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Abstract
The continuous advancement of DDoS attack technology and an increasing number of IoT devices connected on 5G networks 
escalate the level of difficulty for DDoS mitigation. A growing number of researchers have started to utilise Deep Learning 
algorithms to improve the performance of DDoS mitigation systems. Real DDoS attack data has no labels, and hence, we 
present an intelligent attack mitigation (IAM) system, which takes an ensemble approach by employing Recurrent Autono-
mous Autoencoders (RAA) as basic learners with a majority voting scheme. The RAA is a target-driven, distributionenabled, 
and imbalanced clustering algorithm, which is designed to work with the ISP’s blackholing mechanism for DDoS flood 
attack mitigation. It can dynamically select features, decide a reference target (RT), and determine an optimal threshold to 
classify network traffic. A novel Comparison-Max Random Walk algorithm is used to determine the RT, which is used as 
an instrument to direct the model to classify the data so that the predicted positives are close or equal to the RT. We also 
propose Estimated Evaluation Metrics (EEM) to evaluate the performance of unsupervised models. The IAM system is 
tested with UDP flood, TCP flood, ICMP flood, multi-vector and a real UDP flood attack data. Additionally, to check the 
scalability of the IAM system, we tested it on every subdivided data set for distributed computing. The average Recall on 
all data sets was above 98%.

Keywords Deep learning · Autoencoder · Machine learning · Unsupervised learning · DDoS mitigation · Random walk · 
Evaluation metrics for unsupervised learning · Cyber security · Network security

1 Introduction

Cyberattackers utilise botnets to launch distributed denial of 
service (DDoS) attacks to send an enormous amount of junk 
traffic to flood a victim’s server to cause service interruption 
to legitimate users. DDoS attacks have been in existence 
for around 20 years, but the continuous development of 5G 
technology will escalate the magnitude and the frequency 
of the attacks. The increasing number of poorly secured 
devices connected on 5G networks, cheap DDoS services for 
hire and 23 million DDoS attack tools on demand, ensures 
that the ability to mitigate larger and more advanced DDoS 
attacks is one of the top 5G security requirements [1,2]. 
According to the ENISA Threat Landscape Report 2018, the 
average DDoS attack endured 318.10 mins, while the most 

prolonged attack persisted over six days [3]. The first terabit 
attack was 1.35 Tpbs targeting GibHub, and shortly after 
that, a 1.7 Tbps attack targeted Arbor Networks [4]. Since 
the coronavirus lockdown, the number of DDoS attacks sky-
rocketed in 2020, and nearly 90% of attacks were over 100 
Gbps. Cloudflare had reported a really large attack, peak-
ing at 754 million packets per second [5]. The average cost 
of a DDoS attack for businesses in 2017 was $2.5 million 
in the United States [6]. The increasing number of DDoS 
attacks raises the cost as well. It is estimated that DDoS 
attacks could cost the UK more than £1bn in 2019 [7]. DDoS 
technology has evolved from being a single vector to multi-
vector attack [9, 24]. The rise of artificial intelligence (AI) 
enables the DDoS technology to dynamically change the 
traffic patterns during the time an attack is active [11], which 
intensifies the level of difficulty for DDoS mitigation.

The Internet service provider (ISP) is the connector 
between the Internet and the users, and thus, deploying the 
mitigation system within the ISP domain can provide an 
efficient solution. Blackholing is an effective technique to 
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mitigate DDoS attacks [12, 13], so its usage has increased 
[12, 14]. Nonetheless, a network traffic classifier is required 
before employing the blackholing technique to minimise 
legitimate users’ services being interrupted. Machine learn-
ing, such as supervised learning and unsupervised learning, 
have been widely used for DDoS mitigation systems. How-
ever, security experts have suggested that supervised learn-
ing will have difficulties in dealing with the advanced DDoS 
attacks because it is impossible to create all types of traffic 
profiles to train the model. On the contrary, with the abil-
ity to learn and adapt to the changes of the attack patterns, 
unsupervised learning is a superior technique to defend 
against AI-based DDoS attacks [11]. Deep Learning (DL) 
overcomes the limitation of the traditional machine learning 
approaches due to the shallow representation generated by 
the models [15]. Consequently, an increasing number of use-
ful and exciting applications in the industry and the research 
community utilise DL [9]. Due to the inherited non-linearity 
of neural networks [10], DL approaches outperformed other 
machine learning classification techniques [9]. As a result, 
DL has started to gain its popularity among researchers for 
building DDoS detection or mitigation systems [16, 17–21]. 
Therefore, we propose an unsupervised Deep Learning algo-
rithm, the Recurrent Autonomous Autoencoder (RAA), to 
construct the intelligent attack mitigation (IAM) system. 
The IAM system is illustrated in Fig. 1, which contains a 
Data Processor and an Ensemble-N Module with N number 
of RAAs to improve the performance of the model [22]. 
Each RAA has a Feature Selector, a Target Detector, and a 
NetFlow Identifier, and all of them utilise the Autonomous 
Autoencoder (AA).

The AA is different from the regular Autoencoder 
because the output of the AA is a binary classification which 
is controlled by a class switch that is designed to exploit the 
imbalanced data set that is generally deemed as a problem 
for machine learning models. For example, if there are 10 
normal IP addresses amongst 1000, when the AA identi-
fies 8, most likely they are 8 normal IP addresses. However, 
if there are 450 normal and 550 malicious IP addresses, it 
is difficult to determine whether they are normal or mali-
cious when the AA classifies 485 for a group and 515 for 
another group. Therefore, the AA works particularly well 
with imbalanced data. The AA has improved from our previ-
ous model that utilised a Complete Autoencoder (CA) [23] 
because the AA no longer requires an RT calculated from a 
few time frames before the attack.

The design concept behind the RAA originated from ‘Tell 
me the number and I will identify them’. The ‘number’ is 
the reference target (RT), which should be close or equals to 
the number of normal IP addresses (actual positives) during 
the attack. Based on our previous research, we discovered 
that the model could pinpoint the normal IP addresses if the 
number of them is given [29,30]. Unfortunately, in the real 

world, the number of normal IP addresses during an attack is 
unknown. As a result, we utilise the RT to direct the system 
to classify the data so that the predicted positives are close 
or equal to the actual positives. Accordingly, we equipped 
the IAM with the Target Detector that can automatically 
find the RT via Comparison-Max Random Walk (CMRW) 

Fig. 1  The IAM contains a Data Processor and an Ensemble-N Mod-
ule utilising a majority voting scheme to attain the final classification, 
and the Ensemble-N Module consists of N number of RAAs, which 
each RAA has a Feature Selector, a Target Detector, and a NetFLow 
Identifier
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algorithm. The intuition of the CMRW came from the game 
‘Guess number higher or lower’ to move the potential RT 
to a higher or lower direction. More detailed explanations 
of the CMRW are provided in Section 7.3. With the ability 
to find the RT, the RAA system is a frame independent, 
target-driven, and distribution-enabled clustering model. 
The RAA system does not require time-series data, so it is 
frame independent. Additionally, the system uses the RT as 
a guide to classify the network traffic, so it is target-driven. 
Furthermore, the RAA is distribution-enabled because it 
can dynamically find an RT for each subdivided data set for 
distributed computing.

Verisign’s Q2 2018 DDoS trends report [24] reveals that 
52% of attacks utilised multiple attack types, as shown in 
Fig. 2, and UDP based, TCP based, and IP fragment attacks 
were the top three attacks. Consequently, we tested our 
proposed system with UDP flood, TCP flood, ICMP flood, 
multi-vector attack and a real UDP flood attack data set. 
The limitation of the IAM system is that it is designed for 
mitigating DDoS flood attack.

The contributions of this chapter are as follows:

1. We developed a Comparison-Max Random Walk algo-
rithm to find the RT automatically to guide the system 
to classify the network traffic.

2. We proposed Estimated Evaluation Metrics (EEM) by 
offering a systemic way to find the estimated actual posi-
tives (EAP) to calculate the estimated actual negatives 
(EAN), the estimated true positives (ETP), the esti-
mated false negatives (EFN), the estimated true nega-
tives (ETN), and the estimated false positives (EFP) to 
evaluate unsupervised learning models.

