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Abstract
Many real-world datasets are represented by multiple features or modalities which often provide compatible and complemen-
tary information to each other. In order to obtain a good data representation that synthesizes multiple features, researchers 
have proposed different multi-view subspace learning algorithms. Although label information has been exploited for guid-
ing multi-view subspace learning, previous approaches did not well capture the underlying semantic structure in data. In 
this paper, we propose a new multi-view subspace learning algorithm called multi-view semantic learning (MvSL). MvSL 
learns a nonnegative latent space and tries to capture the semantic structure of data by a novel graph embedding framework, 
where an affinity graph characterizing intra-class compactness and a penalty graph characterizing inter-class separability 
are generally defined. The intuition is to let intra-class items be near each other while keeping inter-class items away from 
each other in the learned common subspace across multiple views. We explore three specific definitions of the graphs and 
compare them analytically and empirically. To properly assess nearest neighbors in the multi-view context, we develop a 
multiple kernel learning method for obtaining an optimal kernel combination from multiple features. In addition, we encour-
age each latent dimension to be associated with a subset of views via sparseness constraints. In this way, MvSL is able to 
capture flexible conceptual patterns hidden in multi-view features. Experiments on three real-world datasets demonstrate 
the effectiveness of MvSL.

Keywords  Multi-view learning · Nonnegative matrix factorization · Graph embedding · Multiple kernel learning · 
Structured sparsity

1  Introduction

In many real-world data analytic problems, instances (items) 
are often described with multiple modalities or views. It 
becomes natural to integrate multi-view information to 
obtain a more robust representation, rather than relying on 
a single view. A good integration of multi-view features 

can lead to a more comprehensive description of the data 
items, which could improve performance of many related 
applications.

An active area of multi-view learning is multi-view latent 
subspace learning, which aims to obtain a compact latent 
representation by taking advantage of inherent structures and 
relations across multiple views. A pioneering technique in 
this area is canonical correlation analysis (CCA) [1], which 
tries to learn the joint projections of two views so that the 
correlation between them is maximized. Recently, a lot of 
techniques have been applied to multi-view subspace learn-
ing, such as matrix factorization [2–5], graphical models [6, 
7], Gaussian processes [8, 9] and spectral embedding [10], 
low rank representation [11], sparse coding [12].

Among the many techniques, matrix factorization meth-
ods have received more and more attention as fundamental 
tools for latent representation (subspace) learning. A use-
ful representation acquired by matrix factorization typi-
cally makes latent structures in the data explicit (through 
the basis vectors), and usually reduces the dimensionality 
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of input views, so that further analysis can be effectively 
and efficiently carried out (with encoding vectors). Among 
different matrix factorization methods, nonnegative matrix 
factorization (NMF) [13] is an attractive one due to its theo-
retical interpretation and desired performance. NMF aims to 
find two nonnegative matrices, a basis matrix and an encod-
ing matrix, whose product provides a good approximation 
to the original matrix. It tries to formulate a feasible model 
for learning object parts, which is closely relevant to human 
perception mechanism. Recently, variants of NMF have been 
proposed for multi-view subspace learning [4, 5, 14].

Labeled data has been incorporated into multi-view rep-
resentation learning. In terms of the style of incorporating 
label information, existing supervised or semi-supervised 
multi-view representation learning methods can be divided 
into three categories: (1) large-margin based methods [6, 
9, 15]. This kind of methods uses the large-margin princi-
ple to maximize the margin between instances of different 
classes, but ignores the intra-class semantic structures. (2) 
Fisher discriminant analysis based methods [16–19]. Fish-
er’s discriminant analysis is widely used in feature learning, 
which employs the famous Fisher criterion to minimize the 
within-class scatter while maximize the between-class scat-
ter. However, Fisher’s discriminant analysis based methods 
are optimal only in cases where the data of each class fol-
lows Gaussian distribution. In reality, this assumption is too 
restrictive since real world datasets often exhibit complex 
non-Gaussian distributions [20, 21]. (3) Methods that recon-
struct the label indicator matrix through multiplying the 
encoding matrix by a weight matrix [14, 22]. These meth-
ods intrinsically impose implicit relationship constraints 
on encodings of labeled items. Nevertheless, such indirect 
constraints could be insufficient for capturing the semantic 
relationships between data items.

In this paper, we propose a new multi-view subspace 
learning algorithm called multi-view semantic learning 
(MvSL), to better capture the semantic structure of multi-
view data. MvSL is a nonnegative factorization method 
which jointly factorizes data matrices of different views. 
In MvSL, each view is factorized into a basis matrix and 
a common encoding matrix which is shared by multiple 
views. We regularize the encoding matrix by a general graph 
embedding framework: we construct an affinity graph char-
acterizing the intra-class compactness and a penalty graph 
characterizing the inter-class separability. The general idea 
is to let intra-class items be near each other while keeping 
inter-class items away from each other in the learned com-
mon subspace across multiple views.

It is worthy to highlight several aspects of the new 
method here:

1.	 We investigate three specific definitions of the graphs. 
The first one, simple graph embedding (SGE), simply 

assigns equal affinity/penalty weights to each pair of 
intra-class/inter-class items. The second one, dubbed 
as local discriminant graph embedding (LDGE), only 
imposes affinity constraints in local neighborhood of a 
class and penalizes nearest inter-class items. In contrast 
with the Fisher criterion, LDGE does not make Gaussian 
assumption for data and could better capture the com-
plex distribution of real-world data [21]. We further add 
manifold information in the affinity graph of LDGE to 
derive the third definition: transductive graph embed-
ding (TGE). A sub-challenge in LDGE and TGE is how 
to identify nearest neighbors in the multi-view context. 
To this end, we develop a new multiple kernel learning 
algorithm to find the optimal kernel combination for 
multi-view features. The algorithm tries to let the kernel 
combination optimally preserve the semantic relations 
among labeled items.

2.	 Features coming from the same view are likely to have 
the same sparsity pattern in their low-dimensional rep-
resentation [23, 24]. In order to promote group spar-
sity in the basic matrix, we propose to incorporate a 
�1,2 norm regularizer on the basis matrices to encour-
age basis matrix to be column-sparseness [2]. Since �1,2 
norm regularizer encourages the sum of each column’s 
�2 norm to be minimized, some columns of matrix will 
be zero-valued. In this way, each latent dimension has 
the flexibility to be only associated with a subset of each 
views, thus enhancing the expressive power of the model 
and avoiding the high computational burden.

