
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2021) 12:3145–3167
https://doi.org/10.1007/s13042-021-01306-8

ORIGINAL ARTICLE

Recurrent autonomous autoencoder for intelligent DDoS attack
mitigation within the ISP domain

Ili Ko1 · Desmond Chambers1 · Enda Barrett1

Received: 20 June 2020 / Accepted: 10 March 2021 / Published online: 26 March 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
The continuous advancement of DDoS attack technology and an increasing number of IoT devices connected on 5G networks
escalate the level of difficulty for DDoS mitigation. A growing number of researchers have started to utilise Deep Learning
algorithms to improve the performance of DDoS mitigation systems. Real DDoS attack data has no labels, and hence, we
present an intelligent attack mitigation (IAM) system, which takes an ensemble approach by employing Recurrent Autono-
mous Autoencoders (RAA) as basic learners with a majority voting scheme. The RAA is a target-driven, distributionenabled,
and imbalanced clustering algorithm, which is designed to work with the ISP’s blackholing mechanism for DDoS flood
attack mitigation. It can dynamically select features, decide a reference target (RT), and determine an optimal threshold to
classify network traffic. A novel Comparison-Max Random Walk algorithm is used to determine the RT, which is used as
an instrument to direct the model to classify the data so that the predicted positives are close or equal to the RT. We also
propose Estimated Evaluation Metrics (EEM) to evaluate the performance of unsupervised models. The IAM system is
tested with UDP flood, TCP flood, ICMP flood, multi-vector and a real UDP flood attack data. Additionally, to check the
scalability of the IAM system, we tested it on every subdivided data set for distributed computing. The average Recall on
all data sets was above 98%.

Keywords Deep learning · Autoencoder · Machine learning · Unsupervised learning · DDoS mitigation · Random walk ·
Evaluation metrics for unsupervised learning · Cyber security · Network security

1 Introduction

Cyberattackers utilise botnets to launch distributed denial of
service (DDoS) attacks to send an enormous amount of junk
traffic to flood a victim’s server to cause service interruption
to legitimate users. DDoS attacks have been in existence
for around 20 years, but the continuous development of 5G
technology will escalate the magnitude and the frequency
of the attacks. The increasing number of poorly secured
devices connected on 5G networks, cheap DDoS services for
hire and 23 million DDoS attack tools on demand, ensures
that the ability to mitigate larger and more advanced DDoS
attacks is one of the top 5G security requirements [1,2].
According to the ENISA Threat Landscape Report 2018, the
average DDoS attack endured 318.10 mins, while the most

prolonged attack persisted over six days [3]. The first terabit
attack was 1.35 Tpbs targeting GibHub, and shortly after
that, a 1.7 Tbps attack targeted Arbor Networks [4]. Since
the coronavirus lockdown, the number of DDoS attacks sky-
rocketed in 2020, and nearly 90% of attacks were over 100
Gbps. Cloudflare had reported a really large attack, peak-
ing at 754 million packets per second [5]. The average cost
of a DDoS attack for businesses in 2017 was $2.5 million
in the United States [6]. The increasing number of DDoS
attacks raises the cost as well. It is estimated that DDoS
attacks could cost the UK more than £1bn in 2019 [7]. DDoS
technology has evolved from being a single vector to multi-
vector attack [9, 24]. The rise of artificial intelligence (AI)
enables the DDoS technology to dynamically change the
traffic patterns during the time an attack is active [11], which
intensifies the level of difficulty for DDoS mitigation.

The Internet service provider (ISP) is the connector
between the Internet and the users, and thus, deploying the
mitigation system within the ISP domain can provide an
efficient solution. Blackholing is an effective technique to

 * Ili Ko
 i.ko3@nuigalway.ie

1 National University of Ireland Galway, Galway, Ireland

http://orcid.org/0000-0002-8190-206X
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-021-01306-8&domain=pdf

3146 International Journal of Machine Learning and Cybernetics (2021) 12:3145–3167

1 3

mitigate DDoS attacks [12, 13], so its usage has increased
[12, 14]. Nonetheless, a network traffic classifier is required
before employing the blackholing technique to minimise
legitimate users’ services being interrupted. Machine learn-
ing, such as supervised learning and unsupervised learning,
have been widely used for DDoS mitigation systems. How-
ever, security experts have suggested that supervised learn-
ing will have difficulties in dealing with the advanced DDoS
attacks because it is impossible to create all types of traffic
profiles to train the model. On the contrary, with the abil-
ity to learn and adapt to the changes of the attack patterns,
unsupervised learning is a superior technique to defend
against AI-based DDoS attacks [11]. Deep Learning (DL)
overcomes the limitation of the traditional machine learning
approaches due to the shallow representation generated by
the models [15]. Consequently, an increasing number of use-
ful and exciting applications in the industry and the research
community utilise DL [9]. Due to the inherited non-linearity
of neural networks [10], DL approaches outperformed other
machine learning classification techniques [9]. As a result,
DL has started to gain its popularity among researchers for
building DDoS detection or mitigation systems [16, 17–21].
Therefore, we propose an unsupervised Deep Learning algo-
rithm, the Recurrent Autonomous Autoencoder (RAA), to
construct the intelligent attack mitigation (IAM) system.
The IAM system is illustrated in Fig. 1, which contains a
Data Processor and an Ensemble-N Module with N number
of RAAs to improve the performance of the model [22].
Each RAA has a Feature Selector, a Target Detector, and a
NetFlow Identifier, and all of them utilise the Autonomous
Autoencoder (AA).

The AA is different from the regular Autoencoder
because the output of the AA is a binary classification which
is controlled by a class switch that is designed to exploit the
imbalanced data set that is generally deemed as a problem
for machine learning models. For example, if there are 10
normal IP addresses amongst 1000, when the AA identi-
fies 8, most likely they are 8 normal IP addresses. However,
if there are 450 normal and 550 malicious IP addresses, it
is difficult to determine whether they are normal or mali-
cious when the AA classifies 485 for a group and 515 for
another group. Therefore, the AA works particularly well
with imbalanced data. The AA has improved from our previ-
ous model that utilised a Complete Autoencoder (CA) [23]
because the AA no longer requires an RT calculated from a
few time frames before the attack.

The design concept behind the RAA originated from ‘Tell
me the number and I will identify them’. The ‘number’ is
the reference target (RT), which should be close or equals to
the number of normal IP addresses (actual positives) during
the attack. Based on our previous research, we discovered
that the model could pinpoint the normal IP addresses if the
number of them is given [29,30]. Unfortunately, in the real

world, the number of normal IP addresses during an attack is
unknown. As a result, we utilise the RT to direct the system
to classify the data so that the predicted positives are close
or equal to the actual positives. Accordingly, we equipped
the IAM with the Target Detector that can automatically
find the RT via Comparison-Max Random Walk (CMRW)

Fig. 1 The IAM contains a Data Processor and an Ensemble-N Mod-
ule utilising a majority voting scheme to attain the final classification,
and the Ensemble-N Module consists of N number of RAAs, which
each RAA has a Feature Selector, a Target Detector, and a NetFLow
Identifier

3147International Journal of Machine Learning and Cybernetics (2021) 12:3145–3167

1 3

algorithm. The intuition of the CMRW came from the game
‘Guess number higher or lower’ to move the potential RT
to a higher or lower direction. More detailed explanations
of the CMRW are provided in Section 7.3. With the ability
to find the RT, the RAA system is a frame independent,
target-driven, and distribution-enabled clustering model.
The RAA system does not require time-series data, so it is
frame independent. Additionally, the system uses the RT as
a guide to classify the network traffic, so it is target-driven.
Furthermore, the RAA is distribution-enabled because it
can dynamically find an RT for each subdivided data set for
distributed computing.

Verisign’s Q2 2018 DDoS trends report [24] reveals that
52% of attacks utilised multiple attack types, as shown in
Fig. 2, and UDP based, TCP based, and IP fragment attacks
were the top three attacks. Consequently, we tested our
proposed system with UDP flood, TCP flood, ICMP flood,
multi-vector attack and a real UDP flood attack data set.
The limitation of the IAM system is that it is designed for
mitigating DDoS flood attack.

The contributions of this chapter are as follows:

1. We developed a Comparison-Max Random Walk algo-
rithm to find the RT automatically to guide the system
to classify the network traffic.

2. We proposed Estimated Evaluation Metrics (EEM) by
offering a systemic way to find the estimated actual posi-
tives (EAP) to calculate the estimated actual negatives
(EAN), the estimated true positives (ETP), the esti-
mated false negatives (EFN), the estimated true nega-
tives (ETN), and the estimated false positives (EFP) to
evaluate unsupervised learning models.

The paper is organised as follows. Section 2 discusses
related work and differences of the proposed system. Sec-
tion 3 gives an overview of the IAM system design. Sec-
tion 4 elaborates the experimental implementation of our
proposed system. Section 5 presents the performance results

of the IAM system. Finally, Sect. 6 provides the conclusion
and future work.

2 Related work

Deep Learning is a sub-domain of artificial intelligence
inspired by the processes of data processing, pattern rec-
ognition, and decision making of the brain called Artificial
Neural Networks. Deep Learning algorithms utilise a hierar-
chical learning process to extract complex abstracts for data
representation [19].

One of the main reasons for using Deep Learning is due to
its ability to analyse and learn from big unlabelled data. The
wealth of information hidden in big data provides incredible
potential across different domains, which include finance,
health care, agriculture, transportation, retail, and customer
service [20]. There have been a plethora of applications of
Deep Learning in computer vision, speech recognition, mar-
keting, fraud detection, and cybersecurity.

