the images are more similar

Metric Natural Hopskip CW DeepFool

SSIM 0.96 0.95 1.00 0.99
VIF 0.68 0.88 0.98 0.97
IFC 0.34 0.57 0.73 0.72
MAD 43.37 9.71 0.00 0.00
PSNR 31.88 38.09 47.75 47.69
L2 3.89 2.27 0.69 0.69

Table 4  Adversarial quality and distance metrics in ImageNet for 
Experiment 2

In order to interpret the results, it is important to note that for SSIM, 
VIF, IFC greater values indicate more similarity, while for MAD, 
PSNR, L2 lower values indicate that the images are more similar

Metric Natural Hopskip CW DeepFool

SSIM 0.96 1.00 1.00 0.99
VIF 0.71 0.98 0.98 0.98
IFC 0.35 0.77 0.72 0.71
MAD 33.28 0.00 0.00 0.00
PSNR 36.24 49.02 49.63 49.63
L2 3.97 0.81 0.68 0.69

Table 5  Adversarial quality and distance metrics in ImageNet for 
Experiment 3

In order to interpret the results, it is important to note that for SSIM, 
VIF, IFC greater values indicate more similarity, while for MAD, 
PSNR, L2 lower values indicate that the images are more similar

Metric Natural Hopskip CW DeepFool

SSIM 0.95 1.00 1.00 0.99
VIF 0.68 0.98 0.98 0.98
IFC 0.35 0.83 0.79 0.78
MAD 19.71 0.32 0.00 0.00
PSNR 42.94 52.50 52.63 52.64
L2 2.65 0.80 0.67 0.68

Table 6  Adversarial quality and distance metrics in ImageNet for a 
new camera set-up

In order to interpret the results, it is important to note that for SSIM, 
VIF, IFC greater values indicate more similarity, while for MAD, 
PSNR, L2 lower values indicate that the images are more similar

Metric Natural Hopskip CW DeepFool

SSIM 0.92 1.00 1.00 0.99
VIF 0.47 0.99 0.98 0.98
IFC 0.18 0.86 0.79 0.78
MAD 43.86 0.00 0.00 0.00
PSNR 36.51 50.27 50.41 50.33
L2 3.09 0.71 0.70 0.71
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considered static, since all the experiments are extracted 
from videos captured by fixed cameras for different 
sources (microscopy, real-world images).

From the results observed in Sect. 4.1, we first demon-
strate the existence of the natural adversarial examples, 
as defined in this work. Later, they are extrapolated to a 
widely used dataset in computer vision, such as Imagenet. 
The first significant conclusion we can extract is that the 
noise introduced by the webcam for real world images was 
much lower than the introduced for microscopic camera 
(as supported by image quality metrics). Even in this case, 
a deep convolutional network (pretrained on the Imagenet 
dataset) could not perform accurately on these images.

For this reason, we suggest that further development 
for model defenses is necessary. Not only for spatial per-
turbations but for natural noise patterns. With models that 
are more robust to higher amounts of noise, they could be 
able to avoid the occurrence of these natural adversarial 
examples, being more stable in their behavior.
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