3.	 To solve MvSL, we develop a block coordinate descent 
[25] optimization algorithm.

For empirical evaluation, three real-world multi-view data-
sets are employed. The encouraging results of MvSL are 
achieved in comparison with the state-of-the-art algorithms.

2 � Related work

In this section, we will briefly review research fields that are 
directly related to our work, namely, label exploitation in 
multi-view subspace learning, nonnegative matrix factoriza-
tion and graph embedding.

2.1 � Label exploitation in multi‑view subspace 
learning

General speaking, multi-view subspace learning methods 
could be divided into two categories: methods that do not 
use label information (i.e. unsupervised) and those using 
label information (semi-supervised or supervised). Unsuper-
vised multi-view subspace learning methods, such as CCA 
[1], co-training [26] and their variants [27–30], only use the 
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multiple features information of the data items for learn-
ing. Due to ignoring the label information, the performance 
of unsupervised multi-view subspace learning has much 
room to promote. In order to utilize the label information, 
(semi-) supervised multi-view subspace learning algorithms 
were developed. According to different ways to use label 
information, these algorithms could be divided into three 
categories: (1) algorithms exploiting the large-margin prin-
ciple, (2) algorithms that make use of Fisher’s discriminant 
analysis technique, and (3) algorithms that reconstruct the 
label indicator matrix.

The large-margin principle is successfully used in SVM. 
In multi-view case, Chen et al. [6, 15] integrate the large-
margin idea into Markov network for multiple features, 
which jointly maximizes data likelihood and minimizes a 
prediction loss on the labeled data. Xu et al. [9] propose 
a large-margin Gaussian process approach for discovering 
discriminative latent subspace shared by multi-view data. 
However, the latent spaces learned by this kind of methods 
ignore the intra-class semantic structures of the data.

Fisher’s discriminant analysis has been employed in 
multi-view subspace learning. In [16], Diethe et al. propose 
two view Fisher’s discriminant analysis which tries to cap-
ture the correlation between two views in an CCA style. 
They then extend it to the multi-view setting by convex for-
mulation and also propose a sparse version [18]. Chen and 
Sun propose a different multi-view Fisher’s discriminant 
analysis which minimizes the prediction error of each view’s 
output and takes fisher terms as constraints [17]. They also 
design a new solution for the multi-class case by using hier-
archical clustering. Rather than learning a discriminative 
score, Kan et al. aim to learn a common subspace shared by 
multiple views in which within-class/between-class varia-
tions are minimized/maximized (i.e. the Fisher criterion) 
[19]. However, the Fisher criterion is optimal only in cases 
where the data of each class is approximately distributed as 
Gaussian. This assumption is too restricted since data often 
exhibit complex non-Gaussian distributions [20, 21].

The third category is to reconstruct the label indicator 
matrix through multiplying the encoding matrix by a weight 
matrix [14, 22]. Each column of the label indicator matrix 
stores the 1-of-C coding for an item’s label information (C 
denotes the number of classes). The weight matrix acts as 
a set of C linear regression models in the learned subspace 
(i.e. the encoding matrix) for label prediction. A regression 
model forces items with the corresponding label to reside 
on its positive hyperplane while letting other-class items 
reside on the negative hyperplane, where “positive/negative” 
means the regression output equals 1/0. This can be viewed 
as imposing implicit relationship constraints on encodings 
of labeled items. However, this scheme cannot well capture 
the semantic relationships between data items. For example, 
two items with the same label could be far away from each 

other in the learned subspace as long as they both reside on 
the positive hyperplane of the class.

To sum up, there is still lack of effective methods for 
learning a common latent subspace which well captures the 
semantic structures in multi-view data. Our MvSL is differ-
ent from the above works in that we devise a general graph 
embedding framework to address this problem. The frame-
work imposes direct relationship constraints on (labeled) 
data items in the target subspace and we explore graph defi-
nitions which can characterize non-Gaussian distributions 
in real world data.

2.2 � NMF and multi‑view extensions

NMF is an effective subspace learning method to capture 
the underlying structure of the data in the parts-based low 
dimensional representation space. It accords with the cog-
nitive process of human brain from the psychological and 
physiological studies [13, 31, 32]. Here we briefly review 
NMF. In this paper, vectors and matrices are denoted by 
lowercase boldface letters and uppercase boldface letters 
respectively. For a matrix � , we denote its (i, j)-th element 
by Xij . The i-th element of a vector � is denoted by bi . Given 
an input nonnegative data matrix � ∈ ℝ

M×N
+

 where each col-
umn represents a data item and each row represents a feature. 
NMF aims to find two nonnegative matrices � ∈ ℝ

M×K
+

 and 
� ∈ ℝ

K×N
+

 whose product can well approximate the original 
data matrix:

K < min(M,N) denotes the desired reduced dimensionality, 
and to facilitate discussion, we call � the basis matrix and � 
the encoding matrix.

It is known that the objective function above is not convex 
in � and � together, so it is unrealistic to expect an algo-
rithm to find the global minimum. Lee and Seung [13] pre-
sented multiplicative update rules to find the locally optimal 
solution as follows:

In recent years, many variants of the basic NMF model 
have been proposed. In the multi-view context, researchers 
have extended NMF to better leverage multi-view informa-
tion. Liu et al. develop a multi-view NMF method named 
multiNMF for data clustering [5], where a unified encod-
ing matrix is learned across different views. Kalayeh et al. 
propose an approach based on multi-view NMF for image 
annotation [4]. It treats tags and visual features of images 

� ≈ ��.

Ut+1
ik

= Ut
ik

(�(�t)T )ik
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.
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as different views. Given an image i to be annotated, it first 
finds k nearest neighbors of i from images with tags, by aver-
aging distances calculated by multiple visual features. Then 
it adopts a similar scheme as MultiNMF to factorize these 
nearest neighbors and uses the learned basis vectors to gen-
erate encoding for i. Based on the encoding, i’s tag vector is 
predicted. In [33], the graph regularized NMF (GNMF) [20] 
is extended to the multi-view setting. Although this work 
considers using graphs to regularize the learned encoding 
space, it only constrains affinity relationships and does not 
incorporate label information to learn semantic structures. 
Some semi-supervised multi-view NMF methods have been 
proposed [14, 22, 34]. However, [14] and [22] are based 
on label indicator matrix reconstruction, while [34] adopts 
simple graph definitions similar to our SGE. None of these 
works develop a complete graph embedding framework in 
the multi-view NMF context for capturing semantic relation-
ships between items.