As DDoS attacks remain one of the top security threats,
researchers continue to develop new DDoS mitigation sys-
tems. To achieve desirable performance, a growing num-
ber of researchers are utilising DL models for DDoS attack
defence systems. For example, Doriguzzi-Corin et al. [31]
presented a LUCID system, which utilised Convolutional
Neural Networks (CNNs) to classify network traffic. They
validated the performance of the system in a resource-
constrained environment. Not only did the performance of
the LUCID match with the state-of-the-art DDoS mitiga-
tion systems, but also the processing time was reduced by
more than 40 times. Another research group which utilised
DL is Niyaz’s team, where they [9] proposed a multi-vector
DDoS detection system that consisted of stacked Sparse
Autoencoders and a softmax classifier for feature selection
and classification. They tested their model on a data set,
which contained regular Internet traffic and different types
of DDoS attacks. Their proposed system had high accuracy
with a low false-positive rate for attack detection. Addition-
ally, Liu et al. [21] presented a deep reinforcement learning-
based system, which can better learn the optimal mitiga-
tion policies to mitigate different types of attacks such as
TCP SYN, UDP, and ICMP flood in real-time. Their system
outperformed a popular state-of-the-art router throttling
method. Yuan and his colleagues [15] suggested a Recur-
rent Deep Neural Network utilising a Convolutional Neural
Network (CNN), Recurrent Neural Network (RNN), Long
Short-Term Memory Neural Network (LSTM) and Gated
Recurrent Unit Neural Network (GRU) to learn patterns
from sequences of network traffic and attack activities. The
experimental results showed that their system outperformed
conventional machine learning models. Furthermore, Asad’s
team [26] proposed a deep neural network-based system that Fig. 2 DDoS attacks utilising different attack types

3148 International Journal of Machine Learning and Cybernetics (2021) 12:3145–3167

1 3

uses feed-forward back-propagation. The system contained
seven hidden layers, and a softmax activation was applied
to the output layer to classify network traffic. Their model
achieved an accuracy of 98% on the CIC IDS 2017 data
set [25]. Salama et al. [27] also suggested a model using a
Restricted Boltzmann machine (RBM) to select features for
a support vector machine (SVM) to classify network traf-
fic. The accuracy of their model on NSL-KDD data set was
92.84%. Table 1 displays advantages and disadvantages of
each related work.

There are a few differences between the proposed model
and the systems mentioned above. Firstly, the RAA is a tar-
get-driven model that utilises an RT to guide the unsuper-
vised model to classify the network traffic by exploiting the
imbalanced characteristic of the attack data set. Secondly,
the RAA applies the novel Comparison-Max Random Walk
algorithm to find the RT.

Thirdly, the Feature Selector, the Target Detector, and the
NetFlow Identifier all employ the Autonomous Autoencod-
ers. Lastly, the RAA can automatically select features, find
the RT, and attain the final classification, which offers scal-
ability to deal with big data.

3 System design

The IAM system is designed to work with the ISP’s black-
holing mechanism to drop malicious traffic for DDoS
mitigation. The core of the IAM system is the Recurrent
Autonomous Autoencoder. Hitherto we have proposed sev-
eral target-driven unsupervised models that used the refer-
ence target RT to instruct the unsupervised model to attain
the final classification [28, 29, 30, 32]. During an attack,
there is a huge surge in network traffic and the number of
IP addresses. Therefore, we made an assumption that the
IP addresses which emerged before the attack are normal.
Previously, the RT was equal to the number of IP addresses
which existed right before the attack, as shown in Fig. 4;

each ball in the time frame before the attack represents one
IP address. Even though the RT is more than likely to be
different from the number of normal IP addresses during the
attack, previously presented systems still performed well on
classifying NetFlows. Hence, we continue to utilise the RT
as a way to instruct the model to obtain the final classifica-
tion according to the error which is the absolute value of
the difference between the number of normal IP addresses
classified by the model (Nf = predicted positives) and the
RT. However, there are a couple of issues with previously
proposed models because they required the number of nor-
mal IP addresses before the attack to be calculated, which is
the RT. Firstly, to increase the scalability of the system, the
attack data set needs to be subdivided. For example, if 10
proposed models are deployed, the attack data set is divided
into 10 sub data sets. Each model requires a sub data set
and an RT. The RT for the previously proposed model is
calculated as one number from the entire data set before
the attack. When the data set is divided into 10 sub data
sets, it is very difficult to determine the number of normal
IP addresses for each sub data set without knowing how the
normal and malicious IP addresses are distributed in each
sub data set. Secondly, even after calculating the RT, the real
number of normal IP addresses (actual positives) during the
attack can be very different from the RT, which can drasti-
cally affect the performance of the system. For example,
if an attack targeted at an online store occurs immediately
after a flash sale started, the number of IP addresses will
increase dramatically. Consequently, the number of normal
IP addresses during the attack will be much greater than
the RT.

To overcome these two problems, the RAA employs
a Target Detector to find the RT automatically via Com-
parison-Max Random Walk. The distance of the walk is
guided by a moving range (MR), the direction of the walk
is determined by a higher or lower likelihood based on the
random steps, and the destination of the walk is decided
by the recurrence frequency. More detailed explanations

Table 1 Feature-based comparison of the advantages and disadvantages of each related work

Model Advantages Disadvantages

Doriguzzi [31] Reducing the need for feature engineering Hyper-parameter values relying on preliminary tuning
Niyaz [9] Utilising Stacked Sparse Autoencoder to extract additional

features
Potential loss of information using bottleneck from
the previous Autoencoder as an input for the next Autoencoder

Liu [21] Learning different attack patterns for selecting optimal mitiga-
tion policies

Difficult to learn all attack patterns due to the continuous
advancement of DDoS attack technology

Yuan [15] Improving model performance combining various deep learn-
ing models

The complexity of the model increasing the level of difficulty
for duplicating the model

Asad [26] Simplicity of the model making it easy to understand and
duplicate

Potential performance reduction on data sets with different
attacks exhibiting different traffic patterns

Salama [27] Applying RBM to select features for a SVM Requirement an additional machine learning model for clas-
sification

3149International Journal of Machine Learning and Cybernetics (2021) 12:3145–3167

1 3

are provided in the ‘Target Detector’ section. Furthermore,
to reduce the variance of the system, the IAM applies an
ensemble technique by employing RAAs as base learners
and utilising a majority voting scheme to attain the final
classification. Therefore, the IAM composes of two units,
which are a Data Processor and an Ensemble-N Module
that uses N number of RAAs, and each RAA includes a
Feature Selector, a Target detector, and a NetFlow Identi-
fier as displayed in Fig. 1. To improve the performance
of the IAM, the system utilises Top-N, Max-N, minimum
error, and Ensemble-N as illustrated in Fig. 3.

The RAA first finds the RT and then, utilises the RT to
cluster the number of data points that are close or equal to
the RT. The following example explains the intuition of
the target-driven unsupervised learning techniques for the
RAA. Each ball in Fig. 4 represents an IP address; blue
balls are normal IP addresses, and red balls are malicious
IP addresses. Assuming that after utilising the CMRW, the
RAA determines the RT = 10, and thus, the system utilises
threshold-moving to classify the data so that the number of
predicted positives Nf is close or equal to 10. The potential
thresholds for this example are in the list of [0.7, 0.6, 0.5,
0.4, 0.3]. To better visualise the target-driven process for
obtaining the final classification, the distance between the
ball represents the output value of the ball. The model
determines the optimal threshold by iterating through the
threshold list as follows.

Step 1: The model starts with the threshold = 0.7, and
it can easily identify six balls, which are ball numbers 2,
3, 4, 7, 9, and 10 because they are further away from other
balls. After the first iteration, the error1 =| 6 - 10 | = 4.

Step 2: The system uses the threshold = 0.6 and ball
number 1 is also identified besides ball numbers 2, 3, 4, 7,
9, and 10. The error2 =| 7 - 10 | = 3.

Step 3: The system classifies with the threshold = 0.5.
Even though ball number 5 is close to red ball number 11,
the distance between ball number 5 and ball number 11 is
larger than the distance amongst red balls. Therefore, the
system discovers ball numbers 5 and 6, which makes the
Nf = 9 and the error3 = 9 10 = 1. Heretofore, the system
only found nine balls, which is one ball less than the RT.

Step 4: The system applies the threshold = 0.4. If the
system finds additional ball numbers 8, 11, 12, 13, 14, 15,
16 and 17, the error4 = | 17 − 10 | = 7, which is greater
than the error3. Then, the system stops iterating and the
final result is the classification generated by the threshold
= 0.5 and the Nf = 9.

The Feature Selector, the Target Detector, and the
NetFlow Identifier of the RAA all have an Autonomous
Autoencoder as illustrated in Fig. 5. The output of an AA
is a binomial classification, in which 0 represents mali-
cious data points, and 1 represents normal data points.

Fig. 3 The process of using Top-N to select features, determining the
final RT by utilising Max-N, finding a best classification (BC) with
the minimum error, and attaining the final classification by employing
several RAAs in the Ensemble-N Module

3150 International Journal of Machine Learning and Cybernetics (2021) 12:3145–3167

1 3

– The first AA belongs to the Feature Selector. The input
X is the transformed data set and the output Of is a list
containing selected features.

– The second AA belongs to the Target Finder. The input
X1 is the data with features selected and the output Ot is
the RT.

– The last AA belongs to the NetFlow Identifier. The input
is X1 and the output Oc is a list of malicious IP addresses.

We will start with the design of the Data Processor fol-
lowed by the Autonomous Autoencoder and each component

of the RAA in the remaining part of this section. To aid the
understanding of the remaining sections, Table 2 provides
descriptions for variables.

3.1 Data processor

The Data Processor has a Horizontal Expansion and Verti-
cal Compression (HEVC) engine [28], that we previously
designed to make use of the hierarchical features contained
in the data collected by the ISP [29]. The HEVC engine
utilises the Apache Spark framework for fast distributed

Fig. 4 Each ball represents an
IP address as it existed in the
time frame right before and dur-
ing the attack

Fig. 5 The network architecture
of the Recurrent Autonomous
Autoencoder, in which X is the
processed data with all features,
 X1 is the processed data with
selected features, Of is the out-
put of the Feature Selector, Ot is
the output of the Target Detec-
tor, and the Oc is the output of
the NetFlow Identifier

Table 2 Descriptions of variables or names

Variables or Names Descriptions

Nf The number of normal IP addresses predicted by the model (predicted positives)
Nf (0) The number of final predicted positives that need to be evaluated by Estimated Evaluation Metrics (EEM)
TIPs The total number of IP addresses in the data
Top-N Features with the highest N number of Nf average
Max-N N number of reference targets that the Target Detector needs to generate for finding the final reference

target with the maximum mode
Ensemble-N N number of RAAs in the Ensemble-N Module

3151International Journal of Machine Learning and Cybernetics (2021) 12:3145–3167

1 3

computing to enable scalability to deal with an immense
amount of network traffic generated by large-scale DDoS
attacks. The Horizontal Expansion unit extracts additional
features based on statistical analysis and unique values. The
Vertical Compression unit groups and aggregates the data
according to the unique source IPs. For example, the data
contains two features, which are ‘srcIP’ and ‘packets’ as
shown in Fig. 6. The Horizontal Expansion unit extracts
three additional features from the original feature ‘packets’,
which are ‘lPSum’, ‘lPMean’, and ‘lUP’. The ‘lPSum’ is
the sum of the number of packets for each source IP. The
‘lPMean’ is the mean of the packets for every source IP.
The ‘lUP’ counts the unique value of packets for each
source IP. Next, the original feature ‘packets’ is removed,
and the Vertical Compression unit groups and aggregates
the data based on the unique IP addresses. Consequently,
each row represents an aggregated NetFlow for a unique IP
address. Descriptions of extracted features are presented in
the appendix A. It is worth mentioning that the number of
rows in the transformed data set equals the number of unique
source IP addresses or NetFlows.