The paper is organised as follows. Section 2 discusses 
related work and differences of the proposed system. Sec-
tion 3 gives an overview of the IAM system design. Sec-
tion 4 elaborates the experimental implementation of our 
proposed system. Section 5 presents the performance results 

of the IAM system. Finally, Sect. 6 provides the conclusion 
and future work.

2  Related work

Deep Learning is a sub-domain of artificial intelligence 
inspired by the processes of data processing, pattern rec-
ognition, and decision making of the brain called Artificial 
Neural Networks. Deep Learning algorithms utilise a hierar-
chical learning process to extract complex abstracts for data 
representation [19].

One of the main reasons for using Deep Learning is due to 
its ability to analyse and learn from big unlabelled data. The 
wealth of information hidden in big data provides incredible 
potential across different domains, which include finance, 
health care, agriculture, transportation, retail, and customer 
service [20]. There have been a plethora of applications of 
Deep Learning in computer vision, speech recognition, mar-
keting, fraud detection, and cybersecurity.

As DDoS attacks remain one of the top security threats, 
researchers continue to develop new DDoS mitigation sys-
tems. To achieve desirable performance, a growing num-
ber of researchers are utilising DL models for DDoS attack 
defence systems. For example, Doriguzzi-Corin et al. [31] 
presented a LUCID system, which utilised Convolutional 
Neural Networks (CNNs) to classify network traffic. They 
validated the performance of the system in a resource-
constrained environment. Not only did the performance of 
the LUCID match with the state-of-the-art DDoS mitiga-
tion systems, but also the processing time was reduced by 
more than 40 times. Another research group which utilised 
DL is Niyaz’s team, where they [9] proposed a multi-vector 
DDoS detection system that consisted of stacked Sparse 
Autoencoders and a softmax classifier for feature selection 
and classification. They tested their model on a data set, 
which contained regular Internet traffic and different types 
of DDoS attacks. Their proposed system had high accuracy 
with a low false-positive rate for attack detection. Addition-
ally, Liu et al. [21] presented a deep reinforcement learning-
based system, which can better learn the optimal mitiga-
tion policies to mitigate different types of attacks such as 
TCP SYN, UDP, and ICMP flood in real-time. Their system 
outperformed a popular state-of-the-art router throttling 
method. Yuan and his colleagues [15] suggested a Recur-
rent Deep Neural Network utilising a Convolutional Neural 
Network (CNN), Recurrent Neural Network (RNN), Long 
Short-Term Memory Neural Network (LSTM) and Gated 
Recurrent Unit Neural Network (GRU) to learn patterns 
from sequences of network traffic and attack activities. The 
experimental results showed that their system outperformed 
conventional machine learning models. Furthermore, Asad’s 
team [26] proposed a deep neural network-based system that Fig. 2  DDoS attacks utilising different attack types
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uses feed-forward back-propagation. The system contained 
seven hidden layers, and a softmax activation was applied 
to the output layer to classify network traffic. Their model 
achieved an accuracy of 98% on the CIC IDS 2017 data 
set [25]. Salama et al. [27] also suggested a model using a 
Restricted Boltzmann machine (RBM) to select features for 
a support vector machine (SVM) to classify network traf-
fic. The accuracy of their model on NSL-KDD data set was 
92.84%. Table 1 displays advantages and disadvantages of 
each related work.

There are a few differences between the proposed model 
and the systems mentioned above. Firstly, the RAA is a tar-
get-driven model that utilises an RT to guide the unsuper-
vised model to classify the network traffic by exploiting the 
imbalanced characteristic of the attack data set. Secondly, 
the RAA applies the novel Comparison-Max Random Walk 
algorithm to find the RT.

Thirdly, the Feature Selector, the Target Detector, and the 
NetFlow Identifier all employ the Autonomous Autoencod-
ers. Lastly, the RAA can automatically select features, find 
the RT, and attain the final classification, which offers scal-
ability to deal with big data.

3  System design

The IAM system is designed to work with the ISP’s black-
holing mechanism to drop malicious traffic for DDoS 
mitigation. The core of the IAM system is the Recurrent 
Autonomous Autoencoder. Hitherto we have proposed sev-
eral target-driven unsupervised models that used the refer-
ence target RT to instruct the unsupervised model to attain 
the final classification [28, 29, 30, 32]. During an attack, 
there is a huge surge in network traffic and the number of 
IP addresses. Therefore, we made an assumption that the 
IP addresses which emerged before the attack are normal. 
Previously, the RT was equal to the number of IP addresses 
which existed right before the attack, as shown in Fig. 4; 

each ball in the time frame before the attack represents one 
IP address. Even though the RT is more than likely to be 
different from the number of normal IP addresses during the 
attack, previously presented systems still performed well on 
classifying NetFlows. Hence, we continue to utilise the RT 
as a way to instruct the model to obtain the final classifica-
tion according to the error which is the absolute value of 
the difference between the number of normal IP addresses 
classified by the model (Nf = predicted positives) and the 
RT. However, there are a couple of issues with previously 
proposed models because they required the number of nor-
mal IP addresses before the attack to be calculated, which is 
the RT. Firstly, to increase the scalability of the system, the 
attack data set needs to be subdivided. For example, if 10 
proposed models are deployed, the attack data set is divided 
into 10 sub data sets. Each model requires a sub data set 
and an RT. The RT for the previously proposed model is 
calculated as one number from the entire data set before 
the attack. When the data set is divided into 10 sub data 
sets, it is very difficult to determine the number of normal 
IP addresses for each sub data set without knowing how the 
normal and malicious IP addresses are distributed in each 
sub data set. Secondly, even after calculating the RT, the real 
number of normal IP addresses (actual positives) during the 
attack can be very different from the RT, which can drasti-
cally affect the performance of the system. For example, 
if an attack targeted at an online store occurs immediately 
after a flash sale started, the number of IP addresses will 
increase dramatically. Consequently, the number of normal 
IP addresses during the attack will be much greater than 
the RT.

To overcome these two problems, the RAA employs 
a Target Detector to find the RT automatically via Com-
parison-Max Random Walk. The distance of the walk is 
guided by a moving range (MR), the direction of the walk 
is determined by a higher or lower likelihood based on the 
random steps, and the destination of the walk is decided 
by the recurrence frequency. More detailed explanations 

Table 1  Feature-based comparison of the advantages and disadvantages of each related work

Model Advantages Disadvantages

Doriguzzi [31] Reducing the need for feature engineering Hyper-parameter values relying on preliminary tuning
Niyaz [9] Utilising Stacked Sparse Autoencoder to extract additional 

features
Potential loss of information using bottleneck from
the previous Autoencoder as an input for the next Autoencoder

Liu [21] Learning different attack patterns for selecting optimal mitiga-
tion policies

Difficult to learn all attack patterns due to the continuous 
advancement of DDoS attack technology

Yuan [15] Improving model performance combining various deep learn-
ing models

The complexity of the model increasing the level of difficulty 
for duplicating the model

Asad [26] Simplicity of the model making it easy to understand and 
duplicate

Potential performance reduction on data sets with different 
attacks exhibiting different traffic patterns

Salama [27] Applying RBM to select features for a SVM Requirement an additional machine learning model for clas-
sification
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are provided in the ‘Target Detector’ section. Furthermore, 
to reduce the variance of the system, the IAM applies an 
ensemble technique by employing RAAs as base learners 
and utilising a majority voting scheme to attain the final 
classification. Therefore, the IAM composes of two units, 
which are a Data Processor and an Ensemble-N Module 
that uses N number of RAAs, and each RAA includes a 
Feature Selector, a Target detector, and a NetFlow Identi-
fier as displayed in Fig. 1. To improve the performance 
of the IAM, the system utilises Top-N, Max-N, minimum 
error, and Ensemble-N as illustrated in Fig. 3.

The RAA first finds the RT and then, utilises the RT to 
cluster the number of data points that are close or equal to 
the RT. The following example explains the intuition of 
the target-driven unsupervised learning techniques for the 
RAA. Each ball in Fig. 4 represents an IP address; blue 
balls are normal IP addresses, and red balls are malicious 
IP addresses. Assuming that after utilising the CMRW, the 
RAA determines the RT = 10, and thus, the system utilises 
threshold-moving to classify the data so that the number of 
predicted positives Nf is close or equal to 10. The potential 
thresholds for this example are in the list of [0.7, 0.6, 0.5, 
0.4, 0.3]. To better visualise the target-driven process for 
obtaining the final classification, the distance between the 
ball represents the output value of the ball. The model 
determines the optimal threshold by iterating through the 
threshold list as follows.