2.3 � Graph embedding

Yan et  al. formulate popular dimensionality reduction 
methods in a general graph embedding framework [21]. 
After that, the idea of graph embedding has been widely 
applied. For example, a number of works [20, 35, 36] have 
exploited graph embedding as regularization of NMF. Shi 
et al. [37] propose an adaptive graph embedding method 
which customizes the neighborhood size of each item when 
constructing graphs. Nevertheless, these works only con-
sider single-view data. When multiple features exist, it is not 
known how to well assess nearest neighbors, which is a key 
component for graph embedding. Although [38] proposes a 

graph embedding approach for multi-view face recognition, 
it learns a graph embedding model for each view separately. 
This would easily amplify the inconsistency between differ-
ent views. Moreover, it only gives a solution for two views 
and generalization to multiple views is not a trivial task. 
Our work is different from the above ones in that we design 
a general graph embedding framework for learning a unified 
semantic subspace from partially labeled multi-view data, 
with a multiple kernel learning solution for nearest neighbor 
assessment.

3 � Multi‑view semantic learning

In this section, we present the multi-view semantic learning 
(MvSL) algorithm for latent representation learning from par-
tially labeled multi-view data. As illustrated in Fig. 1, we first 
obtain various features to construct the set of data matrices 
{�(v)}H

v=1
 where �(v) ∈ ℝ

Mv×N

+  , Mv denotes the dimensionality 
of view v, H denotes the number of views and N is the total 
number of items. The data matrices are then factorized into 
basis matrices {�(v)}H

v=1
 and the low-dimensional consensus 

encoding matrix � . We regularize � by an affinity graph Ga 
and a penalty graph Gp . Nodes in the dotted circles are labeled. 
The edges in Ga/Gp mean pairwise affinity/separation con-
straints (dotted edges connect nodes in local neighborhoods). 
The graph embedding framework is general and various graph 
definitions can be adopted. Figure 1 shows an instantiation of 
Transductive Graph Embedding which will be presented in 
Sect. 4. Note that in Fig. 1 fully white elements in the matrices 
mean their values are 0. By imposing a structured sparseness 
constraint on each basis matrix �v , some basis vectors could 

Fig. 1   An illustration of the 
work flow of the proposed 
approach. Fully White color in 
the matrices means value 0
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be zeroed-out so that a latent dimension in the encoding space 
can be associated with just a few views. This is flexible and 
enhances the expressive power of the model. For example, in 
Fig. 1, the second column of �(1) and the third column of �(2) 
are zero columns, which means the second latent dimension is 
not associated with view 1 and the third is independent of view 
2. Next, we discuss the design of each component of MvSL, 
and formulate the whole optimization problem in the end.

3.1 � Multi‑view NMF

The consensus principle is the fundamental principle in multi-
view learning [39–41]. MvSL jointly factorizes {�(v)}H

v=1
 into 

different basis matrices {�(v)}H
v=1

 and a consensus encoding 
matrix � [2, 4, 5]:

In this way, each item is forced to have the same encod-
ing under different views and the basis matrices of different 
views are coupled together through � . However, the stand-
ard unsupervised NMF fails to guarantee that the learned 
latent space captures the semantic structures of the data. In 
what follows, we present the graph embedding regulariza-
tion on the encoding matrix �.

3.2 � Graph embedding framework

The graph embedding framework defines two graphs for 
regularization. The affinity graph Ga = {�,�a} is an undi-
rected weighted graph with item set � as its vertex set, and 
�a ∈ ℝ

N×N as its weighted adjacency matrix which char-
acterizes the intra-class compactness. The penalty graph 
Gp = {�,�p} characterizes inter-class separability, where �p 
denotes the weighted adjacency matrix for penalty relation-
ships. The graph embedding objectives are defined as follows:

where tr(⋅) denotes the trace of a matrix, N is the number of 
items and �a = �a −�a is the graph Laplacian matrix for 
Ga with the (i, i)-th element of the diagonal matrix �a equals ∑N

j=1
Wa

ij
 ( �p is for Gp ). Generally speaking, Eq.  (2) means 

items belonging to the same class should be near each other 

(1)
min

{�(v)}H
v=1

,�

1

2

H�
v=1

‖�(v) − �(v)�‖2
F

s.t. U
(v)

ik
≥ 0,Vkj ≥ 0, ∀i, j, k, v.

(2)min
�

1

2

N�
i=1

N�
j=1

Wa
ij
‖�i − �j‖22 = min

�

1

2
tr[��a(�)T ],

(3)max
�

1

2

N�
i=1

N�
j=1

W
p

ij
‖�i − �j‖22 = max

�

1

2
tr[��p(�)T ],

in the learned latent space, while Eq. (3) tries to keep items 
from different classes as distant as possible. However, only 
with the nonnegative constraints Eq. (3) would diverge. Note 
that there is an arbitrary scaling factor in solutions to prob-
lem (1): for any invertible K × K  matrix � , we have 
�(v)� = (�(v)�)(�−1�) .  It means for any solution 
⟨{�(v)}H

v=1
,�⟩ of (1), we can always find a proper � such that 

⟨{�(v)�}H
v=1

,�−1�⟩ is an equivalent solution and all ele-
ments of �−1� are within [0, 1]. Therefore, without loss of 
generality, we add the constraints {Vkj ≤ 1,∀k, j} on �.

The graph embedding framework can be instantiated by 
a specification of Ga and Gp , or more concretely, �a and 
�p . Any graph definitions which can capture data seman-
tic structures could be used. In Sect. 4, we explore three 
different specifications and analyze their advantages and 
drawbacks. We will also present the multiple kernel learn-
ing method for nearest neighbor assessment therein.