3.2 Autonomous autoencoder

The most basic component in the RAA is the Autonomous
Autoencoder, as depicted in Fig. 7, which is an extension
of the Complete Autoencoder (CA) [23] that we previously
designed. The main difference between the AA and CA is

that the CA requires an RT that is calculated according to
data sets before the attack; however, the AA can find the RT
automatically with only the data during the attack. The AA
consists of a Deep Autoencoder, which contains two sym-
metrical Deep-Belief Networks (DBN) as depicted in Fig 7.
The encoding DBN is constructed from two hidden layers,
which are h1 and h2 with eight neurons and four neurons,
respectively. The decoding DBN encompasses two hidden
layers, which are h3 and h4 with four neurons and eight
neurons, respectively. The bottleneck contains a single neu-
ron which generates a n x1 vector (n = number of rows, IP
addresses, or NetFlows). The reason that there is only one
neuron at the bottleneck is to create output values that are
in the range of (0, 1), so a threshold can be applied to clas-
sify the output without deploying another machine learning
algorithm. The AA can dynamically find an optimal thresh-
old, and it is equipped with a class switch with the intent to
exploit the imbalanced characteristic of the attack data. By
default, the controller of the class switch is β = 0.5, where
it instructs the class switch to swap the labels if the pre-
dicted positives Nf is more than 50% of the total number of
IP addresses (TIPs). The advantage of using the class switch
is that it offers a bi-directional comparison of the output
value to a threshold without changing the comparison sign
of ‘<’ and ‘>’. This is particularly useful during the feature
selecting process since only one feature is fitted to the AA at
a time. For example, if a threshold is set at 0.5, the variance
of the different number of octets for the normal IP addresses

Fig. 6 A simple example of applying the HEVC engine to extract additional features, group and aggregate the data based on unique source IP
addresses, and as such, each row represents a NetFlow for a source IP address

3152 International Journal of Machine Learning and Cybernetics (2021) 12:3145–3167

1 3

should be larger than the threshold. On the contrary, the
number of different source ports should be smaller than the
threshold. Therefore, the Nf for each feature belongs to the
minority group. The process of the AA obtaining the best
classification follows the steps listed below:

Step 1: Transform the data with selected features.
Step 2: Create the Deep Autoencoder.
Step 3: Generate the bottleneck using the Autoencoder

from Step 2.
Step 4: Classify values in the bottleneck using a threshold

and swap the class if the Nf > β the total IP addresses (TIPs).
Step 5: Repeat Step 4 until the end of the threshold list.
Step 6: Find the optimal threshold according to Eq. (1).
Step 7: Find the best classification associated with the

optimal threshold. Step 8: Set the RT = Nf if the Nf is not
within the moving range of [RT× (1 − s), RT × (1 + s)].

Step 9: Repeat Step 2 to Step 8 until the Nf is within the
moving range and then, return the best classification.

The function of the AA, as shown in Fig. 8a, contains
several parameters such as the data, the features, the thresh-
olds. The thresholds parameter is a list containing different
thresholds with a range of (0.2, 0.8) with a step of 0.05,
which enables the AA to automatically find the optimal

(1)error = |Nf − RT|

threshold for the best classification with the Nf that is clos-
est to the RT. The RT has a default value of 100. β is used
to control the class switch, and the default value is 0.5. The
s provides a moving range (MR) = [RT × (1 − s), RT × (1
+ s)] to constrain the movement of the Nf so that it becomes
closer to the RT. Lastly, the da settings contains the epochs,
the optimiser, and the batch size.

3.3 Feature selector

The first unit of the RAA is the Feature Selector, and it
stops the iteration of the AA when the number of recur-
rences for each feature is completed. According to our
previous research, different types of attacks may require
different features to achieve a good performance of clas-
sifying the network traffic [30]. Therefore, we enable the
Feature Selector to dynamically select features. Based on our
previous research [23, 29, 32], removing features with low
influence improves the performance of the model. There-
fore, we designed the Feature Selector to filter out features
that identify none or very few normal IP addresses, so the
NetFlow Identifier can better learn the correlations among
remaining features yielding higher classification accuracy.
Consequently, the Feature Selector is designed to find the
Top-N features with the highest average number of normal
IP addresses classified from several iterations. To achieve

Fig. 7 The AA contains two
symmetrical Deep-Belief
Networks and it applies the
optimal threshold, RT, and the
moving range to obtain the best
classification

3153International Journal of Machine Learning and Cybernetics (2021) 12:3145–3167

1 3

this, every feature is fitted to the AA individually several
times, that is equal to the number of recurrences, as shown
in step 3 listed below. The output of the Feature Selector is a
list of selected features, and it is sent to the Target Detector.
The function of the Feature Selector is presented in Fig. 8c
and the Top-N argument chooses features with the highest N
number of average Nf . However, if N = 0, any features that

have the average Nf > 0 are selected. The following steps list
the process of selecting features.

Step 1: Fit each feature in the data set to AA, count the
number of predicted positives Nf for each recurrence.

Step 2: Repeat Step 1 through a number of recurrences,
which is r.

Step 3: Calculate the average of the Nf =
∑r

i=1
Nf (i)

r

Fig. 8 Functions for the AA, the CMRW, the Feature Selector, the Target Detector, the NetFlow Identifier, and the Ensemble-N Module

3154 International Journal of Machine Learning and Cybernetics (2021) 12:3145–3167

1 3

Step 4: Repeat Step 2 and Step 3 until the last feature.
Step 5: Select the number of features based on N specified

for the top N average Nf ; however, if N = 0, features with an
average Nf > 0 are selected.

3.4 Target detector

The Target Detector utilises the Comparison-Max Random
Walk to find the RT. The purpose of the CMRW is to find
an RT that is close or equal to the number of actual positives
by moving the potential RT towards the number of actual
positives. There are a few key ideas involving the process
of the CMRW, which are random steps, a moving range, a
walking direction, and a goal as described in Table 3. The
random steps are the number of classifications generated
by the AA, so each random step is a Nf corresponding to a
classification. The intuition behind the CMRW is to adjust
the potential RT according to the moving range, the walking
direction, and eventually, the potential RT converges to a
goal that reaches the arrival frequency. The walking direc-
tion is determined by a higher or lower likelihood according
to the random steps. If over 50% of the random steps are
higher than the current potential RT, the walking direction
is towards the higher direction, and the random steps remain
the same. However, if the RT is walking towards the lower
direction, any random step that is greater than the current
potential RT is converted to 0. Afterwards, three cases are
provided for the CMRW to find the RT.

Case 1: After the first recurrence, which is the completion
of the first set of random steps, if the frequency of a maxi-
mum mode of the random steps or Nf≥ Goal, which is the
frequency required to qualify as an RT among random steps,
as shown in Fig. 9, the RT convergences to the mode of Nf .

Case 2: After two recurrences, which is the completion of
two sets of random steps, if the potential RT for both recur-
rences are the same, the potential RT convergences to the Nf.

Case 3: After several recurrences, if the frequency of a
maximum potential RT reaches the Goal, the RT conver-
gences to the maximum potential RT.

Take the following steps to find an RT:

Step 1: Generate a classification and record the number
of predicted positives Nf generated by the AA in the Nfs list.

Step 2: Repeat Step 1 with the number of times equal to
the number of random steps.

Step 3: Compare each Nf with the RT, if the Nf > RT,
record 1, else record 0 in the list of comparisons.

Step 4: If more than half of the Nf are smaller than the
RT, convert the Nf that is greater than RT to 0 because the
RT needs to move towards a smaller direction; otherwise,
all the Nf remain the same.

Step 5: If there is a mode of the Nf that has a frequency
Goal; the new found RT is the mode; otherwise record the
potential RT in the RTs list.

Step 6: If the potential RT does not converge after the first
recurrence, select the mode of the Nfs or the maximum of
Nfs, if there is no mode, as a potential RT

Step 7: Repeat Step 1 to Step 4 and if the potential RT for
both recurrences is the same, the potential RT is the new-
found RT.

Step 8: Repeat Step 1 to Step 4 until the frequency of the
potential RTs equals to the Goal.

Step 9: Repeat Step 1 to Step 8 for ‘N’ number of times
depending on the ‘N’ value in Max-N.

Step 10: Determine the final RT based on the maxi-
mum mode or value based on the RT found by each Target
Detector.

The function of the Target Detector is presented in Fig. 8b
and the cd in the function determines if a conversion of a
random step is needed to move the RT towards the lower
direction. The Goal is the frequency of the maximum mode
that needs to qualify an RT as a new found RT for a Target
Detector. To aid the understanding of how the CMRW finds
the RT, three cases are demonstrated in Fig. 9. Each value
in the Random Steps list shown in Fig. 9, in all three cases,
is a number of predicted positives. The values in the com-
parisons list depend on the potential RT, which is the default
RT in the first iteration. If the value in the Random Steps list
is greater than the potential RT, 1 is recorded, otherwise 0
is recorded in the comparisons list. If the sum of the com-
parisons list is greater than half of the length of the Random
Steps list, it indicates the real RT should be higher than the

Table 3 Descriptions of variables for CMRW

Variables or Names Descriptions

Random Steps A collection of Nf generated by the AA for the CMRW to find an RT or a potential RT
S A value in the range of (0.1, 0.25) that is used to control the Moving Range
Cd determining if a conversion of a random step is needed to move the RT towards the lower direction
Moving Range The reference range that the AA is used to determine if the Nf is associated with a qualified classification
Goal The frequency of the maximum mode of random steps that is used to qualify a random step as an RT or

a potential RT
Restart The number of recurrences needed to rerun the Target Detector

3155International Journal of Machine Learning and Cybernetics (2021) 12:3145–3167

1 3

potential RT, and all values in the Random Steps list remain
the same. However, if the sum of the comparisons list is
smaller than half of the length of the Random Steps list, it
suggests that the actual RT is lower than the potential RT.
Consequently, any value in the Random Steps list that has
the corresponding value of 1 in the comparisons list is con-
verted to 0. The modified list is used to store the unchanged
and changed values. To qualify as the RT, the frequency
of the mode in the modified list is utilised. Case 1, if the
frequency of the mode in the modified list is greater than 3,
the mode is the RT. Case 2, if the mode of the modified list
is 3 for the first iteration, the potential RT is the mode and
the second iteration is needed. If the frequency of the mode
is also 3 in the second iteration is the same value as the first
iteration, the potential RT is the RT. Case 3 illustrates that
if the frequency of the mode of the modified list is less than
3, the largest value is the potential RT and is recorded in
the RTs list. Moreover, another integration is required until
the frequency of the mode of the RTs list is 3 and then, the
mode is the RT.