Step 1: The model starts with the threshold = 0.7, and 
it can easily identify six balls, which are ball numbers 2, 
3, 4, 7, 9, and 10 because they are further away from other 
balls. After the first iteration, the  error1 =| 6 - 10 | = 4.

Step 2: The system uses the threshold = 0.6 and ball 
number 1 is also identified besides ball numbers 2, 3, 4, 7, 
9, and 10. The  error2 =| 7 - 10 | = 3.

Step 3: The system classifies with the threshold = 0.5. 
Even though ball number 5 is close to red ball number 11, 
the distance between ball number 5 and ball number 11 is 
larger than the distance amongst red balls. Therefore, the 
system discovers ball numbers 5 and 6, which makes the 
Nf = 9 and the  error3 = 9 10 = 1. Heretofore, the system 
only found nine balls, which is one ball less than the RT.

Step 4: The system applies the threshold = 0.4. If the 
system finds additional ball numbers 8, 11, 12, 13, 14, 15, 
16 and 17, the  error4 = | 17 − 10 | = 7, which is greater 
than the  error3. Then, the system stops iterating and the 
final result is the classification generated by the threshold 
= 0.5 and the Nf = 9.

The Feature Selector, the Target Detector, and the 
NetFlow Identifier of the RAA all have an Autonomous 
Autoencoder as illustrated in Fig. 5. The output of an AA 
is a binomial classification, in which 0 represents mali-
cious data points, and 1 represents normal data points.

Fig. 3  The process of using Top-N to select features, determining the 
final RT by utilising Max-N, finding a best classification (BC) with 
the minimum error, and attaining the final classification by employing 
several RAAs in the Ensemble-N Module
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– The first AA belongs to the Feature Selector. The input 
X is the transformed data set and the output  Of is a list 
containing selected features.

– The second AA belongs to the Target Finder. The input 
X1 is the data with features selected and the output  Ot is 
the RT.

– The last AA belongs to the NetFlow Identifier. The input 
is X1 and the output  Oc is a list of malicious IP addresses.

We will start with the design of the Data Processor fol-
lowed by the Autonomous Autoencoder and each component 

of the RAA in the remaining part of this section. To aid the 
understanding of the remaining sections, Table 2 provides 
descriptions for variables.

3.1  Data processor

The Data Processor has a Horizontal Expansion and Verti-
cal Compression (HEVC) engine [28], that we previously 
designed to make use of the hierarchical features contained 
in the data collected by the ISP [29]. The HEVC engine 
utilises the Apache Spark framework for fast distributed 

Fig. 4  Each ball represents an 
IP address as it existed in the 
time frame right before and dur-
ing the attack

Fig. 5  The network architecture 
of the Recurrent Autonomous 
Autoencoder, in which X is the 
processed data with all features, 
 X1 is the processed data with 
selected features,  Of is the out-
put of the Feature Selector,  Ot is 
the output of the Target Detec-
tor, and the  Oc is the output of 
the NetFlow Identifier

Table 2  Descriptions of variables or names

Variables or Names Descriptions

Nf The number of normal IP addresses predicted by the model (predicted positives)
Nf (0) The number of final predicted positives that need to be evaluated by Estimated Evaluation Metrics (EEM)
TIPs The total number of IP addresses in the data
Top-N Features with the highest N number of Nf average
Max-N N number of reference targets that the Target Detector needs to generate for finding the final reference 

target with the maximum mode
Ensemble-N N number of RAAs in the Ensemble-N Module
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computing to enable scalability to deal with an immense 
amount of network traffic generated by large-scale DDoS 
attacks. The Horizontal Expansion unit extracts additional 
features based on statistical analysis and unique values. The 
Vertical Compression unit groups and aggregates the data 
according to the unique source IPs. For example, the data 
contains two features, which are ‘srcIP’ and ‘packets’ as 
shown in Fig. 6. The Horizontal Expansion unit extracts 
three additional features from the original feature ‘packets’, 
which are ‘lPSum’, ‘lPMean’, and ‘lUP’. The ‘lPSum’ is 
the sum of the number of packets for each source IP. The 
‘lPMean’ is the mean of the packets for every source IP. 
The ‘lUP’ counts the unique value of packets for each 
source IP. Next, the original feature ‘packets’ is removed, 
and the Vertical Compression unit groups and aggregates 
the data based on the unique IP addresses. Consequently, 
each row represents an aggregated NetFlow for a unique IP 
address. Descriptions of extracted features are presented in 
the appendix A. It is worth mentioning that the number of 
rows in the transformed data set equals the number of unique 
source IP addresses or NetFlows.

3.2  Autonomous autoencoder

The most basic component in the RAA is the Autonomous 
Autoencoder, as depicted in Fig. 7, which is an extension 
of the Complete Autoencoder (CA) [23] that we previously 
designed. The main difference between the AA and CA is 

that the CA requires an RT that is calculated according to 
data sets before the attack; however, the AA can find the RT 
automatically with only the data during the attack. The AA 
consists of a Deep Autoencoder, which contains two sym-
metrical Deep-Belief Networks (DBN) as depicted in Fig 7. 
The encoding DBN is constructed from two hidden layers, 
which are h1 and h2 with eight neurons and four neurons, 
respectively. The decoding DBN encompasses two hidden 
layers, which are h3 and h4 with four neurons and eight 
neurons, respectively. The bottleneck contains a single neu-
ron which generates a n x1 vector (n = number of rows, IP 
addresses, or NetFlows). The reason that there is only one 
neuron at the bottleneck is to create output values that are 
in the range of (0, 1), so a threshold can be applied to clas-
sify the output without deploying another machine learning 
algorithm. The AA can dynamically find an optimal thresh-
old, and it is equipped with a class switch with the intent to 
exploit the imbalanced characteristic of the attack data. By 
default, the controller of the class switch is β = 0.5, where 
it instructs the class switch to swap the labels if the pre-
dicted positives Nf is more than 50% of the total number of 
IP addresses (TIPs). The advantage of using the class switch 
is that it offers a bi-directional comparison of the output 
value to a threshold without changing the comparison sign 
of ‘<’ and ‘>’. This is particularly useful during the feature 
selecting process since only one feature is fitted to the AA at 
a time. For example, if a threshold is set at 0.5, the variance 
of the different number of octets for the normal IP addresses 

Fig. 6  A simple example of applying the HEVC engine to extract additional features, group and aggregate the data based on unique source IP 
addresses, and as such, each row represents a NetFlow for a source IP address
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should be larger than the threshold. On the contrary, the 
number of different source ports should be smaller than the 
threshold. Therefore, the Nf for each feature belongs to the 
minority group. The process of the AA obtaining the best 
classification follows the steps listed below:

Step 1: Transform the data with selected features.
Step 2: Create the Deep Autoencoder.
Step 3: Generate the bottleneck using the Autoencoder 

from Step 2.
Step 4: Classify values in the bottleneck using a threshold 

and swap the class if the Nf > β the total IP addresses (TIPs).
Step 5: Repeat Step 4 until the end of the threshold list.
Step 6: Find the optimal threshold according to Eq. (1).
Step 7: Find the best classification associated with the 

optimal threshold. Step 8: Set the RT = Nf if the Nf is not 
within the moving range of [RT× (1 − s), RT × (1 + s)].

Step 9: Repeat Step 2 to Step 8 until the Nf is within the 
moving range and then, return the best classification.

The function of the AA, as shown in Fig. 8a, contains 
several parameters such as the data, the features, the thresh-
olds. The thresholds parameter is a list containing different 
thresholds with a range of (0.2, 0.8) with a step of 0.05, 
which enables the AA to automatically find the optimal 

(1)error = |Nf − RT|

threshold for the best classification with the Nf that is clos-
est to the RT. The RT has a default value of 100. β is used 
to control the class switch, and the default value is 0.5. The 
s provides a moving range (MR) = [RT × (1 − s), RT × (1 
+ s)] to constrain the movement of the Nf so that it becomes 
closer to the RT. Lastly, the da settings contains the epochs, 
the optimiser, and the batch size.