3.3 � Sparseness constraint

Since similarities among data items within a group may 
share the same sparsity pattern, a structured sparseness regu-
larizer is added to the objective function to encourage some 
basis column vectors in �(v) to become 0 [42]. This makes 
view v independent of the latent dimensions which corre-
spond to these zeros-valued basis vectors. By employing 
�1,q norm regularization, the interpretation of latent factors 
could be improved. In this work, we choose q = 2 . �1,2 norm 
of matrix � is defined as:

3.4 � Objective function of MvSL

By synthesizing the above objectives, the optimization prob-
lem of MvSL is formulated as:

4 � Graph embedding for multi‑view semantic 
learning

We discuss three instantiations of the graph embedding 
framework for capturing the semantic structures of multi-
view data, namely, Simple graph embedding (SGE), local 
discriminant graph embedding (LDGE) and transductive 

(4)‖�‖1,2 =
K�
k=1

‖�k‖2,

(5)

min
{�(v)}H

v=1
,�

1

2

H�
v=1

‖�(v) − �(v)�‖2
F
+ �

H�
v=1

‖�(v)‖1,2

+
�

2
{tr[��a�T ] − tr[��p�T ]}

s.t. U
(v)

ik
≥ 0, 1 ≥ Vkj ≥ 0, ∀i, j, k, v.
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graph embedding (TGE). The former two construct the affin-
ity graph and the penalty graph in labeled items while TGE 
also takes unlabeled data into regularization.

4.1 � Simple graph embedding

We first present a simple instantiation called SGE which 
treats all the labeled items equally. Since we only consider 
labeled items in SGE and LDGE, some additional notations 
are defined as follows. Let �l ∈ ℝ

K×Nl , the first Nl columns 
of � , be the latent representation of the Nl labeled items 
and �u ∈ ℝ

K×Nu be the latent representation of the remain-
ing Nu unlabeled items (i.e. � = [�l�u] and Nl + Nu = N ). 
We denote the affinity graph and the penalty graph as Gal and 
Gpl , respectively, where Gal = {�l,�al} and Gpl = {�l,�pl} . 
The Nl × Nl weighted adjacency matrices �al and �pl are 
defined as

where yi denotes the label of item i, Nl
yi
 is the total number 

of items with label yi . SGE imposes affinity/separation con-
straints on all pairs of intra-/inter-class items, so the affinity/
separation weights are normalized to balance the influence 
of different classes and the influence of affinity/separation 
constraints. Apparently, SGE is a coarse definition and items 
coming from the same and different class are equally valued 
in the affinity graph and the penalty graph, respectively. In 
the next, we will present two fine instantiations of graph 
embedding which characterize semantic structures in local 
neighborhoods.

4.2 � Local discriminant graph embedding

The idea of local discriminant embedding has been well 
exploited and shown to achieve good data representation [21, 
43, 44]. For LDGE, the entries in the weighted adjacency 
matrices �al and �pl are defined as [21]

where N+
ka
(i) indicates the index set of the ka nearest 

neighbors of item i in the same class, and Nkp(y) is a set 
of item pairs that are the kp nearest pairs among the set 

(6)Wal
ij
=

{
1

Nl
yi

−
1

Nl
, if yi = yj

0, otherwise
,

(7)W
pl

ij
=

{ 1

Nl
, if yi ≠ yj

0, otherwise
,

(8)Wal
ij
=

{
1, if i ∈ N+

ka
(j) or j ∈ N+

ka
(i)

0, otherwise
,

(9)W
pl

ij
=

{
1, if (i, j) ∈ Nkp(yi) or (j, i) ∈ Nkp(yj)

0, otherwise
,

{(i, j), i ∈ �y, j ∉ �y} where �y is the set of items with class 
label y.

In LDGE, the affinity graph describes local affinity struc-
ture around each item and each item is connected to its Nka 
nearest neighbors of the same class. The penalty graph 
describes the unfavored similarities relationship of inter-
class marginal items and the marginal item pairs of different 
classes are connected.

Using the above two instantiations of graph embedding, 
the supervised graph-preserving criteria can be written as 
follows:

4.3 � Transductive graph embedding

LDGE only uses label information to capture the local 
semantic structure for the data but ignores the large amount 
of unlabel items. The local geometric information in unla-
beled data has been shown to be useful for data representa-
tion learning [20]. Therefore, in TGE we use both labeled 
items �l ∈ ℝ

K×Nl and unlabeled items �u ∈ ℝ
K×Nu to define 

the weighted adjacency matrices �a and �p as follow [45]

where � is a real weight which is greater than 1, and Nka(i) 
denotes the index set of the ka nearest neighbors of item i. 
TGE simultaneously utilizes the partial label information 
and manifold learning theory to construct the affinity graph. 
The combination of local semantic structures and local geo-
metric structures could lead to a better data representation.

4.3.1 � Comparison of SGE, LDGE and TGE

It is well accepted that data itmes from the same class may 
have intra-class diversity and those from different classes 
may share inter-class similarity. SGE ignores intra-class 
diversity and inter-class similarity in that it imposes the 
same affinity/penalty constraints on every intra-class pairs 
and inter-class pairs, respectively. Squeezing intra-class 

(10)min
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(12)
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ij
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�, if i ∈ N+
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(j) or j ∈ N+
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(i)

1, if (i or j ∈ �u) and (i ∈ Nka(j) or j ∈ Nka(i))

0, otherwise

,

(13)W
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ij
=

{
�, if (i, j) ∈ Nkp(yi) or (j, i) ∈ Nkp(yj)

0, otherwise
,
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variance may trouble the encoding learning since our pro-
jective function (defined implicity by the basis matrix) has 
limited expressiveness power. Imposing the same penalty on 
all pairs of items between two classes could make the objec-
tive function insensitive to important pairs on the margin 
between the two classes. However, the merit of SGE is that 
it is simple and efficient, i.e. no nearest neighbor compu-
tation. In comparison with SGE, LDGE only require item 
pairs in local neighborhoods to be regularized, thus avoiding 
the issues mentioned above. On the basis of LDGE, TGE 
further takes full advantage of the whole dataset with mani-
fold constraints. While SGE and LDGE only exploit labeled 
data, TGE also incorporates unlabeled data by adding affin-
ity constraints in local neighborhoods of all the data items. 
In this way, the semantic information can be transferred from 
labeled data to unlabeled data so that a better semantic rep-
resentation could be learned. Nevertheless, both LDGE and 
TGE need nearest neighbor finding (in the labeled data and 
the whole dataset respectively). Their time costs are much 
higher than that of SGE. Hereafter, we refer to MvSL with 
the three graph embedding instantiations, SGE, LDGE and 
TGE, as MvSL-S, MvSL-L and MvSL-T, respectively.