For example, in case 1, the first potential RT is 100, and
107 is greater than 100, so 1 is recorded in the comparisons
list. Since all the other values in the Random Steps list are
smaller than 100, so zeros are recorded in the comparisons
list. The sum of the comparisons list is 1, so 107 is converted
to 0 and stores in the index of 2 position in the modified list.
25 and 78 are placed in the corresponding index positions

in the modified list. Therefore, the Random Steps list of [25,
78, 107, 78, 78, 78] becomes [25, 78, 0, 78, 78, 78]. Since
the frequency of the mode 78 is 4, which is greater than 3,
the RT is 78. In case 2, all values in [78, 75, 78, 0, 78, 61]
are smaller than the default RT of 100, so the comparisons
list is [0, 0, 0, 0, 0, 0] and the sum of the comparisons list
is 0. Therefore, no conversion of the Random Steps list is
needed, so the modified list is [78, 75, 78, 0, 78, 61]. Since
the frequency of the mode 78 is 3, 78 becomes the potential
RT for the second iteration. Only one value in the Random
Steps list of [175, 78, 78, 4, 56, 78] is greater than 78, the
comparison list is [1, 0, 0, 0, 0, 0] and the sum of the com-
parison list is 1. Thus, only 175 is converted to 0 and the
modified list becomes [0, 78, 78, 4, 56, 78]. The frequency
of the mode 78 is 3 and the potential RT from the first itera-
tion is also 78, so the RT is 78. In case 3, the Random Steps
list for the first iteration is [102, 16, 96, 73, 96, 73] and the
default RT is 100, so only 102 is greater than 100. Therefore,
the comparisons list is [1, 0, 0, 0, 0, 0] and the sum of the
comparisons list is 1. Consequently, 102 is converted to 0
and the modified list becomes [0, 16, 96, 73, 96, 73]. Since
there are two modes 73 and 96, the mode with the largest
value 96 is the potential RT. Next, each value in the Random
Steps list of [26, 75, 89, 80, 2, 51] is compared to the poten-
tial RT of 96 and the comparisons list is [0, 0, 0, 0, 0, 0],
so the modified list changes to [26, 75, 89, 80, 2, 51]. Since
there is no mode, the largest value 89 is the potential RT.

Fig. 9 The process of finding the RT utilising the CMRW algorithm according to three cases

3156 International Journal of Machine Learning and Cybernetics (2021) 12:3145–3167

1 3

The potential RT in the third, fourth, fifth, and sixth iteration
is 78, 78, 85, and 78, respectively. Therefore, the RTs list is
[96, 89, 78, 78, 85, 78], so the RT is 78.

3.5 NetFlow identifier

The last module of the RAA system is the NetFlow Iden-
tifier, which also utilises the AA. The NetFlow Identifier
uses the selected features and the RT to classify the trans-
formed data and then, find the best classification (BC) for an
RAA with the minimum error. The function of the NetFlow
Identifier is presented in Fig. 8e and the recurrences argu-
ment determines the number of times to run the NetFlow
Identifier.

Step 1: Use the final RT found by the Target Detector as
the RT for the AA and record the Nf.

Step 2: Repeat Step 1 until the end of recurrences.
Step 3: Select the best classification BC by finding the

minimum error based on Eq. (1).

3.6 Ensemble‑N module

The Ensemble-N Module employs N RAAs, which is deter-
mined by the Ensemble N argument passed into the func-
tion in Fig. 8f. If the recurrence of finding the RT is greater
than the ‘Restart’ argument, the Ensemble-N Module reruns
the Feature Selector and the Target Finder. After each RAA
creates the best classification (BC), the Ensemble-N Mod-
ule utilises a majority voting scheme to finish labelling the
data set. Finally, the list containing malicious IP addresses is
provided to the ISP’s blackholing mechanism to be dropped.
Figure 3 demonstrates the process of obtaining the final
classification using Top-N, Max-N, minimum error, and
Ensemble-N.

4 Experimental implementation

The testbed of the RAA system utilised the Apache
Spark framework running on Ubuntu 16.04 with Intel(R)
Core(TM) i3-3240 CPU @ 3.40GHz with 32 GB of RAM.
The Apache Spark is a distributed computing engine which
facilitates horizontal scalability to cope with big data. We
tested the RAA system with 7 labelled data sets, and a real
DDoS attack data set. The details of labelled data sets are
under the ‘Data Information’ section below.

Relu activation was used for h1, h2, h3, and h4 to deal
with the problem of the vanishing gradient, and sigmoid
activation is applied to generate the output values in the bot-
tleneck. The loss function chosen was the root mean squared
error, and the batch size was 128. The optimiser chosen was
Adam because it is an adaptive learning rate optimisation
algorithm [33]. Additionally, the Goal for the Target Detec-
tor is 3, and the Restart for the Ensemble-Module is 30. The
number of epochs for the Deep Autoencoder were not the
same in different modules which are presented in Table 4.

Epochs are the number of times to run the Deep Autoen-
coder inside the AA. The number of epochs, the threshold
and iterations for the Deep Autoencoder varied in different
modules which is presented in Table 4. It is important to
know that both the iterations and the recurrences control the
number of times to run the AA. Additionally, the default set-
tings for the RT = 100, the β = 0.5 and the s = 0.2. Moreo-
ver, the N value for the Top-N, Max-N and Ensemble-N is
listed in Table 5. Because ‘N’ for Top-N is 0, any features
with the average Nf > 0 is selected. Since the ‘N’ for the

Table 4 The recurrences of
each component in the RAA
and the parameter settings for
the AA

Components Recurrences AA Parameter Settings

3*Feature Selector 3*2 Epochs = 3
Thresholds = [0.5]
Iterations = the number of features

3*Target Detector 3*Dynamic Epochs = 5
Thresholds = [0.2, 0.8] with a step of 0.05
Iterations = random steps = 6

3*NetFlow Identifier 3*10 Epochs = 10
Thresholds [0.2, 0.8] with a step of 0.05
Iterations = 1

Table 5 The N value for the feature selector, the target detector and
the ensemble-N Module

Components Name N

Feature Selector Top-N 0
Target Detector Max-N 10
Ensemble-N Module Ensemble-N 5

3157International Journal of Machine Learning and Cybernetics (2021) 12:3145–3167

1 3

Max-N is 10 and for the Ensemble-N Module is 5, they are
called the Max-10 and Ensemble-5, respectively.

4.1 Data information

We selected three real users’ as targets from a data set, which
includes their network traffic, collected from the border gate-
way protocol (BGP) router by the ISP. The first, the sec-
ond, and the third target receive packets from 78, 133, and
281 normal source IP addresses, respectively. These three
real users’ network traffic behaviours are not identical, as
illustrated in Fig. 10. To generate malicious traffic, we uti-
lised BoNeSi [34] to simulate TCP flood, UDP flood, and
ICMP SYN flood attacks with 50000 spoofed IP addresses.
Then, we combined each target’s real network traffic with
simulated malicious traffic to create different data sets. All
data sets contain 50000 spoofed IP addresses as displayed
in Table 6. Figure 11a is a scatter plot of the attack data set
containing both the normal and malicious network traffic,
which are represented by green and red points, respectively.
However, no red points are visible in (a), but the same red
points are displayed in Fig. 11b. The reason that malicious
data points can not be seen in plot (a) is that they have simi-
lar traffic patterns to normal data points. This is often the
case for new DDoS attacks, and it reveals the level of dif-
ficulty for the system to identify the NetFlows correctly.

4.2 Estimated evaluation metrics for unsupervised
learning model

Performance evaluation for unsupervised learning models
without labelled data is a problem. To deal with this issue,
we provide methods to calculate the estimated actual posi-
tives (EAP), estimated actual negatives (EAN), estimated
true positives (ETP), the estimated false negatives (EFN),

the estimated true negatives (ETN), and the estimated false
positives (EFP) that can be used to calculate the estimated
Recall (ERecall), the estimated Accuracy (EAccuracy),
the estimated Precision, the estimated F1 Score and other
Estimated Evaluation Metrics. Notations for estimated
evaluation metrics are shown in Table 7. For example,
to check the performance of a classification generated by
the Ensemble-N Module, the number of classified nor-
mal NetFlows Nf(0) generated by the Ensemble-N Module
is deemed as the estimated true positives. An estimated
confusion matrix is in presented in Table 8 for calculat-
ing other evaluation metrics. Take the following steps to
check the performance of an unsupervised learning model
utilising the EEM.

Step 1: Use the Nf(0) as the RT to run an Ensemble-10
Module and as such, 10 RAAs are employed.

Step 2: Calculate the Nf for each RAA from Step 1 and
record them in the list Nfs = [Nf(1), Nf(2)…Nf(10)].

Step 3: Find the EAP by identifying the maximum mode
of the Nfs or the maximum value of the Nfs, as shown in
Eq. (2).

Fig. 10 Three victims’ network
traffic distribution, in which the
first, the second, and the third
victim have 78, 131, and 281
normal source IP addresses,
respectively

Table 6 The number of actual normal IP addresses and the total num-
ber of IP addresses in the processed data sets

Index Data labels Actual positives TIPs

1 Whole UDP 78 78 50,078
2 Whole TCP 133 133 50,133
3 Whole ICMP 281 281 50,281
4 Whole UDP TCP 78 78 50,078
5 Whole UDP ICMP 133 133 50,133
6 Whole TCP ICMP 281 281 50,281
7 Whole UDP TCP ICMP 281 281 50,281

3158 International Journal of Machine Learning and Cybernetics (2021) 12:3145–3167

1 3

Step 4: Calculate the estimated actual negatives (EAN)
by subtracting EAP from the total number of IP addresses
in the data (TIPs) as shown in Eq. (3).

Step 5: Calculate the estimated false negatives (EFN)
according to Eq. (4).