3.3  Feature selector

The first unit of the RAA is the Feature Selector, and it 
stops the iteration of the AA when the number of recur-
rences for each feature is completed. According to our 
previous research, different types of attacks may require 
different features to achieve a good performance of clas-
sifying the network traffic [30]. Therefore, we enable the 
Feature Selector to dynamically select features. Based on our 
previous research [23, 29, 32], removing features with low 
influence improves the performance of the model. There-
fore, we designed the Feature Selector to filter out features 
that identify none or very few normal IP addresses, so the 
NetFlow Identifier can better learn the correlations among 
remaining features yielding higher classification accuracy. 
Consequently, the Feature Selector is designed to find the 
Top-N features with the highest average number of normal 
IP addresses classified from several iterations. To achieve 

Fig. 7  The AA contains two 
symmetrical Deep-Belief 
Networks and it applies the 
optimal threshold, RT, and the 
moving range to obtain the best 
classification
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this, every feature is fitted to the AA individually several 
times, that is equal to the number of recurrences, as shown 
in step 3 listed below. The output of the Feature Selector is a 
list of selected features, and it is sent to the Target Detector. 
The function of the Feature Selector is presented in Fig. 8c 
and the Top-N argument chooses features with the highest N 
number of average Nf . However, if N = 0, any features that 

have the average Nf > 0 are selected. The following steps list 
the process of selecting features.

Step 1: Fit each feature in the data set to AA, count the 
number of predicted positives Nf for each recurrence.

Step 2: Repeat Step 1 through a number of recurrences, 
which is r.

Step 3: Calculate the average of the Nf =
∑r

i=1
Nf (i)

r

Fig. 8  Functions for the AA, the CMRW, the Feature Selector, the Target Detector, the NetFlow Identifier, and the Ensemble-N Module
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Step 4: Repeat Step 2 and Step 3 until the last feature.
Step 5: Select the number of features based on N specified 

for the top N average Nf ; however, if N = 0, features with an 
average Nf > 0 are selected.

3.4  Target detector

The Target Detector utilises the Comparison-Max Random 
Walk to find the RT. The purpose of the CMRW is to find 
an RT that is close or equal to the number of actual positives 
by moving the potential RT towards the number of actual 
positives. There are a few key ideas involving the process 
of the CMRW, which are random steps, a moving range, a 
walking direction, and a goal as described in Table 3. The 
random steps are the number of classifications generated 
by the AA, so each random step is a Nf corresponding to a 
classification. The intuition behind the CMRW is to adjust 
the potential RT according to the moving range, the walking 
direction, and eventually, the potential RT converges to a 
goal that reaches the arrival frequency. The walking direc-
tion is determined by a higher or lower likelihood according 
to the random steps. If over 50% of the random steps are 
higher than the current potential RT, the walking direction 
is towards the higher direction, and the random steps remain 
the same. However, if the RT is walking towards the lower 
direction, any random step that is greater than the current 
potential RT is converted to 0. Afterwards, three cases are 
provided for the CMRW to find the RT.

Case 1: After the first recurrence, which is the completion 
of the first set of random steps, if the frequency of a maxi-
mum mode of the random steps or Nf≥ Goal, which is the 
frequency required to qualify as an RT among random steps, 
as shown in Fig. 9, the RT convergences to the mode of Nf .

Case 2: After two recurrences, which is the completion of 
two sets of random steps, if the potential RT for both recur-
rences are the same, the potential RT convergences to the Nf.

Case 3: After several recurrences, if the frequency of a 
maximum potential RT reaches the Goal, the RT conver-
gences to the maximum potential RT.

Take the following steps to find an RT:

Step 1: Generate a classification and record the number 
of predicted positives Nf generated by the AA in the Nfs list.

Step 2: Repeat Step 1 with the number of times equal to 
the number of random steps.

Step 3: Compare each Nf with the RT, if the Nf > RT, 
record 1, else record 0 in the list of comparisons.

Step 4: If more than half of the Nf are smaller than the 
RT, convert the Nf that is greater than RT to 0 because the 
RT needs to move towards a smaller direction; otherwise, 
all the Nf remain the same.

Step 5: If there is a mode of the Nf that has a frequency  
Goal; the new found RT is the mode; otherwise record the 
potential RT in the RTs list.

Step 6: If the potential RT does not converge after the first 
recurrence, select the mode of the Nfs or the maximum of 
Nfs, if there is no mode, as a potential RT

Step 7: Repeat Step 1 to Step 4 and if the potential RT for 
both recurrences is the same, the potential RT is the new-
found RT.

Step 8: Repeat Step 1 to Step 4 until the frequency of the 
potential RTs equals to the Goal.

Step 9: Repeat Step 1 to Step 8 for ‘N’ number of times 
depending on the ‘N’ value in Max-N.

Step 10: Determine the final RT based on the maxi-
mum mode or value based on the RT found by each Target 
Detector.

The function of the Target Detector is presented in Fig. 8b 
and the cd in the function determines if a conversion of a 
random step is needed to move the RT towards the lower 
direction. The Goal is the frequency of the maximum mode 
that needs to qualify an RT as a new found RT for a Target 
Detector. To aid the understanding of how the CMRW finds 
the RT, three cases are demonstrated in Fig. 9. Each value 
in the Random Steps list shown in Fig. 9, in all three cases, 
is a number of predicted positives. The values in the com-
parisons list depend on the potential RT, which is the default 
RT in the first iteration. If the value in the Random Steps list 
is greater than the potential RT, 1 is recorded, otherwise 0 
is recorded in the comparisons list. If the sum of the com-
parisons list is greater than half of the length of the Random 
Steps list, it indicates the real RT should be higher than the 

Table 3  Descriptions of variables for CMRW

Variables or Names Descriptions

Random Steps A collection of Nf generated by the AA for the CMRW to find an RT or a potential RT
S A value in the range of (0.1, 0.25) that is used to control the Moving Range
Cd determining if a conversion of a random step is needed to move the RT towards the lower direction
Moving Range The reference range that the AA is used to determine if the Nf is associated with a qualified classification
Goal The frequency of the maximum mode of random steps that is used to qualify a random step as an RT or 

a potential RT
Restart The number of recurrences needed to rerun the Target Detector
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potential RT, and all values in the Random Steps list remain 
the same. However, if the sum of the comparisons list is 
smaller than half of the length of the Random Steps list, it 
suggests that the actual RT is lower than the potential RT. 
Consequently, any value in the Random Steps list that has 
the corresponding value of 1 in the comparisons list is con-
verted to 0. The modified list is used to store the unchanged 
and changed values. To qualify as the RT, the frequency 
of the mode in the modified list is utilised. Case 1, if the 
frequency of the mode in the modified list is greater than 3, 
the mode is the RT. Case 2, if the mode of the modified list 
is 3 for the first iteration, the potential RT is the mode and 
the second iteration is needed. If the frequency of the mode 
is also 3 in the second iteration is the same value as the first 
iteration, the potential RT is the RT. Case 3 illustrates that 
if the frequency of the mode of the modified list is less than 
3, the largest value is the potential RT and is recorded in 
the RTs list. Moreover, another integration is required until 
the frequency of the mode of the RTs list is 3 and then, the 
mode is the RT.