The remaining question is how to estimate nearest neigh-
bors, which is a routine function for constructing Ga and Gp 
in LDGE and TGE. Since real-life datasets are diverse and 
noisy, single-view features may not be sufficient to charac-
terize the affinity relations among items. Hence, in the next 
subsection we propose to use multiple features for assessing 
the similarity between data items.

4.4 � Multiple kernel learning

We develop a novel multiple kernel learning (MKL) [46, 47] 
method for estimating nearest neighbors, where each kernel 
function corresponds to a view. A kernel function measures 
the similarity between items in terms of one view. We use 
�v(i, j) to denote the kernel value between items i and j in 
terms of view v. To make all kernel functions comparable, 
we normalize each kernel function into [0, 1] as follows:

To obtain a comprehensive kernel function, we linearly com-
bine multiple kernels as follow:

where ��� = [�1,… , �H]
T is the weight vector to be learned. 

This combined kernel function can lead to better estima-
tion of similarity among items than any single kernel. For 

(14)�v(i, j) ←
�v(i, j)√

�v(i, i)�v(j, j)
.

(15)�(i, j,���) =

H∑
v=1

�v�v(i, j),

H∑
v=1

�v = 1, �v ≥ 0,

example, only relying on color information could not handel 
images of concept “zebra” well since the background may 
change arbitrarily, while adding texture information can bet-
ter characterize zebra images.

Then we need to design the criterion for learning ��� . Since 
our goal is to model the semantic relations among items, 
the learned kernel function should be accommodated to the 
semantic structure among classes. We define an ideal kernel 
to encode the semantic structure:

where yi denotes the label of item i. For each pair of items, 
we require its combined kernel function value to conform 
to the corresponding ideal kernel value. This leads to the 
following least square loss

Summing l(i, j,���) over all pairs of labeled items, we could get 
the optimization objective. However, in reality we would get 
imbalanced classes: the numbers of labeled items for differ-
ent classes can be quite different. The item pairs contributed 
by classes with much larger number of items will dominate 
the overall loss. In order to tackle this issue, we normalize 
the contribution of each pair of classes (including same-
class pairs) by its number of item pairs. This is equivalent 
to multiplying each l(i, j,���) by a weight tij which is defined 
as follows

where ni denotes the number of items belonging to the 
class with label yi . Therefore, the overall loss becomes ∑

i,j tijl(i, j,���) . To prevent overfitting, a L2 regularization 
term is added for ��� . The final optimization problem is for-
mulated as

where � is a regularization tradeoff parameter. The optimiza-
tion problem of (19) is a classical quadratic programming 
problem which can be solved efficiently using any convex 
programming software. When ��� is obtained, we could assess 
the similarity relationship between labeled items in terms of 
multi-view features according to (15). Then, according to 

(16)�ideal(i, j) =

{
1, if yi = yj
0, otherwise

,

(17)l(i, j,���) = (�(i, j,���) −�ideal(i, j))
2

(18)�ij =

⎧⎪⎨⎪⎩

1

n2
i

, if yi = yj
1

2ninj
, otherwise

,

(19)

min
���

Nl�
i,j=1

tijl(i, j,���) + �‖���‖2
2

s.t.

H�
v=1

�v = 1, �v ≥ 0
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Eqs. (12) and (13) we can construct the weighted adjacency 
matrix �a and �p , respectively.

Algorithm 1: Optimization of MvSL

Data: {X(v)}Hv=1,α, β

Result: {U(v)}Hv=1,V

1 begin

2 Randomly initialize U
(v)
ik ≥ 0, 1 ≥ Vkj ≥ 0, ∀i, j, k, v.

3 repeat

4 Optimize problem (5) with respect to {U(v)}Hv=1 while keeping V fixed.

5 Optimize problem (5) with respect to V while keeping {U(v)}Hv=1 fixed.

6 until convergence or max no. iterations reached

7 end

5 � Optimization

In this section, we will discuss how to optimize (5). When � 
is fixed, (5) is convex in {�(v)}H

v=1
 , and vice versa. Thus, we 

adopt a block coordinate descent method [25] which optimizes 
one block of variables while fixing the other block, as shown 
in Algorithm 1. For the convenience of description, we define

5.1 � Optimizing {�(v)}H
v=1

When � is fixed, �(1),… ,�(H) are independent with one 
another. Since the way of optimization is the same, we con-
centrate on an arbitrary view and use � and � to denote the 
data matrix and the basis matrix for the view respectively. The 
optimization problem involving � can be formulated as

Two parts of �(�) are both convex functions. The first part 
of �(�) is differentiable and its gradient is Lipschitz continu-
ous. Hence, we propose an optimization algorithm based 
on the composite gradient mapping technique proposed for 
solving composite objective functions [48]. The core idea is 
to minimize the auxiliary function and adjust the candidate 
of the Lipschitz constant of the first part of �(�) iteratively. 
In this way, we could decrease the objective function effec-
tively. Suppose f (�) = 1

2
‖� − ��‖2

F
 and �t be the value of 

(20)

{(�(1),… ,�(H),�)}

=
1

2

H�
v=1

‖�(v) − �(v)�‖2
F
+ �

H�
v=1

‖�(v)‖1,2

+
�

2
{tr[��a(�)T ] − tr[��p(�)T ]}

(21)
min
�

�(�) ∶=
1

2
‖� − ��‖2

F
+ �‖�‖1,2

s.t. Uik ≥ 0, ∀i, k.

� in the t-th iteration. In our work, the auxiliary function of 
(21) is formulated as

where L is the Lipschitz constant to be estimated, Lf  , of f (⋅) , 
and ∇f (�t) is the gradient of f (⋅) at �t:

We could find the candidate for �t+1 which is denoted as 
TL(�

t) by minimizing mL(�
t;�) with the nonnegative 

constraints:

We develop a linear time solver for (24). At first, we rewrite 
mL(�

t;�) as follows:

The optimization problem (24) becomes

It is easy to see that (25) can be transformed as independ-
ent optimization subproblem for different columns of � . 
Let � be an arbitrary column of � and � be the column of 
(�t −

1

L
∇f (�t)) at the same index. The subproblem for this 

column can be written as

This problem is proved [49] that it can be handled without 
the nonnegativity constraints. Let [⋅]+ denote the element-
wise projection operator to nonnegative numbers. So (26) 
can be transformed into

(22)
mL(�

t;�) = f (�t) + tr
�
∇f (�t)T (� − �t)

�

+
L

2
‖� − �t‖2

F
+ �‖�‖1,2,

(23)∇f (�t) = �t��T − ��T .