(2)EAP =
Modmax(Nfs)

max(Nfs) otherwise

(3)EAN = TIPs − EAP

Step 6: Calculate the estimated false positives (EFP) by
Eq. (5).

Step 7: Calculate the estimated Recall (ERecall) based
on Eq. (6).

Step 8: Calculate the estimated Accuracy (EAccuracy) as
displayed in Eq. (7).

5 Results and findings

To illustrate the importance of feature selection, CMRW,
Max-10, and Ensemble5 classification, we compare the
performance without and with utilising feature selection,
CMRW, Max-10, and Ensemble-5. Additionally, to demon-
strate the scalability of the RAA system, we divided the
data set whole UDP TCP ICMP 281 into 5, 10, and 20 sub-
sets. Then, we tested the system using every subset for each
division, and we checked the local and global performance,
which are the results for an individual subset and the entire
data set, respectively. Furthermore, we tested the IAM sys-
tem on a real DDoS UDP flood attack data set. Moreover,
we compare the Recall of the IAM with other supervised and
unsupervised models.

(4)EFN = EAP − Nf0

(5)EFP = EAN − ETN

(6)ERecall =
Nf (0)

EAP

(7)EAccuracy =
TIPs − (EFP + EFN)

TIPs

Fig. 11 Normal and malicious octets vs. packets scatter plots

Table 7 Descriptions of variables for estimated evaluation metrics

Variables or Names Descriptions

EAP Estimated actual positives
EAN Estimated actual negatives
ETP Estimated true positives
ETN Estimated true negatives
EFP Estimated false positives
EFN Estimated false negatives
ERecall Estimated recall
EAccuracy Estimated accuracy

Table 8 Estimated confusion matrix for calculating estimated evalu-
ation metrics

Estimated
Actual Positives
(EAP)

Estimated Actual Negatives
(EAN)

Predicted positives ETP = Nf (0) EFP
Predicted negatives EFN ETN = TIPs—EAP

3159International Journal of Machine Learning and Cybernetics (2021) 12:3145–3167

1 3

5.1 Performance comparison
with and without utilising comparison‑max
random walk

We did two experiments to demonstrate the importance
of the CMRW. For the first experiment, we ran the Target
Detector 100 times on a sample UDP TCP 281 data set with
281 normal IP addresses and 5000 malicious IP addresses,
which contains 281 normal IP addresses. Without the
CMRW, 0 occurred eighteen times, but 281 did not occur at
all. The closest value to 281 was 202, which only occurred
once. Consequently, RT = 0 because it is the mode. How-
ever, when we ran the Target Detector 100 times with the
CMRW, the RT found was 281. In the second experiment,
we tested the Target Detector ten times each without and
with utilising CMRW. To get the potential target without the
CMRW, we ran the Target Detector ten times to generate 10

RTs and each time the recurrences is 30. The reason that the
recurrences is 30 is because the Target Detector typically
takes less than 30 recurrences for the RT to converge. The
results of the second experiment are shown in Table 9.

The number of predicted positives without the CMRW
have no duplicated potential RT. However, with the CMRW,
the mode of these 10 potential RTs is 281, so 281 is deemed
as the RT, and it is equal to the actual positives. These two
experiments demonstrate that the Comparison-Max Random
Walk helps the potential RT to converge closer to the actual
positives.

5.2 RT Comparison without and with Applying
Feature Selection and Max‑10 for the Target
Detector

We divided the whole UDP TCP 78 into ten sub data sets
and tested the Target Detector with each subset without and
with applying feature selection and Max-10. The result is
presented in Fig. 12. The x-axis is the number for the sub
data set{1,2......10} and the y-axis is the RT. Blue points
represent correct RT for each distributed data, and as such,
every point for the same sub data set should get as close to
the blue point as possible. In this figure, 8 orange points are
visible, which indicates that these points are incorrect. Fur-
thermore, only three violet points can be seen. This suggests
that the Target Detector performs better with feature selec-
tion than Max-10. The number of green points and violet
points confirms that feature selection has a greater impact on
finding the RT. However, the Target Detector has the highest
accuracy when it utilises Max-10 and feature selection. Sub
data set 6 is the only one that has a difference between the

Table 9 The number of
predicted positives or the
potential RT without and with
utilising CMRW for 10 trials

Trial # Without
CMRW

With CMRW

1 178 281
2 205 281
3 133 281
4 130 281
5 129 280
6 155 279
7 175 280
8 203 280
9 272 281
10 223 281

Fig. 12 RT found by the Target
Detector with and without the
feature selection and Max-10
for 10 sub sets of whole UDP
TCP 78 data

3160 International Journal of Machine Learning and Cybernetics (2021) 12:3145–3167

1 3

red points and the blue points. The RT equals to 6, which is
higher than the real RT 4. Nonetheless, from the perspective
of the ISP, as long as the false positives are not too many, it
is better to have fewer false positives than false negatives,
which cause service interruption to the users.

5.3 Performance comparison
without and with ensemble‑5

We divided the whole UDP TCP ICMP 281 into 20 sub data
sets and tested the system without and with utilising 5 RAAs
in the Ensemble-N Module.

The results are displayed in Table 10. The predicted
positives Nf with only one RAA is shown in the column
of ‘Without E-5’, and with E-5 is shown under ‘With E-5’.
Without applying E-5, the system miss identified some nor-
mal NetFlows in the sub data set Nos. 1, 2, 6, 8, 17 and 18
by 1, 4, 1, 1, 4, and 2 points, respectively. By utilising E-5,
the system correctly identified all normal NetFlows in sub
data set Nos. 1, 2, 6, and 18. However, the system did not
improve on sub data set No. 8, which indicates that both nor-
mal and malicious traffic is similar. One thing worth noting
is that E-5 performed worse by 1 point on sub data set No.
14. This can be improved by using the maximum mode or
value instead of the majority voting. Additionally, the system
performed the same on sub data set No. 17 either without or
with E-5. Even though the IAM system made mistakes on
sub data set No. 8, 14 and 17, it reduced the total number of
miss identified normal NetFlows for all 20 sub data sets from
13 to 3. Minimising the number of miss identified normal
NetFlows is important because the number of miss identified
normal NetFlows represents the number of legitimate users’
service being interrupted. The results show that utilising E-5
reduces the miss classified NetFlows by 76.92%.

5.4 Performance comparison
without and with distributed data sets
for scalability

To check the scalability of the IAM system, we divided the
whole UDP TCP ICMP 281 into 5, 10, and 20 subsets, and
the evaluation metrics are displayed in Fig. 13.

The Recall and accuracy are very similar for different
distribution sizes. However, when the data set is not subdi-
vided, the result has the highest number of false negatives.
There are more false negatives than false positives indicat-
ing that the system has a higher probability of miss identi-
fied normal NetFlows than malicious NetFlows. As such,
some legitimate users’ services are interrupted. As previ-
ously mentioned, this problem can be rectified by changing
the aggregating method for attaining the final classification.
Additionally, adding more RAAs to the Ensemble-N Mod-
ule is another solution. However, the number of incorrectly

classified NetFlows for distributed data sets is small, which
indicates the scalability of the proposed system. During
an attack, the majority of the NetFlows are malicious, and
hence, we purposely divided the whole UDP TCP ICMP 281
into ten sub data sets, among which 3 data sets contain only
malicious traffic. The performance of the system on each sub
data set is shown in Table 11. ‘Local Recall’ is the Recall
for the sub data set. Sub data set No. 2, 6, and 10 have only
malicious NetFlows, and the IAM system correctly iden-
tifies sub data set No. 6 and 10. Even though the system
miss identified 5 malicious NetFlows as normal NetFlows
in sub data set No. 2, the local Recall is 1, so there is no
service interruption. The global Recall for the whole UDP
TCP ICMP 281 calculated from aggregating the result from
all distributed data sets is 0.9964, and the global accuracy
is 0.9999. Though, without distributing the data sets, the
Recall and the accuracy are 1. Nonetheless, the time taken
for the Target Detector and the NetFlow Identifier to get a
best classification for an RAA is reduced by over 60% when
data is divided into subsets, as shown in Fig. 14.

5.5 Estimated performance evaluation

The estimated performance for all 20 sub-datasets for the
whole_UDP_TCP_ICMP_281 is displayed in Table 10. The
results demonstrate that the estimated values are the same as
the true values. For example, the actual positives are identi-
cal to the estimated actual positives EAP for all 20 subsets.
It is the same for the estimated Recall, the estimated false
positives and the estimated false negatives. The estimated
global accuracy for the entire data set was calculated based
on the Eq. (11), and the estimated accuracy is 99.9940%.
The results suggest that it is reasonable to use the Estimated
Evaluation Metrics to check the performance of an unsuper-
vised learning model.

5.6 Performance on the real attack data set

We tested the proposed system with a real attack data set
provided by the ISP. The DDoS attack took place in 2018
during an online game tournament. Initially, we set Top-N as
dynamic for feature selection, and the system could not find
the RT. Then, we specified Top-N = 5 to select 5 features
with the highest average Nf, the system found the RT = 199,
and the number of predicted positives was 197. We then use
the selected feature and RT to run the NetFlow Identifier
with recurrences = 10 to find the estimated actual positives.
The result of the Nf for all 10 runs is {199, 193, 212, 179,
170, 194, 188, 172, 177, 199}. Consequently, the estimated
actual positives is 199 because it is the mode and the ERecall
= 1, EFP = 0, EFN = 2, and the EAccuracy = 0.9987.