For example, in case 1, the first potential RT is 100, and 
107 is greater than 100, so 1 is recorded in the comparisons 
list. Since all the other values in the Random Steps list are 
smaller than 100, so zeros are recorded in the comparisons 
list. The sum of the comparisons list is 1, so 107 is converted 
to 0 and stores in the index of 2 position in the modified list. 
25 and 78 are placed in the corresponding index positions 

in the modified list. Therefore, the Random Steps list of [25, 
78, 107, 78, 78, 78] becomes [25, 78, 0, 78, 78, 78]. Since 
the frequency of the mode 78 is 4, which is greater than 3, 
the RT is 78. In case 2, all values in [78, 75, 78, 0, 78, 61] 
are smaller than the default RT of 100, so the comparisons 
list is [0, 0, 0, 0, 0, 0] and the sum of the comparisons list 
is 0. Therefore, no conversion of the Random Steps list is 
needed, so the modified list is [78, 75, 78, 0, 78, 61]. Since 
the frequency of the mode 78 is 3, 78 becomes the potential 
RT for the second iteration. Only one value in the Random 
Steps list of [175, 78, 78, 4, 56, 78] is greater than 78, the 
comparison list is [1, 0, 0, 0, 0, 0] and the sum of the com-
parison list is 1. Thus, only 175 is converted to 0 and the 
modified list becomes [0, 78, 78, 4, 56, 78]. The frequency 
of the mode 78 is 3 and the potential RT from the first itera-
tion is also 78, so the RT is 78. In case 3, the Random Steps 
list for the first iteration is [102, 16, 96, 73, 96, 73] and the 
default RT is 100, so only 102 is greater than 100. Therefore, 
the comparisons list is [1, 0, 0, 0, 0, 0] and the sum of the 
comparisons list is 1. Consequently, 102 is converted to 0 
and the modified list becomes [0, 16, 96, 73, 96, 73]. Since 
there are two modes 73 and 96, the mode with the largest 
value 96 is the potential RT. Next, each value in the Random 
Steps list of [26, 75, 89, 80, 2, 51] is compared to the poten-
tial RT of 96 and the comparisons list is [0, 0, 0, 0, 0, 0], 
so the modified list changes to [26, 75, 89, 80, 2, 51]. Since 
there is no mode, the largest value 89 is the potential RT. 

Fig. 9  The process of finding the RT utilising the CMRW algorithm according to three cases
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The potential RT in the third, fourth, fifth, and sixth iteration 
is 78, 78, 85, and 78, respectively. Therefore, the RTs list is 
[96, 89, 78, 78, 85, 78], so the RT is 78.

3.5  NetFlow identifier

The last module of the RAA system is the NetFlow Iden-
tifier, which also utilises the AA. The NetFlow Identifier 
uses the selected features and the RT to classify the trans-
formed data and then, find the best classification (BC) for an 
RAA with the minimum error. The function of the NetFlow 
Identifier is presented in Fig. 8e and the recurrences argu-
ment determines the number of times to run the NetFlow 
Identifier.

Step 1: Use the final RT found by the Target Detector as 
the RT for the AA and record the Nf.

Step 2: Repeat Step 1 until the end of recurrences.
Step 3: Select the best classification BC by finding the 

minimum error based on Eq. (1).

3.6  Ensemble‑N module

The Ensemble-N Module employs N RAAs, which is deter-
mined by the Ensemble N argument passed into the func-
tion in Fig. 8f. If the recurrence of finding the RT is greater 
than the ‘Restart’ argument, the Ensemble-N Module reruns 
the Feature Selector and the Target Finder. After each RAA 
creates the best classification (BC), the Ensemble-N Mod-
ule utilises a majority voting scheme to finish labelling the 
data set. Finally, the list containing malicious IP addresses is 
provided to the ISP’s blackholing mechanism to be dropped. 
Figure 3 demonstrates the process of obtaining the final 
classification using Top-N, Max-N, minimum error, and 
Ensemble-N.

4  Experimental implementation

The testbed of the RAA system utilised the Apache 
Spark framework running on Ubuntu 16.04 with Intel(R) 
Core(TM) i3-3240 CPU @ 3.40GHz with 32 GB of RAM. 
The Apache Spark is a distributed computing engine which 
facilitates horizontal scalability to cope with big data. We 
tested the RAA system with 7 labelled data sets, and a real 
DDoS attack data set. The details of labelled data sets are 
under the ‘Data Information’ section below.

Relu activation was used for h1, h2, h3, and h4 to deal 
with the problem of the vanishing gradient, and sigmoid 
activation is applied to generate the output values in the bot-
tleneck. The loss function chosen was the root mean squared 
error, and the batch size was 128. The optimiser chosen was 
Adam because it is an adaptive learning rate optimisation 
algorithm [33]. Additionally, the Goal for the Target Detec-
tor is 3, and the Restart for the Ensemble-Module is 30. The 
number of epochs for the Deep Autoencoder were not the 
same in different modules which are presented in Table 4.

Epochs are the number of times to run the Deep Autoen-
coder inside the AA. The number of epochs, the threshold 
and iterations for the Deep Autoencoder varied in different 
modules which is presented in Table 4. It is important to 
know that both the iterations and the recurrences control the 
number of times to run the AA. Additionally, the default set-
tings for the RT = 100, the β = 0.5 and the s = 0.2. Moreo-
ver, the N value for the Top-N, Max-N and Ensemble-N is 
listed in Table 5. Because ‘N’ for Top-N is 0, any features 
with the average Nf > 0 is selected. Since the ‘N’ for the 

Table 4  The recurrences of 
each component in the RAA 
and the parameter settings for 
the AA

Components Recurrences AA Parameter Settings

3*Feature Selector 3*2 Epochs = 3
Thresholds = [0.5]
Iterations = the number of features

3*Target Detector 3*Dynamic Epochs = 5
Thresholds = [0.2, 0.8] with a step of 0.05
Iterations = random steps = 6

3*NetFlow Identifier 3*10 Epochs = 10
Thresholds [0.2, 0.8] with a step of 0.05
Iterations = 1

Table 5  The N value for the feature selector, the target detector and 
the ensemble-N Module

Components Name N

Feature Selector Top-N 0
Target Detector Max-N 10
Ensemble-N Module Ensemble-N 5
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Max-N is 10 and for the Ensemble-N Module is 5, they are 
called the Max-10 and Ensemble-5, respectively.

4.1  Data information

We selected three real users’ as targets from a data set, which 
includes their network traffic, collected from the border gate-
way protocol (BGP) router by the ISP. The first, the sec-
ond, and the third target receive packets from 78, 133, and 
281 normal source IP addresses, respectively. These three 
real users’ network traffic behaviours are not identical, as 
illustrated in Fig. 10. To generate malicious traffic, we uti-
lised BoNeSi [34] to simulate TCP flood, UDP flood, and 
ICMP SYN flood attacks with 50000 spoofed IP addresses. 
Then, we combined each target’s real network traffic with 
simulated malicious traffic to create different data sets. All 
data sets contain 50000 spoofed IP addresses as displayed 
in Table 6. Figure 11a is a scatter plot of the attack data set 
containing both the normal and malicious network traffic, 
which are represented by green and red points, respectively. 
However, no red points are visible in (a), but the same red 
points are displayed in Fig. 11b. The reason that malicious 
data points can not be seen in plot (a) is that they have simi-
lar traffic patterns to normal data points. This is often the 
case for new DDoS attacks, and it reveals the level of dif-
ficulty for the system to identify the NetFlows correctly.

4.2  Estimated evaluation metrics for unsupervised 
learning model

Performance evaluation for unsupervised learning models 
without labelled data is a problem. To deal with this issue, 
we provide methods to calculate the estimated actual posi-
tives (EAP), estimated actual negatives (EAN), estimated 
true positives (ETP), the estimated false negatives (EFN), 

the estimated true negatives (ETN), and the estimated false 
positives (EFP) that can be used to calculate the estimated 
Recall (ERecall), the estimated Accuracy (EAccuracy), 
the estimated Precision, the estimated F1 Score and other 
Estimated Evaluation Metrics. Notations for estimated 
evaluation metrics are shown in Table 7. For example, 
to check the performance of a classification generated by 
the Ensemble-N Module, the number of classified nor-
mal NetFlows Nf(0) generated by the Ensemble-N Module 
is deemed as the estimated true positives. An estimated 
confusion matrix is in presented in Table 8 for calculat-
ing other evaluation metrics. Take the following steps to 
check the performance of an unsupervised learning model 
utilising the EEM.

Step 1: Use the Nf(0) as the RT to run an Ensemble-10 
Module and as such, 10 RAAs are employed.

Step 2: Calculate the Nf for each RAA from Step 1 and 
record them in the list Nfs = [Nf(1), Nf(2)…Nf(10)].

Step 3: Find the EAP by identifying the maximum mode 
of the Nfs or the maximum value of the Nfs, as shown in 
Eq. (2).

Fig. 10  Three victims’ network 
traffic distribution, in which the 
first, the second, and the third 
victim have 78, 131, and 281 
normal source IP addresses, 
respectively

Table 6  The number of actual normal IP addresses and the total num-
ber of IP addresses in the processed data sets

Index Data labels Actual positives TIPs

1 Whole UDP 78 78 50,078
2 Whole TCP 133 133 50,133
3 Whole ICMP 281 281 50,281
4 Whole UDP TCP 78 78 50,078
5 Whole UDP ICMP 133 133 50,133
6 Whole TCP ICMP 281 281 50,281
7 Whole UDP TCP ICMP 281 281 50,281
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Step 4: Calculate the estimated actual negatives (EAN) 
by subtracting EAP from the total number of IP addresses 
in the data (TIPs) as shown in Eq. (3).