(24)TL(�
t) = arg min

Uik≥0,∀i,k
mL(�

t;�)

mL(�
t;�)

=
L

2
‖� − �t‖2

F
+ tr

�
∇f (�t)T�

�
+ �‖�‖1,2 + f (�t)

=
L

2

�
‖� − �t‖2

F
+

2

L
tr
�
∇f (�t)T�

�
+

1

L2
‖∇f (�t)‖2

F

�

+ �‖�‖1,2 + f (�t) −
1

2L
‖∇f (�t)‖2

F

=
L

2
‖� − �t +

1

L
∇f (�t)‖2

F
+ �‖�‖1,2 + const.

(25)
min
�

L

2
‖� − �t +

1

L
∇f (�t)‖2

F
+ �‖�‖1,2

s.t. Uik ≥ 0, ∀i, k.

(26)
min
�

1

2
‖� − �‖2

2
+

�

L
‖�‖2

s.t. ui ≥ 0, ∀i.

(27)min
�

1

2
‖� − [�]+‖22 + �

L
‖�‖2.
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This transformation is important since (27) can be solved via 
Fenchel duality [50, 51] as follows.

Define � as the dual variable. We have:

which is equivalent to the following problem

Moreover, � satisfies the relation � = [�]+ − � . Thus, by 
solving (28) we can easily obtain a solution for (27). Appar-
ently (28) can be solved simply by normalization.

5.2 � Optimizing �

When {�(v)}H
v=1

 are fixed, the subproblem for � can be writ-
ten as

(29) is a bounded non-negative quadratic programming 
problem for � . Sha et al. [52] developed a general multi-
plicative optimization scheme for this type of problems. 
Inspired by [52], we propose a multiplicative update algo-
rithm for optimizing �.

At first, we rewrite the first term of �(�) as:

Fo r  c o nve n i e n c e ,  l e t  � =
∑H

v=1
(�(v))T�(v)  a n d 

� =
∑H

v=1
(�(v))T�(v) . Equation (29) can be transformed into

min
�

�
1

2
‖� − [�]+‖22 + �

L
‖�‖2

�

= min
�

max
�

�
�T ([�]+ − �) −

1

2
‖�‖2

2
+

�

L
‖�‖2

�

= max
�

min
�

�
−�T� +

�

L
‖�‖2 + �T [�]+ −

1

2
‖�‖2

2

�

= max
�

�
�T [�]+ −

1

2
‖�‖2

2
s.t.‖�‖2 ≤ �

L

�
,

(28)min
�

1

2
‖� − [�]+‖22 s.t.‖�‖2 ≤ �

L
.

(29)

min
�

�(�) ∶=

�
1

2

H�
v=1

‖�(v) − �(v)�‖2
F

+
�

2
{tr[��a�T ] − tr[��p�T ]}

�

s.t. 1 ≥ Vkj ≥ 0, ∀j, k.

1

2

H�
v=1

‖�(v) − �(v)�‖2
F

=
1

2

H�
v=1

tr[�T (�(v))T�(v)�]

− 2tr[�T (�(v))T�(v)] + const.

The second term is linear term for � . We only need to focus 
on the quadratic terms which can be represented as follows

where �j and �̄k represent the j-th column vector and k-th row 
vector of � , respectively. Each summand in Eqs. (31) and 
(32) is a quadratic function of a vector variable. Therefore, 
we can obtain upper bounds for these summands:

where we let �t denote the value of � in the t-th iteration of 
the update algorithm and �t

j
 , �̄t

k
 represent its j-th column vec-

tor and k-th row vector, respectively. Gathering the bounds 
for all the summands, we have the auxiliary function for 
(�):

(30)

min
�

1

2
tr[�T��] − tr[�T�]

+
�

2
{tr[��a�T ] − tr[��p�T ]}

s.t.1 ≥ Vkj ≥ 0, ∀j, k.

(31)
1

2
tr[�T��] =

1

2

N∑
j=1

�j
T��j,

(32)

𝛽

2
{tr[��a�T ] − tr[��p�T ]}

=
𝛽

2

K∑
k=1

{�̄T
k
(�a +�p)�̄k − �̄T

k
(�p +�a)�̄k},

(�j)
T��j ≤

K∑
k=1

(��t
j
)k

Vt
kj

(Vkj)
2,

(�̄k)
T (�a +�p)�̄k ≤

N∑
j=1

((�a +�p)�̄t
k
)j

Vt
kj

(Vkj)
2,

− (�̄k)
T (�p +�a)�̄k

≤ −
∑
i,j

(�p +�a)ijV
t
ki
Vt
kj

(
1 + log

VkiVkj

Vt
ki
Vt
kj

)
,

(33)

(�t;�)

=
1

2

N∑
j=1

K∑
k=1

(��t
j
)k + 𝛽((�a +�p)�̄t

k
)j

Vt
kj

(Vkj)
2

−
𝛽

2

K∑
k=1

∑
i,j

(�p +�a)ijV
t
ki
Vt
kj

(
1 + log

VkiVkj

Vt
ki
Vt
kj

)

−

N∑
j=1

K∑
k=1

QkjVkj.
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The estimate of � in the (t + 1)-th iteration is then computed 
as

Differentiating (�t;�) with respect to each Vkj , we have

Setting �(�t;�)∕�Vkj = 0 , we get the update rule for �

I t  i s  n o t  d i f f i c u l t  t o  f i n d  o u t 
(�t+1) ≤ (�t;�t+1) ≤ (�t;�t) = (�t) . Therefore, the 
update rule for � monotonically decreases Eq. (5).