3161International Journal of Machine Learning and Cybernetics (2021) 12:3145–3167

1 3

5.7 Supervised and unsupervised model
comparison

We also compared the Recall of the proposed model with

other supervised and unsupervised models on a UDP
flood attack data set. To make the comparison between the
supervised and the unsupervised model more meaningful,
the supervised models were trained with only 5% of the

Table 10 Performance comparison without and with utilising Ensem-
ble-5, in which the EAP is the estimated actual positives, TRecall is
the true Recall, ERecall is the estimated Recall, TFP is the true false

positives, EFP is the estimated false positives, TFN is the true false
negatives, and the EFN is the estimated false negatives

Sub Data # Total IPs Without E-5 With E-5 Actual Positives EAP TRecall ERecall TFP EFP TFN EFN
1 2514 11 12 12 12 1 1 0 0 0 0
2 2514 9 13 13 13 1 1 0 0 0 0
3 2514 12 12 12 12 1 1 0 0 0 0
4 2514 16 16 16 16 1 1 0 0 0 0
5 2514 15 15 15 15 1 1 0 0 0 0
6 2514 14 15 15 15 1 1 0 0 0 0
7 2514 21 21 21 21 1 1 0 0 0 0
8 2514 12 12 13 13 0.9231 0.9231 0 0 1 1
9 2514 12 12 12 12 1 1 0 0 0 0

10 2514 16 16 16 16 1 1 0 0 0 0
11 2514 11 11 11 11 1 1 0 0 0 0
12 2514 22 22 22 22 1 1 0 0 0 0
13 2514 8 8 8 8 1 1 0 0 0 0
14 2514 17 16 17 17 0.9412 0.9412 0 0 1 1
15 2514 15 15 15 15 1 1 0 0 0 0
16 2514 14 14 14 14 1 1 0 0 0 0
17 2514 11 14 15 15 0.9333 0.9333 0 0 1 1
18 2514 9 11 11 11 1 1 0 0 0 0
19 2514 14 14 14 14 1 1 0 0 0 0
20 2515 9 9 9 9 1 1 0 0 0 0

Fig. 13 Recall, false negatives, false positives, and accuracy comparison with different distribution size for the whole UDP TCP ICMP 281 data
set, which includes 0, 5, 10 and 20 subsets

Table 11 Performance for 10
distributed data sets of whole
UDP TCP ICMP 281 among
which sub set No. 2, 6 and 10
contain 0 normal IP addresses

Sub Data
Set #

Total IPs Actual posi-
tives

Nf Local Recall Accuracy False posi-
tives

False
nega-
tives

1 5028 53 52 0.9811 0.9998 0 1
2 5028 0 5 1 0.9990 5 0
3 5028 30 30 1 1 0 0
4 5028 34 34 1 1 0 0
5 5028 61 61 1 1 0 0
6 5028 0 0 1 1 0 0
7 5028 25 25 1 1 0 0
8 5028 29 29 1 1 0 0
9 5028 49 49 1 1 0 0
10 5029 0 0 1 1 0 0

3162 International Journal of Machine Learning and Cybernetics (2021) 12:3145–3167

1 3

labelled data. The result is displayed in Fig. 15. Amongst
all models, the KNN has the lowest Recall of 0, and the IAM
has the highest Recall of 1. We used a threshold of 0.5 to
classify the bottleneck of the Autoencoder, and the Recall
is 14.1% lower than the proposed model. The SRDG is a
hybrid model that uses two-layers of SOMs to classify the
data to train an ensemble module, which includes a Deci-
sion Trees, a Random Forests, and a Gradient Boosted Trees
(GBT). Even though the Recall of the SRDG is 0.9618, the
IAM system outperforms the SRDG by 3.82%. One thing
worth mentioning is that the Dual-SOM, the SRDG and the
IAM are all target-driven models that utilise dynamic fea-
ture selection and threshold moving, and they have higher
Recall compared to other models. However, the number of
potential thresholds for selecting the optimal threshold for
the Dual-SOM and SRDG is much smaller than the IAM.
The potential thresholds are [0.6, 0.7] with a step of 0.1 for

Dual-SOM and SRDG and [0.2, 0.8] with a step of 0.05 for
the IAM. This demonstrates the importance of the number
of potential thresholds for finding an optimal threshold. Even
though the IAM requires the most computing power amongst
all models, the Top-N, Max-N and Ensemble-N are the ele-
ments that can be adjusted to deal with the performance and
resources trade-off.

5.8 Additional findings

There are five significant findings in this research. Firstly,
feature selection affects the speed of finding the RT and the
correctness of the final classification. Better feature selec-
tion reduces the number of recurrences required for finding
the RT as shown in Fig. 16a with three recurrences, which
means that the potential RT for all three recurrences are
identical. On the contrary, feature selection for Fig. 16g is
not as good because it took 20 recurrences to find the RT.
Figure 16a and g indicate that this data set for victim 1 has
higher separability among features. Therefore, the RT is cor-
rectly found even with a feature set that is less than ideal.
However, if the features selected were poor, the AA took
more than 30 recurrences to find the RT, which was nor-
mally very different from the actual positives. For example,
when we divided the whole UDP TCP ICMP 281 into 10
sub data sets, the system had trouble to correctly classify
sub data set 5 with the first set of features. The first feature
set for sub data set 5 was {gPSum, gUO, gUP, gUSPort,
gOMean, gPMean, gPStd, lPSum, lOMean, lTCPd, lUO,
lUP, gRecF, gResF}. Using this feature set, the RT found
was 141, which was very different from the actual positives
of 33. Then, the final classification result was 266 normal
NetFlows. Even though the Recall was 1, the false positive
was 233. Since the recurrence value was over 30, which
suggested a poor feature selection. Therefore, the Feature
Selector was run again to find a second set of features,
which was{gOSum, gPSum, gProtSum, gUDIP, gUP, gUS-
Port, gTC, gTCPd, glTR, lOSum, lPSum, lOMean, lPMean,

Fig. 14 Time taken for the Target Detector and the NetFlow Identifier
to get a best classification for an RAA with and without distributed
data sets

Fig. 15 Recall of supervised
and other unsupervised learning
models compared to the IAM
system on a UDP flood attack
data set, in which supervised
models were trained with only
5% of labelled data

3163International Journal of Machine Learning and Cybernetics (2021) 12:3145–3167

1 3

lUP, lUProt, lUSPort, lTCStd, lOMeanSend, lOMeanDiff,
lResF, gRecF, gU3, gU5, lU3}. This time, the RT found
was 32, which was very close to 33. Then, the system used
RT =32 for the Ensemble-5 Module and the final Nf was 33,
which is the same as the actual positives for sub data set 5.
Each trial in Fig. 16 is a number of predicted positives or
a potential RT generated by the Target Finder. The random
weight initialisation for the Autoencoder caused the number
of predicted positives to be different. Consequently, differ-
ent features were selected, so the Target Detector generated

different values for the potential RT. The Target Detector
stops iterating when the potential RT converges. The con-
verging process was stated earlier in Section 7.3.4. The
horizontal line after the dot on each plot is to make them
look uniform. For example, in Fig. 16a, the Target Detector
stopped at the third iteration and (b) stopped at the fifth itera-
tion. Moreover, Fig. 16a, d, g demonstrate that the system
can achieve the same performance with different feature sets,
which greatly alleviates the problem of trying to figure out
which features are important.

Fig. 16 Comparison-Max-Random-Walk achieves convergence of the RT for all three victims

3164 International Journal of Machine Learning and Cybernetics (2021) 12:3145–3167

1 3

Secondly, there is a close relationship between the RT and
the performance of the system. We tested the system 100
times with the RT equal to the actual positives. The prob-
ability of achieving an accuracy of 1 is 97%. Additionally,
we tested the system with the RT that was close to the actual
positives 100 times. The probability of having the false neg-
atives = 0 and only a few false positives was about 98%,
which indicates that even if the RT is not identical to the
actual positives, no users’ services will be interrupted. Addi-
tionally, the fewer recurrences taken for the Target Detector
to find the RT, the closer the RT is to the actual positives as
shown in Fig. 16 with Victim2-133 and Victim3-281.

Thirdly, the 10 Nf s generated by every RAA of an
Ensemble-10 Module with the RT = Nf(0) provides a good
measure to find the estimated actual positives to calculate
Estimated Evaluation Metrics. When we divided the whole
UDP TCP ICMP 281 into ten subsets, the system had trou-
ble with the subset No. 5. Initially, the Nf(0) was 141, when
we used 141 as the RT to run each RAA on sub data set in
the Ensemble-10 Module, the Nf generated each time was
different as displayed in Table 12. As such, we could not
determine the estimated actual positives, which suggests
the performance was poor. However, when we used a new
RT of 32, and the mode was 33, as shown in Table 12. The
estimated actual positives were 33, which was the same as
the actual positives.

Fourthly, the performance of the system depends on the
distribution of the data sets, which affects the separabil-
ity of the data points. The IAM system could easily find
the RT that was the same as the actual positives when
the standard deviation of the NetFlows was larger. For
example, the system had a higher probability of correctly
classifying whole UDP TCP 78, whole UDP ICMP 78,
whole TCP ICMP 133 and whole UDP TCP ICMP 281
because the standard deviations of these data sets were
higher. However, when we divided the whole UDP TCP
ICMP 281 into five sub-datasets, the standard deviation
for each subset was 9.5071, 9.3881, 9.9379, 9.3847 and

9.4437. Subset No. 2, 4 and 5 had lower standard devia-
tions compared to subset No. 1 and 3. The system correctly
identified all NetFlows for subset 3, and only had one false
negative for subset 1. Therefore, the system selected new
features for subset No. 2, 4 and 5. However, the IAM still
could not find an appropriate RT for subset No. 2, 4 and
5 with new features selected. To cope with this problem,
we further divided subset No. 2, 4 and 5 into two subsets
each to change the distribution of the sub data sets. The
distribution of ‘gOSum’ and ‘gUO’ for the subset No. 2
and the two subdivided sets of subset No.2, which include
set2-subset-1 and set2-subset-2, are shown in Fig. 17.

The green distributions were generated from sub data
set No. 2. The red plots are generated from sub-data set2-
subset-1, and the blue plots are created from sub-data
set2-subset-2. Once the system finished classifying each
subdivided data sets, the performance for the entire whole
UDP TCP ICMP 281 was evaluated. The final global
Recall was 0.9964, the global false negatives were 1, and
the global false positives was 3. Moreover, after testing
all data sets, the result shows that it was easier for the
system to efficiently and correctly classify the NetFlows
with a single-vector attack than a multi-vector attack. The
standard deviation for single-vector attack data sets were
all above 2e-9, but for multi-vector data sets were smaller
by more than 50%.

Fifthly, throughout the experiments, the results show
that using the RT to direct the unsupervised model with
threshold-moving to classify the data makes the model less
sensitive to feature selection. For example, the model was
able to generate similar Nf with different features and thresh-
olds. The first feature set includes 7 features, which are in
the set of {‘gUProt’, ‘gUDPort’, ‘lTC’, ‘lTCpd’, ‘lUProt’,
‘lTCMean’, ‘lTCStd’}, with the threshold = 0.3. The sec-
ond feature set contains 13 features, which are in the set of
{‘gOSum’, ‘gPSum’, ‘gUDIP’, ‘gUProt’, ‘gTC’, ‘gOMean’,
‘gPStd’, ‘gOPPMean’, ‘glTR’, ‘lOSum’, ‘lOMean’, ‘lTC-
Mean’, ‘lTCStd’}, with the threshold = 0.5. Both feature
sets only have 3 features in common. With the ability to
work with different feature sets by tuning the threshold, the
target-driven technique greatly reduces the burden of feature
engineering.