Step 5: Calculate the estimated false negatives (EFN) 
according to Eq. (4).

(2)EAP =
Modmax(Nfs)

max(Nfs) otherwise

(3)EAN = TIPs − EAP

Step 6: Calculate the estimated false positives (EFP) by 
Eq. (5).

Step 7: Calculate the estimated Recall (ERecall) based 
on Eq. (6).

Step 8: Calculate the estimated Accuracy (EAccuracy) as 
displayed in Eq. (7).

5  Results and findings

To illustrate the importance of feature selection, CMRW, 
Max-10, and Ensemble5 classification, we compare the 
performance without and with utilising feature selection, 
CMRW, Max-10, and Ensemble-5. Additionally, to demon-
strate the scalability of the RAA system, we divided the 
data set whole UDP TCP ICMP 281 into 5, 10, and 20 sub-
sets. Then, we tested the system using every subset for each 
division, and we checked the local and global performance, 
which are the results for an individual subset and the entire 
data set, respectively. Furthermore, we tested the IAM sys-
tem on a real DDoS UDP flood attack data set. Moreover, 
we compare the Recall of the IAM with other supervised and 
unsupervised models.

(4)EFN = EAP − Nf0

(5)EFP = EAN − ETN

(6)ERecall =
Nf (0)

EAP

(7)EAccuracy =
TIPs − (EFP + EFN)

TIPs

Fig. 11  Normal and malicious octets vs. packets scatter plots

Table 7  Descriptions of variables for estimated evaluation metrics

Variables or Names Descriptions

EAP Estimated actual positives
EAN Estimated actual negatives
ETP Estimated true positives
ETN Estimated true negatives
EFP Estimated false positives
EFN Estimated false negatives
ERecall Estimated recall
EAccuracy Estimated accuracy

Table 8  Estimated confusion matrix for calculating estimated evalu-
ation metrics

Estimated 
Actual Positives
(EAP)

Estimated Actual Negatives
(EAN)

Predicted positives ETP = Nf (0) EFP
Predicted negatives EFN ETN = TIPs—EAP
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5.1  Performance comparison 
with and without utilising comparison‑max 
random walk

We did two experiments to demonstrate the importance 
of the CMRW. For the first experiment, we ran the Target 
Detector 100 times on a sample UDP TCP 281 data set with 
281 normal IP addresses and 5000 malicious IP addresses, 
which contains 281 normal IP addresses. Without the 
CMRW, 0 occurred eighteen times, but 281 did not occur at 
all. The closest value to 281 was 202, which only occurred 
once. Consequently, RT = 0 because it is the mode. How-
ever, when we ran the Target Detector 100 times with the 
CMRW, the RT found was 281. In the second experiment, 
we tested the Target Detector ten times each without and 
with utilising CMRW. To get the potential target without the 
CMRW, we ran the Target Detector ten times to generate 10 

RTs and each time the recurrences is 30. The reason that the 
recurrences is 30 is because the Target Detector typically 
takes less than 30 recurrences for the RT to converge. The 
results of the second experiment are shown in Table 9.

The number of predicted positives without the CMRW 
have no duplicated potential RT. However, with the CMRW, 
the mode of these 10 potential RTs is 281, so 281 is deemed 
as the RT, and it is equal to the actual positives. These two 
experiments demonstrate that the Comparison-Max Random 
Walk helps the potential RT to converge closer to the actual 
positives.

5.2  RT Comparison without and with Applying 
Feature Selection and Max‑10 for the Target 
Detector

We divided the whole UDP TCP 78 into ten sub data sets 
and tested the Target Detector with each subset without and 
with applying feature selection and Max-10. The result is 
presented in Fig. 12. The x-axis is the number for the sub 
data set{1,2......10} and the y-axis is the RT. Blue points 
represent correct RT for each distributed data, and as such, 
every point for the same sub data set should get as close to 
the blue point as possible. In this figure, 8 orange points are 
visible, which indicates that these points are incorrect. Fur-
thermore, only three violet points can be seen. This suggests 
that the Target Detector performs better with feature selec-
tion than Max-10. The number of green points and violet 
points confirms that feature selection has a greater impact on 
finding the RT. However, the Target Detector has the highest 
accuracy when it utilises Max-10 and feature selection. Sub 
data set 6 is the only one that has a difference between the 

Table 9  The number of 
predicted positives or the 
potential RT without and with 
utilising CMRW for 10 trials

Trial # Without 
CMRW

With CMRW

1 178 281
2 205 281
3 133 281
4 130 281
5 129 280
6 155 279
7 175 280
8 203 280
9 272 281
10 223 281

Fig. 12  RT found by the Target 
Detector with and without the 
feature selection and Max-10 
for 10 sub sets of whole UDP 
TCP 78 data
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red points and the blue points. The RT equals to 6, which is 
higher than the real RT 4. Nonetheless, from the perspective 
of the ISP, as long as the false positives are not too many, it 
is better to have fewer false positives than false negatives, 
which cause service interruption to the users.

5.3  Performance comparison 
without and with ensemble‑5

We divided the whole UDP TCP ICMP 281 into 20 sub data 
sets and tested the system without and with utilising 5 RAAs 
in the Ensemble-N Module.

The results are displayed in Table 10. The predicted 
positives  Nf with only one RAA is shown in the column 
of ‘Without E-5’, and with E-5 is shown under ‘With E-5’. 
Without applying E-5, the system miss identified some nor-
mal NetFlows in the sub data set Nos. 1, 2, 6, 8, 17 and 18 
by 1, 4, 1, 1, 4, and 2 points, respectively. By utilising E-5, 
the system correctly identified all normal NetFlows in sub 
data set Nos. 1, 2, 6, and 18. However, the system did not 
improve on sub data set No. 8, which indicates that both nor-
mal and malicious traffic is similar. One thing worth noting 
is that E-5 performed worse by 1 point on sub data set No. 
14. This can be improved by using the maximum mode or 
value instead of the majority voting. Additionally, the system 
performed the same on sub data set No. 17 either without or 
with E-5. Even though the IAM system made mistakes on 
sub data set No. 8, 14 and 17, it reduced the total number of 
miss identified normal NetFlows for all 20 sub data sets from 
13 to 3. Minimising the number of miss identified normal 
NetFlows is important because the number of miss identified 
normal NetFlows represents the number of legitimate users’ 
service being interrupted. The results show that utilising E-5 
reduces the miss classified NetFlows by 76.92%.

5.4  Performance comparison 
without and with distributed data sets 
for scalability

To check the scalability of the IAM system, we divided the 
whole UDP TCP ICMP 281 into 5, 10, and 20 subsets, and 
the evaluation metrics are displayed in Fig. 13.

The Recall and accuracy are very similar for different 
distribution sizes. However, when the data set is not subdi-
vided, the result has the highest number of false negatives. 
There are more false negatives than false positives indicat-
ing that the system has a higher probability of miss identi-
fied normal NetFlows than malicious NetFlows. As such, 
some legitimate users’ services are interrupted. As previ-
ously mentioned, this problem can be rectified by changing 
the aggregating method for attaining the final classification. 
Additionally, adding more RAAs to the Ensemble-N Mod-
ule is another solution. However, the number of incorrectly 

classified NetFlows for distributed data sets is small, which 
indicates the scalability of the proposed system. During 
an attack, the majority of the NetFlows are malicious, and 
hence, we purposely divided the whole UDP TCP ICMP 281 
into ten sub data sets, among which 3 data sets contain only 
malicious traffic. The performance of the system on each sub 
data set is shown in Table 11. ‘Local Recall’ is the Recall 
for the sub data set. Sub data set No. 2, 6, and 10 have only 
malicious NetFlows, and the IAM system correctly iden-
tifies sub data set No. 6 and 10. Even though the system 
miss identified 5 malicious NetFlows as normal NetFlows 
in sub data set No. 2, the local Recall is 1, so there is no 
service interruption. The global Recall for the whole UDP 
TCP ICMP 281 calculated from aggregating the result from 
all distributed data sets is 0.9964, and the global accuracy 
is 0.9999. Though, without distributing the data sets, the 
Recall and the accuracy are 1. Nonetheless, the time taken 
for the Target Detector and the NetFlow Identifier to get a 
best classification for an RAA is reduced by over 60% when 
data is divided into subsets, as shown in Fig. 14.