5.3 � Optimizing MvSL‑S and MvSL‑L

It is obvious that MvSL-S and MvSL-L have the same objec-
tive function, which can be formulated as:

It is easy to see that the update rule of � in (39) is the same 
as that in (5) and the update rule of �l in (39) is the same as 
� in (5). We will optimize �u in (39) as follow.

Similarly, the auxiliary function for u(�u) can be derived

(34)�t+1 = argmin
�

(�t;�).

𝜕(�t;�)

𝜕Vkj

=
(��t

j
)k + 𝛽((�a +�p)�̄t

k
)j

Vt
kj

Vkj

−
𝛽((�p +�a)�̄t

k
)j

Vkj

Vt
kj
− Qkj

(35)Vt+1
kj

= min

⎧⎪⎨⎪⎩
1,Vt

kj

−Bkj +
�

B2
kj
+ 4AkjCkj

2Akj

⎫⎪⎬⎪⎭
,

(36)Akj = (��t
j
)k + 𝛽((�a +�p)�̄t

k
)j,

(37)Bkj = −Qkj,

(38)Ckj = 𝛽((�p +�a)�̄t
k
)j.

(39)

min
{�(v)}H

v=1
,�

1

2

H�
v=1

‖�(v) − �(v)�‖2
F
+ �

H�
v=1

‖�(v)‖1,2

+
�

2
{tr[�l�a(�l)T ] − tr[�l�p(�l)T ]}

s.t. U
(v)

ik
≥ 0, 1 ≥ Vkj ≥ 0, ∀i, j, k, v.

(40)

u(�u,t;�u) =
1

2

Nu∑
j=1

K∑
k=1

(��u,t

j
)k

V
u,t

kj

(Vu
kj
)2 −

Nu∑
j=1

K∑
k=1

Qu
kj
Vu
kj

and the update rule can be obtained by setting the partial 
derivatives to 0:

Algorithm 2: Composite Gradient Mapping
Input: ηu > 1, ηd > 1: scaling parameters for L

1 begin

2 Initialize U0
ik ≥ 0, ∀i, k, and L0 : 0 < L0 ≤ Lf .

3 t = 0

4 repeat

5 repeat

6 L = Lt

7 Optimize (24) to get TL(Ut)

8 if φ(TL(Ut)) > mL(Ut;TL(Ut)) then

9 L = Lηu

10 end

11 until φ(TL(Ut)) ≤ mL(Ut;TL(Ut))

12 Ut+1 = TL(Ut)

13 Lt+1 = max(L0, L/ηd)

14 t = t+ 1

15 until convergence

16 end

5.4 � Computational complexity

The major space cost of MvCL is due to the matrices 
{�(v)}H

v=1
 , � , �a and �p , which is O(K(

∑H

v=1
Mv + N) + 2N2) . 

Nearest neighbor graph needs O(N2
∑H

v=1
Mv) to construct. 

The time complexity of main algorithm consists of two 
parts, corresponding to the subproblems for {�(v)}H

v=1
 and � 

respectively. For optimizing each �(v) , we need to run Algo-
rithm 2. The core step is the optimization of (24), which 
requires solving (26) for each column of �(v) . The cost of 
solving (26) for a column of �(v) is O(Mv) , so the total cost 
of solving (24) is O(MvK) . In the outer loop of Algorithm 2 
we also need to compute ∇f (�) ( O(MvK

2) if we pre-compute 
��T and �(v)�T ). Assume we run T iterations of the outer 
loop of Algorithm 2, and the total number of iterations of 
the inner loop is upper bounded by 2(T + 1) + log2

Lf

L0
 [48]. 

T h e  m a j o r  c o s t  fo r  o p t i m i z i n g  �(v)  i s 
O(MvK(2(T + 1) + log2

Lf

L0
) + TMvK

2) . Regarding � , let N be 

the number of items. In each iteration, we need to compute 
three matrices for � (Eqs. (36)–(38)): � ( O(NK2 + N2K) ), � 
(O(NK)) and � ( O(N2K) ). Combining these pieces and the 
costs of Eqs.(35) together, the major cost for optimizing � 
is O(T �(NK + NK2 + N2K)) , where T ′ is the number of itera-
tions. The comparison of time complexity between different 
algorithms is described in Table  1.

(41)V
u,t+1

kj
= min

{
1,V

u,t

kj

Qu
kj
− |Qu

kj
|

2(��u,t
j
)k

}
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6 � Experiment

In this section, we conduct the experiments on two real-
world data sets to validate the effectiveness of the proposed 
algorithm MvSL.

6.1 � Data set

We use three real-world datasets to evaluate the proposed 
factorization method.

The first dataset came from the Reuters Multilingual 
collection [53]. Totally 111,740 Reuters news documents 
comprised the test collection, which were written in five 
different languages (English, French, German, Spanish and 
Italian). Documents belonging to more than one of the six 
categories were assigned to the smallest category. Each 
document was translated into the other four languages 
and represented as a bag of words using a TFIDF-based 
weighting scheme. We randomly choosed 1800 documents, 
with 300 for each category. For each document, we took 
English, Italian and Spanish translations as the first, sec-
ond and third views respectively.

The second dataset came from Microsoft Research 
Asia Internet Multimedia Dataset 2.0 (MSRA-MM 2.0) 
[54]. MSRA-MM 2.0 consists of 1011738 images that 
were collected from 1165 query concepts in Microsoft 
Bing Search. Each concept has approximately 500–1000 
images. For each image, its relevance to the corresponding 
query was labeled with 3 levels: very relevant, relevant 
and irrelevant. 7 feature types were extracted for each 

image. We choosed 25 query concepts from the Animal, 
Object and Scene branches, and then randomly selected 
200 images from each concept while removing irrelevant 
images. We selected 4 type features as 4 different views: 
64D HSV color histogram, 144D color correlogram, 75D 
edge distribution histogram and 128D wavelet texture.

The third dataset was constructed from ImageNet [55], an 
image dataset organized according to the WordNet hierarchy. 
Currently, there are more than 100,000 synsets in WordNet 
are indexed and each synset included more than 500 images 
on average. We randomly select 50 leaf synsets in the hier-
archy as categories and randomly choosed 200 images from 
each candidate synset. Three different features of this dataset 
were 64D HSV histogram, 1000D bag of SIFT visual words, 
and 512D GIST descriptors. The statistics of these datasets 
are summarized in Table  2.