Finally, even though there is about 5% probability that the
proposed system requires to be rerun the Ensemble-N Mod-
ule, the system automatically detects the need by utilising
the number of recurrences used to find an RT. If the system
takes more than 30 recurrences to find an RT, it signifies
that the RT is not reliable. Nonetheless, there are four ways
to improve the performance of the IAM system. The first
method is to select a new feature set. The second approach is
to divide the data set into smaller data sets to change the traf-
fic distribution. The third technique is to modify the aggre-
gating method for attaining the final classification. The last

Table 12 The Nf generated by
each RAA of an Ensemble-10
Module using RT = 141 and 32
on a sub data set

Trial # Nf when
RT = 141

Nf when
RT = 32

1 266 32
2 326 33
3 231 32
4 288 33
5 239 31
6 454 29
7 238 31
8 542 32
9 489 33
10 482 33

3165International Journal of Machine Learning and Cybernetics (2021) 12:3145–3167

1 3

measure is to employ additional RAAs in the Ensemble-N
Module.

6 Conclusion and future work

The advancement of DDoS technology escalates the level of
difficulty for DDoS traffic identification, which can signifi-
cantly reduce the effectiveness of the mitigation system. As
5G continues to take shape, a growing number of devices
connecting to the network allows the attacker to increase the
amount of malicious traffic towards the victim dramatically.
The ISP already has blackholing mechanisms. Therefore, to
deliver an effective DDoS mitigation system within the ISP
domain, an efficient network traffic classifier is necessary. To
combat an AI-based attack requires an AI-based approach,
and thus, we propose the IAM system, which is a frame
independent, ensemble, and distributed-enabled model that
utilises Recurrent Autonomous Autoencoder. The proposed
system can dynamically transform data, select features,
determine the reference target, and identify attack traffic.
The autonomous nature of the RAA enables the system to

classify distributed data sets, which offers scalability to
cope with a large amount of network traffic. Even though
there is about 5% possibility that the Ensemble-N Module
requires rerun, the need can be detected using the number
of recurrences taken to find an RT. Moreover, there are dif-
ferent ways to improve the performance of the IAM system
by further dividing the data set, selecting new features, or
changing the aggregating method for attaining the final clas-
sification. The classification generated by the Ensemble-N
Module for each distributed data set is independent. There-
fore, malicious NetFlows found by each distributed system
can be blocked right away to reduce delay. While the average
Recall of the system was over 0.98, the amount of computing
power and training time required could be high. Even though
adjusting the N value for the Top-N, Max-N, and Ensemble-
N can deal with the performance and resources trade-off,
future work can focus on making the system more efficient.

Appendix A

See Table 13.

Fig. 17 NetFlow distribution of further subdividing the subset No.2 (Sub Data Set2) in green of whole UDP TCP ICMP 281 into two additional
subsets of subset No. 2 into Sub Data-Set2-subset-1 in red and Sub Data Set2-subset-2 in blue

3166 International Journal of Machine Learning and Cybernetics (2021) 12:3145–3167

1 3

Acknowledgements This research is funded by the Irish Research
Council.

References

 1. Bacon M (2019) DDoS attacks among top 5G security concerns.
https:// searc hsecu rity. techt arget. com/ featu re/ DDoS- attac ks-
among- top- 5G- secur ity- conce rns. Accessed:13 July 2019

 2. How the Mirai botnet changed IoT security and DDoS defense.
https:// searc hsecu rity. techt arget. com/ essen tialg uide/ How- the-
Mirai- botnet- chang ed- IoT- secur ity- and- DDoS- defen se. Accessed:
13 July 2019

 3. Marinos L, Louren M (2019) ENISA Threat Landscape Report
2018. https:// www. enisa. europa. eu/ topics/ threat- risk- manag
ement/ threa ts- and- trends/ enisa- threat- lands cape Accessed: 20
Aug 2019

 4. Shibu M (2019) Security concerns in a 5G era: are networks ready
for massive DDoS attacks?. https:// www. scmag azine uk. com/ secur
ity- conce rns- 5g- era- netwo rks- ready- massi ve- ddos- attac ks/ artic le/
15845 54 Accessed: 20 Aug 2019

 5. Khalili J (2021) Volume of DDoS attacks continues to surge.
https:// www. itpro portal. com/ news/ volume- of- ddos- attac ks- conti
nue- to- surge/. Accessed:7 Jan 2021

 6. Osborne C (2019) The average DDoS attack cost for businesses
rises to over $2.5 million. https:// www. zdnet. com/ artic le/ the- avera
ge- ddos- attack- cost- for- busin esses- rises- to- over-2- 5m/ Accessed:
20 Aug 2019

 7. Moore M (2019) DDoS attacks could cost the UK £1bn this year.
https:// www. techr adar. com/ news/ ddos- attac ks- could- cost- the- uk-
pound 1bn- this- year Accessed: 20 Aug 2019

 8. Verisign Q2 2016 DDoS Trends:Layer 7 DDoS Attacks a Grwo-
ing Trend. https:// www. centr. org/ news/ news/ com- veris ign- q2-
2016- ddos- trends- layer-7- ddos- attac ks-a- growi ng- trend. html.
Accessed: 21 Aug 2016

 9. Niyaz Q, Sun W, Javaid AY (2017) A deep learning based DDoS
detection system in software-defined networking (SDN). SESA,
EAI, DOI: https:// doi. org/ 10. 4108/ eai. 28- 122017. 153515

 10. Schmidhuber J (2015) Deep learning in neural networks: an over-
view. Neural Netw 61:85–117. ISSN 0893–6080. https:// doi. org/
10. 1016/j. neunet. 2014. 09. 003. http:// www. scien cedir ect. com/
scien ce/ artic le/ pii/ S0893 60801 40021 35

 11. Conran M (2021) The rise of artificial intelligence DDoS attacks.
https:// www. netwo rkwor ld. com/ artic le/ 32891 08/ the- rise- of- artif
icial- intel ligen ce- ddos- attac ks. html

 12. Dietzel C, Feldmann A, King T (2016) Blackholing at IXPs: on
the effectiveness of DDoS Mitigation in the Wild. PAM

 13. Miller L, Pelsser C (2019) A taxonomy of attacks using BGP
blackholing. In: Sako K, Schneider S, Ryan P (eds) Computer
security – ESORICS 2019. ESORICS 2019. Lecture Notes in
Computer Science, vol 11735. Springer, Cham

 14. Giotsas V, Smaragdakis G, Dietzel C, Richter P, Feldmann A,
Berger A (2017) Inferring BGP blackholing activity in the inter-
net. In: Proceedings of the 2017 internet measurement conference
(IMC ’17). ACM, New York, NY, USA, 1–14. https:// doi. org/ 10.
1145/ 31313 65. 31313 79

 15. Yuan X, Li C, Li X (2017) DeepDefense: identifying DDoS attack
via deep learning. In: IEEE international conference on smart
computing (SMARTCOMP), Hong Kong, 2017, pp 1–8. https://
doi. org/ 10. 1109/ SMART COMP. 2017. 79469 98. http:// ieeex plore.
ieee. org/ stamp/ stamp. jsp? tp= & arnum ber= 79469 98& isnum- ber=
79469 54

Table 13 Descriptions of extracted features

Features Descriptions

gOSum Global octets sum
gPSum Global packets sum
gProtSum Global protocol sum
gUSIP Global unique source ip
gUDIP Global unique destination ip
gSDIPR Global source to destination ip ratio
gUO Global unique octets value
gUP Global unique packets value
gUProt Global unique protocol value
gUSPort Global unique source port value
gUDPort Global unique destination port value
gTC Global traffic count
gTCPd Global traffic count period
gOMean Global octets mean
gOStd Global octets standard deviation
gPMean Global packets mean
gPStd Global packets standard deviation
gOPPMean Global octets per packet mean
gOPPStd Global octets per packet standard deviation
glTR Global to local traffic count ratio
gRecF Global receiving factor
gResF Global response factor
gU3 Global unique sum of guprot, gusport, and gudport
gU5 Global unique sum of guo, gup, guprot, gusport, and

sudport
lOSum Local octets sum
lPSum Local packets sum
lOMean Local octets mean
lPMean Local packets mean
lTC Local traffic count
lTCPd Local traffic count period
lUO Local unique octets value
lUP Local unique packets value
lUProt Local unique protocol value
lUSPort Local unique source port value
lUDPort Local unique destination port value
lTCMean Local traffic count mean
lTCStd Local traffic count standard deviation
lCD Local communication direction
lOMeanSend Local octet mean send to other ip addresses
lOMeanDiff Local octets mean difference between the source ip,

and the destination ip
lODiffSign Local received and sent octet difference
lRecF Local receiving factor
lResF Local response facto
lU3 Local unique sum of luprot, lusport, and ludport
lU5 Local unique sum of luo, lup, luprot, lusport, and

ludport

https://searchsecurity.techtarget.com/feature/DDoS-attacks-among-top-5G-security-concerns
https://searchsecurity.techtarget.com/feature/DDoS-attacks-among-top-5G-security-concerns
https://searchsecurity.techtarget.com/essentialguide/How-the-Mirai-botnet-changed-IoT-security-and-DDoS-defense
https://searchsecurity.techtarget.com/essentialguide/How-the-Mirai-botnet-changed-IoT-security-and-DDoS-defense
https://www.enisa.europa.eu/topics/threat-risk-management/threats-and-trends/enisa-threat-landscape
https://www.enisa.europa.eu/topics/threat-risk-management/threats-and-trends/enisa-threat-landscape
https://www.scmagazineuk.com/security-concerns-5g-era-networks-ready-massive-ddos-attacks/article/1584554
https://www.scmagazineuk.com/security-concerns-5g-era-networks-ready-massive-ddos-attacks/article/1584554
https://www.scmagazineuk.com/security-concerns-5g-era-networks-ready-massive-ddos-attacks/article/1584554
https://www.itproportal.com/news/volume-of-ddos-attacks-continue-to-surge/
https://www.itproportal.com/news/volume-of-ddos-attacks-continue-to-surge/
https://www.zdnet.com/article/the-average-ddos-attack-cost-for-businesses-rises-to-over-2-5m/
https://www.zdnet.com/article/the-average-ddos-attack-cost-for-businesses-rises-to-over-2-5m/
https://www.techradar.com/news/ddos-attacks-could-cost-the-uk-pound1bn-this-year
https://www.techradar.com/news/ddos-attacks-could-cost-the-uk-pound1bn-this-year
https://www.centr.org/news/news/com-verisign-q2-2016-ddos-trends-layer-7-ddos-attacks-a-growing-trend.html
https://www.centr.org/news/news/com-verisign-q2-2016-ddos-trends-layer-7-ddos-attacks-a-growing-trend.html
https://doi.org/10.4108/eai.28-122017.153515
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
http://www.sciencedirect.com/science/article/pii/S0893608014002135
http://www.sciencedirect.com/science/article/pii/S0893608014002135
https://www.networkworld.com/article/3289108/the-rise-of-artificial-intelligence-ddos-attacks.html
https://www.networkworld.com/article/3289108/the-rise-of-artificial-intelligence-ddos-attacks.html
https://doi.org/10.1145/3131365.3131379
https://doi.org/10.1145/3131365.3131379
https://doi.org/10.1109/SMARTCOMP.2017.7946998
https://doi.org/10.1109/SMARTCOMP.2017.7946998
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7946998&isnum-ber=7946954
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7946998&isnum-ber=7946954
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7946998&isnum-ber=7946954