5.5  Estimated performance evaluation

The estimated performance for all 20 sub-datasets for the 
whole_UDP_TCP_ICMP_281 is displayed in Table 10. The 
results demonstrate that the estimated values are the same as 
the true values. For example, the actual positives are identi-
cal to the estimated actual positives EAP for all 20 subsets. 
It is the same for the estimated Recall, the estimated false 
positives and the estimated false negatives. The estimated 
global accuracy for the entire data set was calculated based 
on the Eq. (11), and the estimated accuracy is 99.9940%. 
The results suggest that it is reasonable to use the Estimated 
Evaluation Metrics to check the performance of an unsuper-
vised learning model.

5.6  Performance on the real attack data set

We tested the proposed system with a real attack data set 
provided by the ISP. The DDoS attack took place in 2018 
during an online game tournament. Initially, we set Top-N as 
dynamic for feature selection, and the system could not find 
the RT. Then, we specified Top-N = 5 to select 5 features 
with the highest average Nf, the system found the RT = 199, 
and the number of predicted positives was 197. We then use 
the selected feature and RT to run the NetFlow Identifier 
with recurrences = 10 to find the estimated actual positives. 
The result of the Nf for all 10 runs is {199, 193, 212, 179, 
170, 194, 188, 172, 177, 199}. Consequently, the estimated 
actual positives is 199 because it is the mode and the ERecall 
= 1, EFP = 0, EFN = 2, and the EAccuracy = 0.9987.
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5.7  Supervised and unsupervised model 
comparison

We also compared the Recall of the proposed model with 

other supervised and unsupervised models on a UDP 
flood attack data set. To make the comparison between the 
supervised and the unsupervised model more meaningful, 
the supervised models were trained with only 5% of the 

Table 10  Performance comparison without and with utilising Ensem-
ble-5, in which the EAP is the estimated actual positives, TRecall is 
the true Recall, ERecall is the estimated Recall, TFP is the true false 

positives, EFP is the estimated false positives, TFN is the true false 
negatives, and the EFN is the estimated false negatives

Sub Data # Total IPs Without E-5 With E-5 Actual Positives EAP TRecall ERecall TFP EFP TFN EFN
1 2514 11 12 12 12 1 1 0 0 0 0
2 2514 9 13 13 13 1 1 0 0 0 0
3 2514 12 12 12 12 1 1 0 0 0 0
4 2514 16 16 16 16 1 1 0 0 0 0
5 2514 15 15 15 15 1 1 0 0 0 0
6 2514 14 15 15 15 1 1 0 0 0 0
7 2514 21 21 21 21 1 1 0 0 0 0
8 2514 12 12 13 13 0.9231 0.9231 0 0 1 1
9 2514 12 12 12 12 1 1 0 0 0 0

10 2514 16 16 16 16 1 1 0 0 0 0
11 2514 11 11 11 11 1 1 0 0 0 0
12 2514 22 22 22 22 1 1 0 0 0 0
13 2514 8 8 8 8 1 1 0 0 0 0
14 2514 17 16 17 17 0.9412 0.9412 0 0 1 1
15 2514 15 15 15 15 1 1 0 0 0 0
16 2514 14 14 14 14 1 1 0 0 0 0
17 2514 11 14 15 15 0.9333 0.9333 0 0 1 1
18 2514 9 11 11 11 1 1 0 0 0 0
19 2514 14 14 14 14 1 1 0 0 0 0
20 2515 9 9 9 9 1 1 0 0 0 0

Fig. 13  Recall, false negatives, false positives, and accuracy comparison with different distribution size for the whole UDP TCP ICMP 281 data 
set, which includes 0, 5, 10 and 20 subsets

Table 11  Performance for 10 
distributed data sets of whole 
UDP TCP ICMP 281 among 
which sub set No. 2, 6 and 10 
contain 0 normal IP addresses

Sub Data 
Set #

Total IPs Actual posi-
tives

Nf Local Recall Accuracy False posi-
tives

False 
nega-
tives

1 5028 53 52 0.9811 0.9998 0 1
2 5028 0 5 1 0.9990 5 0
3 5028 30 30 1 1 0 0
4 5028 34 34 1 1 0 0
5 5028 61 61 1 1 0 0
6 5028 0 0 1 1 0 0
7 5028 25 25 1 1 0 0
8 5028 29 29 1 1 0 0
9 5028 49 49 1 1 0 0
10 5029 0 0 1 1 0 0
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labelled data. The result is displayed in Fig. 15. Amongst 
all models, the KNN has the lowest Recall of 0, and the IAM 
has the highest Recall of 1. We used a threshold of 0.5 to 
classify the bottleneck of the Autoencoder, and the Recall 
is 14.1% lower than the proposed model. The SRDG is a 
hybrid model that uses two-layers of SOMs to classify the 
data to train an ensemble module, which includes a Deci-
sion Trees, a Random Forests, and a Gradient Boosted Trees 
(GBT). Even though the Recall of the SRDG is 0.9618, the 
IAM system outperforms the SRDG by 3.82%. One thing 
worth mentioning is that the Dual-SOM, the SRDG and the 
IAM are all target-driven models that utilise dynamic fea-
ture selection and threshold moving, and they have higher 
Recall compared to other models. However, the number of 
potential thresholds for selecting the optimal threshold for 
the Dual-SOM and SRDG is much smaller than the IAM. 
The potential thresholds are [0.6, 0.7] with a step of 0.1 for 

Dual-SOM and SRDG and [0.2, 0.8] with a step of 0.05 for 
the IAM. This demonstrates the importance of the number 
of potential thresholds for finding an optimal threshold. Even 
though the IAM requires the most computing power amongst 
all models, the Top-N, Max-N and Ensemble-N are the ele-
ments that can be adjusted to deal with the performance and 
resources trade-off.

5.8  Additional findings

There are five significant findings in this research. Firstly, 
feature selection affects the speed of finding the RT and the 
correctness of the final classification. Better feature selec-
tion reduces the number of recurrences required for finding 
the RT as shown in Fig. 16a with three recurrences, which 
means that the potential RT for all three recurrences are 
identical. On the contrary, feature selection for Fig. 16g is 
not as good because it took 20 recurrences to find the RT. 
Figure 16a and g indicate that this data set for victim 1 has 
higher separability among features. Therefore, the RT is cor-
rectly found even with a feature set that is less than ideal. 
However, if the features selected were poor, the AA took 
more than 30 recurrences to find the RT, which was nor-
mally very different from the actual positives. For example, 
when we divided the whole UDP TCP ICMP 281 into 10 
sub data sets, the system had trouble to correctly classify 
sub data set 5 with the first set of features. The first feature 
set for sub data set 5 was {gPSum, gUO, gUP, gUSPort, 
gOMean, gPMean, gPStd, lPSum, lOMean, lTCPd, lUO, 
lUP, gRecF, gResF}. Using this feature set, the RT found 
was 141, which was very different from the actual positives 
of 33. Then, the final classification result was 266 normal 
NetFlows. Even though the Recall was 1, the false positive 
was 233. Since the recurrence value was over 30, which 
suggested a poor feature selection. Therefore, the Feature 
Selector was run again to find a second set of features, 
which was{gOSum, gPSum, gProtSum, gUDIP, gUP, gUS-
Port, gTC, gTCPd, glTR, lOSum, lPSum, lOMean, lPMean, 

Fig. 14  Time taken for the Target Detector and the NetFlow Identifier 
to get a best classification for an RAA with and without distributed 
data sets

Fig. 15  Recall of supervised 
and other unsupervised learning 
models compared to the IAM 
system on a UDP flood attack 
data set, in which supervised 
models were trained with only 
5% of labelled data
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lUP, lUProt, lUSPort, lTCStd, lOMeanSend, lOMeanDiff, 
lResF, gRecF, gU3, gU5, lU3}. This time, the RT found 
was 32, which was very close to 33. Then, the system used 
RT =32 for the Ensemble-5 Module and the final Nf was 33, 
which is the same as the actual positives for sub data set 5. 
Each trial in Fig. 16 is a number of predicted positives or 
a potential RT generated by the Target Finder. The random 
weight initialisation for the Autoencoder caused the number 
of predicted positives to be different. Consequently, differ-
ent features were selected, so the Target Detector generated 

different values for the potential RT. The Target Detector 
stops iterating when the potential RT converges. The con-
verging process was stated earlier in Section 7.3.4. The 
horizontal line after the dot on each plot is to make them 
look uniform. For example, in Fig. 16a, the Target Detector 
stopped at the third iteration and (b) stopped at the fifth itera-
tion. Moreover, Fig. 16a, d, g demonstrate that the system 
can achieve the same performance with different feature sets, 
which greatly alleviates the problem of trying to figure out 
which features are important.

Fig. 16  Comparison-Max-Random-Walk achieves convergence of the RT for all three victims
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Secondly, there is a close relationship between the RT and 
the performance of the system. We tested the system 100 
times with the RT equal to the actual positives. The prob-
ability of achieving an accuracy of 1 is 97%. Additionally, 
we tested the system with the RT that was close to the actual 
positives 100 times. The probability of having the false neg-
atives = 0 and only a few false positives was about 98%, 
which indicates that even if the RT is not identical to the 
actual positives, no users’ services will be interrupted. Addi-
tionally, the fewer recurrences taken for the Target Detector 
to find the RT, the closer the RT is to the actual positives as 
shown in Fig. 16 with Victim2-133 and Victim3-281.

Thirdly, the 10 Nf s generated by every RAA of an 
Ensemble-10 Module with the RT = Nf(0) provides a good 
measure to find the estimated actual positives to calculate 
Estimated Evaluation Metrics. When we divided the whole 
UDP TCP ICMP 281 into ten subsets, the system had trou-
ble with the subset No. 5. Initially, the Nf(0) was 141, when 
we used 141 as the RT to run each RAA on sub data set in 
the Ensemble-10 Module, the Nf generated each time was 
different as displayed in Table 12. As such, we could not 
determine the estimated actual positives, which suggests 
the performance was poor. However, when we used a new 
RT of 32, and the mode was 33, as shown in Table 12. The 
estimated actual positives were 33, which was the same as 
the actual positives.

Fourthly, the performance of the system depends on the 
distribution of the data sets, which affects the separabil-
ity of the data points. The IAM system could easily find 
the RT that was the same as the actual positives when 
the standard deviation of the NetFlows was larger. For 
example, the system had a higher probability of correctly 
classifying whole UDP TCP 78, whole UDP ICMP 78, 
whole TCP ICMP 133 and whole UDP TCP ICMP 281 
because the standard deviations of these data sets were 
higher. However, when we divided the whole UDP TCP 
ICMP 281 into five sub-datasets, the standard deviation 
for each subset was 9.5071, 9.3881, 9.9379, 9.3847 and 

9.4437. Subset No. 2, 4 and 5 had lower standard devia-
tions compared to subset No. 1 and 3. The system correctly 
identified all NetFlows for subset 3, and only had one false 
negative for subset 1. Therefore, the system selected new 
features for subset No. 2, 4 and 5. However, the IAM still 
could not find an appropriate RT for subset No. 2, 4 and 
5 with new features selected. To cope with this problem, 
we further divided subset No. 2, 4 and 5 into two subsets 
each to change the distribution of the sub data sets. The 
distribution of ‘gOSum’ and ‘gUO’ for the subset No. 2 
and the two subdivided sets of subset No.2, which include 
set2-subset-1 and set2-subset-2, are shown in Fig. 17.

The green distributions were generated from sub data 
set No. 2. The red plots are generated from sub-data set2-
subset-1, and the blue plots are created from sub-data 
set2-subset-2. Once the system finished classifying each 
subdivided data sets, the performance for the entire whole 
UDP TCP ICMP 281 was evaluated. The final global 
Recall was 0.9964, the global false negatives were 1, and 
the global false positives was 3. Moreover, after testing 
all data sets, the result shows that it was easier for the 
system to efficiently and correctly classify the NetFlows 
with a single-vector attack than a multi-vector attack. The 
standard deviation for single-vector attack data sets were 
all above 2e-9, but for multi-vector data sets were smaller 
by more than 50%.

Fifthly, throughout the experiments, the results show 
that using the RT to direct the unsupervised model with 
threshold-moving to classify the data makes the model less 
sensitive to feature selection. For example, the model was 
able to generate similar Nf with different features and thresh-
olds. The first feature set includes 7 features, which are in 
the set of {‘gUProt’, ‘gUDPort’, ‘lTC’, ‘lTCpd’, ‘lUProt’, 
‘lTCMean’, ‘lTCStd’}, with the threshold = 0.3. The sec-
ond feature set contains 13 features, which are in the set of 
{‘gOSum’, ‘gPSum’, ‘gUDIP’, ‘gUProt’, ‘gTC’, ‘gOMean’, 
‘gPStd’, ‘gOPPMean’, ‘glTR’, ‘lOSum’, ‘lOMean’, ‘lTC-
Mean’, ‘lTCStd’}, with the threshold = 0.5. Both feature 
sets only have 3 features in common. With the ability to 
work with different feature sets by tuning the threshold, the 
target-driven technique greatly reduces the burden of feature 
engineering.

Finally, even though there is about 5% probability that the 
proposed system requires to be rerun the Ensemble-N Mod-
ule, the system automatically detects the need by utilising 
the number of recurrences used to find an RT. If the system 
takes more than 30 recurrences to find an RT, it signifies 
that the RT is not reliable. Nonetheless, there are four ways 
to improve the performance of the IAM system. The first 
method is to select a new feature set. The second approach is 
to divide the data set into smaller data sets to change the traf-
fic distribution. The third technique is to modify the aggre-
gating method for attaining the final classification. The last 

Table 12  The Nf generated by 
each RAA of an Ensemble-10 
Module using RT = 141 and 32 
on a sub data set

Trial # Nf when 
RT = 141

Nf when 
RT = 32

1 266 32
2 326 33
3 231 32
4 288 33
5 239 31
6 454 29
7 238 31
8 542 32
9 489 33
10 482 33
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measure is to employ additional RAAs in the Ensemble-N 
Module.

6  Conclusion and future work

The advancement of DDoS technology escalates the level of 
difficulty for DDoS traffic identification, which can signifi-
cantly reduce the effectiveness of the mitigation system. As 
5G continues to take shape, a growing number of devices 
connecting to the network allows the attacker to increase the 
amount of malicious traffic towards the victim dramatically. 
The ISP already has blackholing mechanisms. Therefore, to 
deliver an effective DDoS mitigation system within the ISP 
domain, an efficient network traffic classifier is necessary. To 
combat an AI-based attack requires an AI-based approach, 
and thus, we propose the IAM system, which is a frame 
independent, ensemble, and distributed-enabled model that 
utilises Recurrent Autonomous Autoencoder. The proposed 
system can dynamically transform data, select features, 
determine the reference target, and identify attack traffic. 
The autonomous nature of the RAA enables the system to 

classify distributed data sets, which offers scalability to 
cope with a large amount of network traffic. Even though 
there is about 5% possibility that the Ensemble-N Module 
requires rerun, the need can be detected using the number 
of recurrences taken to find an RT. Moreover, there are dif-
ferent ways to improve the performance of the IAM system 
by further dividing the data set, selecting new features, or 
changing the aggregating method for attaining the final clas-
sification. The classification generated by the Ensemble-N 
Module for each distributed data set is independent. There-
fore, malicious NetFlows found by each distributed system 
can be blocked right away to reduce delay. While the average 
Recall of the system was over 0.98, the amount of computing 
power and training time required could be high. Even though 
adjusting the N value for the Top-N, Max-N, and Ensemble-
N can deal with the performance and resources trade-off, 
future work can focus on making the system more efficient.

Appendix A

See Table 13.

Fig. 17  NetFlow distribution of further subdividing the subset No.2 (Sub Data Set2) in green of whole UDP TCP ICMP 281 into two additional 
subsets of subset No. 2 into Sub Data-Set2-subset-1 in red and Sub Data Set2-subset-2 in blue
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