3167International Journal of Machine Learning and Cybernetics (2021) 12:3145–3167

1 3

 16. Yadigar I, Fargana A (2018) Deep Learning Method for Denial
of Service Attack Detection Based on Restricted Boltzmann
Machine. https:// doi. org/ 10. 1089/ big. 2018. 0023

 17. Priyadarshini R, Barik RK (2019) A deep learning based intel-
ligent framework to mitigate DDoS attack in fog environment,
Journal of King Saud University Computer and Information Sci-
ences, ISSN 1319–1578. https:// doi. org/ 10. 1016/j. jksuci. 2019.
04. 010. http:// www. scien cedir ect. com/ scien ce/ artic le/ pii/ S1319
15781 83101 40

 18. Liu Y, Dong M, Ota K, Li J, Wu J (2018) Deep Reinforcement
Learning based Smart Mitigation of DDoS Flooding in Software-
Defined Networks, 2018 IEEE 23rd International Workshop on
Computer Aided Modeling and Design of Communication Links
and Networks (CAMAD), Barcelona, 2018, pp. 1–6. doi: https://
doi. org/ 10. 1109/ CAMAD. 2018. 85149 71. http:// ieeex plore. ieee.
org/ stamp/ stamp. jsp? tp= & arnum ber= 85149 71& isnum ber= 85149
32

 19. Najafabadi MM, Villanustre F, Khoshgoftaar TM, Seliya N, Wald
R, Muharemagic E (2015) Deep learning applications and chal-
lenges in big data analytics. Journal of Big Data. https:// doi. org/
10. 1186/ s40537- 014- 0007-7

 20. Jmj A (2019) 5 Industries that heavily rely on Artificial Intel-
ligence and Machine Learning. https:// medium. com/ datad riven
inves tor/5- indus tries- that- heavi ly- rely- on- artifi cial- intel ligen ce-
and- machi ne- learn ing- 53610 b6c15 25 Accessed:August 22, 2019

 21. Liu Y, Dong M, Ota K, Li J, Wu J (2018) Deep reinforcement
learning based smart Mitigation of DDoS flooding in software-
defined networks. 2018 IEEE 23rd International Workshop on
Computer Aided Modeling and Design of Communication Links
and Networks (CAMAD), Barcelona, 2018, pp. 1–6. doi: https://
doi. org/ 10. 1109/ CAMAD. 2018. 85149 71. http:// ieeex plore. ieee.
org/ stamp/ stamp. jsp? tp= & arnum ber= 85149 71& isnum ber= 85149
32

 22. Gao J, Fan W, Han J On the Power of Ensemble: Supervised and
Unsupervised Methods Reconciled. http:// ews. uiuc. edu/ jingg ao3/
sdm10 ensem ble. htm

 23. Ko I, Chambers D, End B (2020) Adaptable feature-selecting and
threshold-moving complete autoencoder for DDoS flood attack
mitigation. J Inf Secur Appl 55: https:// doi. org/ 10. 1016/j. jisa.
2020. 102647

 24. Bacon M (2019) Q2 2018 DDOS TRENDS REPORT: 52 PER-
CENT OF ATTACKS EMPLOYED MULTIPLE ATTACK
TYPES. https:// blog. veris ign. com/ secur ity/ ddosp rotec tion/

q2–2018- ddos- trends- report- 52- perce nt- of- attac ks- emplo yed-
multi ple- attack- types/. Accessed: Sep 18, 2019

 25. UNB Intrusion Detection Evaluation Dataset (CIC-IDS2017).
https:// www. unb. ca/ cic/ datas ets/ ids- 2017. html. Accessed August,
2016

 26. Asad M, Asim M, Javed T, Beg M, Mujtaba H, Abbas S (2019)
DeepDetect: Detection of Distributed Denial of Service Attacks
Using Deep Learning. The Computer Journal, Comjnl SN 0010–
4620, RD 8/22/2019. https:// doi. org/ 10. 1093/ comjnl/ bxz064

 27. Salama MA, Eid HF, Ramadan RA, Darwish A, Hassanien AE
(2011) Hybrid Intelligent Intrusion Detection Scheme. In: Gaspar-
Cunha A, Takahashi R, Schaefer G, Costa L (eds) Soft Comput-
ing in Industrial Applications. Advances in Intelligent and Soft
Computing, vol 96. Springer, Berlin, Heidelberg

 28. Ko I, Desmond C, Enda B (2019) A Lightweight DDoS Attack
Mitigation System within the ISP Domain Utilising Self-organ-
izing Map Volume 2. https:// doi. org/ 10. 1007/ 978-3- 030- 026837
14

 29. Ko I, Desmond C, Enda B (2019) Unsupervised learning with
hierarchical feature selection for DDoS mitigation within the ISP
domain. ETRI J. https:// doi. org/ 10. 4218/ etrij. 2019- 0109

 30. Ko I, Desmond C, Enda B (2019) Feature dynamic deep learn-
ing approach for ddos mitigation within the isp domain. Int J Inf
Secur. https:// doi. org/ 10. 1007/ s10207- 019- 00453-y

 31. Doriguzzi-Corin R, Millar S, Scott-Hayward S, Martinez-del-
Rincon J, Siracusa D (2020) LUCID: A Practical, Lightweight
Deep Learning Solution for DDoS Attack Detection. IEEE Trans-
actions on Network and Service Management, pp 1–1. Crossref,
Web

 32. Ko I, Chambers D, Barrett E (2020) Self-supervised network
traffic management for DDoS mitigation within the ISP domain.
Future Generation Computer Systems, Volume 112, pp 524–533,
ISSN 0167–739X. https:// doi. org/ 10. 1016/j. future. 2020. 06. 002

 33. Kingma DP, Ba J (2014) Adam: A Method for Stochastic Optimi-
zation, CoRR abs/1412.6980. https:// arxiv. org/ pdf/ 1412. 6980. pdf

 34. Go M (2020) BoNeSi. https:// github. com/ Markus- Go/ bonesi.
Accessed:June 10, 2020

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1089/big.2018.0023
https://doi.org/10.1016/j.jksuci.2019.04.010
https://doi.org/10.1016/j.jksuci.2019.04.010
http://www.sciencedirect.com/science/article/pii/S1319157818310140
http://www.sciencedirect.com/science/article/pii/S1319157818310140
https://doi.org/10.1109/CAMAD.2018.8514971
https://doi.org/10.1109/CAMAD.2018.8514971
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8514971&isnumber=8514932
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8514971&isnumber=8514932
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8514971&isnumber=8514932
https://doi.org/10.1186/s40537-014-0007-7
https://doi.org/10.1186/s40537-014-0007-7
https://medium.com/datadriveninvestor/5-industries-that-heavily-rely-on-artificial-intelligence-and-machine-learning-53610b6c1525
https://medium.com/datadriveninvestor/5-industries-that-heavily-rely-on-artificial-intelligence-and-machine-learning-53610b6c1525
https://medium.com/datadriveninvestor/5-industries-that-heavily-rely-on-artificial-intelligence-and-machine-learning-53610b6c1525
https://doi.org/10.1109/CAMAD.2018.8514971
https://doi.org/10.1109/CAMAD.2018.8514971
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8514971&isnumber=8514932
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8514971&isnumber=8514932
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8514971&isnumber=8514932
http://ews.uiuc.edu/jinggao3/sdm10ensemble.htm
http://ews.uiuc.edu/jinggao3/sdm10ensemble.htm
https://doi.org/10.1016/j.jisa.2020.102647
https://doi.org/10.1016/j.jisa.2020.102647
https://blog.verisign.com/security/ddosprotection/q2–2018-ddos-trends-report-52-percent-of-attacks-employed-multiple-attack-types/
https://blog.verisign.com/security/ddosprotection/q2–2018-ddos-trends-report-52-percent-of-attacks-employed-multiple-attack-types/
https://blog.verisign.com/security/ddosprotection/q2–2018-ddos-trends-report-52-percent-of-attacks-employed-multiple-attack-types/
https://www.unb.ca/cic/datasets/ids-2017.html
https://doi.org/10.1093/comjnl/bxz064
https://doi.org/10.1007/978-3-030-026837
https://doi.org/10.4218/etrij.2019-0109
https://doi.org/10.1007/s10207-019-00453-y
https://doi.org/10.1016/j.future.2020.06.002
https://arxiv.org/pdf/1412.6980.pdf
https://github.com/Markus-Go/bonesi

	Recurrent autonomous autoencoder for intelligent DDoS attack mitigation within the ISP domain
	Abstract
	1 Introduction
	2 Related work
	3 System design
	3.1 Data processor
	3.2 Autonomous autoencoder
	3.3 Feature selector
	3.4 Target detector
	3.5 NetFlow identifier
	3.6 Ensemble-N module

	4 Experimental implementation
	4.1 Data information
	4.2 Estimated evaluation metrics for unsupervised learning model

	5 Results and findings
	5.1 Performance comparison with and without utilising comparison-max random walk
	5.2 RT Comparison without and with Applying Feature Selection and Max-10 for the Target Detector
	5.3 Performance comparison without and with ensemble-5
	5.4 Performance comparison without and with distributed data sets for scalability
	5.5 Estimated performance evaluation
	5.6 Performance on the real attack data set
	5.7 Supervised and unsupervised model comparison
	5.8 Additional findings

	6 Conclusion and future work
	Acknowledgements
	References