6.2 � Evaluation methodology

To validate the performance of our method, we compare the 
proposed MvSL with the following baselines:

•	 NMF [13].
•	 Feature concatenation (ConcatNMF): This method con-

structs new data matrix by concatenating the features 
of all the views and then applies NMF to the new data 
matrix.

•	 Multi-view NMF (MultiNMF): MultiNMF [5] is an 
unsupervised multi-view NMF algorithm.

•	 Semi-supervised Unified Latent Factor method (SULF): 
SULF [14] is a semi-supervised multi-view nonnegative 
factorization method which factorizes partial label infor-
mation as a constraint on �l.

•	 Graph regularized NMF (GNMF): GNMF [20] is a 
graph regularized version of NMF. We spread it to the 
multi-view case and constructed the affinity graph for 
approximating data manifolds with the within-class affin-

Table 1   Comparison of time 
complexity

Graph construction Main algorithm

MvSL-S NULL
O

(
MvK

(
2(T + 1) + log

2

Lf

L
0

)
+ TMvK

2

)

+ O(T �(NK + NK2 + (Nl)2K))

MvSL-L O((Nl)
2 ∑H

v=1
Mv) O

(
MvK

(
2(T + 1) + log

2

Lf

L
0

)
+ TMvK

2

)

+ O(T �(NK + NK2 + (Nl)2K))

MvSL-T O(N2
∑H

v=1
Mv) O

(
MvK

(
2(T + 1) + log

2

Lf

L
0

)
+ TMvK

2

)

+ O(T �(NK + NK2 + N2K))

Table 2   Statistics of the datasets

Dataset Size # of categories Dimensionality of views

Reuters 1800 6 21,531/15,506/11,547
MM2.0 5000 25 64/144/75/128
imgNet 10,000 50 64/1000/512
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ity graph defined in Eq. (8) to make it a semi-supervised 
method on multi-view data.

•	 Multi-view NMF with fisher discriminant analysis 
(MvFisher): MvFisher is a semi-supervised multi-view 
learning method. Firstly, MvFisher factorized mult-view 
data by Eq. (1), and then used fisher’s discriminant analy-
sis with partially labeled latent subspace (i.e. �l).

Since the large-margin based multi-view learning methods 
ignore the intra-class semantic structures of the data, the latent 
subspace learned by this kind of methods will acquire inferior 
representation compared with MvFisher and MvSL. It is to 
see that the first three are unsupervised methods while the last 
three are semi-supervised methods.

We evaluated the seven factorization methods by classifica-
tion and clustering. For three datasets, we varied the percent-
age of training items from 10 to 50%. We generated five ran-
dom train-test splits and run each method on each split three 
times. The averaged performance and standard deviation were 
reported. In case the method has parameters, we tuned the 
parameters on a separate random split. The dimensionalities 
of the latent space were empirically set to 50, 100 and 150, for 
Reuters, MM2.0 and imageNet respectively.

We exploited the learned latent representations of different 
methods for classification and clustering. For classification, the 
training items were imported to a kNN classifier ( k = 9 ). For 
clustering, k-means was used as the clustering method. Due 
to semi-supervised methods exploiting the label information 
of training data, we just applied clustering on test items for 
fairness. accuracy and normalized mutual information (NMI) 
are adppted to evaluate clustering performance, whose defini-
tions are as follows:

where �(x, y) is the indicator function that �(x, y) = 1 if x = y 
and �(x, y) = 0 otherwise. map(ri) is the permutation map-
ping function that maps cluster label ri to the equivalent 
cluster label from the data corpus. The best mapping can be 
obtained by the Kuhn-Munkres algorithm [56]. H(C) and 
H(C†) denotes the entropy of cluster set C and C† respec-
tively. And MI(C,C†) is the mutual information between 
C and C†:

where p(ci) represents the probability that a randomly 
selected item from all testing items belongs to cluster ci , and 
p(ci, c

†

j
) stands for the joint probability that any arbitrarily 

selected item is in ci and c†
j
 simultaneously.

6.3 � Experiment results

Tables 3,   4 and 5 show the classification performance of 
different factorization methods on MM2.0, Reuters and 
imageNet, respectively. As we can see, multi-view learn-
ing methods outperform single view learning methods and 
semi-supervised methods outperform unsupervised methods. 
On the other hand, directly constrained multi-view learning 

(42)Accuracy =

∑n

i=1
�(si,map(ri))

n
,

(43)NMI(C,C†) =
MI(C,C†)

max(H(C),H(C†))
,

(44)MI(C,C†) =
∑

ci∈C,c
†

j
∈C†

p(ci, c
†

j
) log2

p(ci, c
†

j
)

p(ci)p(c
†

j
)
.

Table 3   Classification performance of different factorization methods on the Reuters dataset (accuracy ± std. dev., %)

Labeled % NMF-b ConcatNMF MultiNMF SULF GNMF MvFisher MvSL-S MvSL-L MvSL-T

10 61.55 ± 1.08 63.04 ± 1.67 63.69 ± 1.52 67.93 ± 1.92 68.93 ± 1.77 68.58 ± 1.15 69.67 ± 1.64 70.56 ± 1.21 71.67 ± 1.32
20 65.71 ± 1.37 66.09 ± 1.08 67.42 ± 1.97 68.40 ± 1.64 70.59 ± 1.65 70.80 ± 1.31 71.56 ± 1.32 72.67 ± 1.02 73.56 ± 1.28
30 67.30 ± 0.27 68.40 ± 1.91 69.16 ± 1.52 70.05 ± 1.48 71.80 ± 1.24 72.95 ± 1.46 73.28 ± 1.23 74.78 ± 1.34 75.67 ± 1.36
40 68.41 ± 1.96 69.81 ± 1.96 70.28 ± 1.83 71.86 ± 1.38 72.23 ± 1.54 74.11 ± 0.95 74.24 ± 1.52 75.87 ± 1.26 76.22 ± 1.20
50 70.44 ± 1.72 70.75 ± 2.03 71.81 ± 1.47 72.78 ± 1.44 73.78 ± 1.75 75.98 ± 0.87 76.80 ± 0.57 77.33 ± 0.79 78.56 ± 0.63

Table 4   Classification performance of different factorization methods on the MM2.0 dataset (accuracy ± std dev, %)

Labeled % NMF-b ConcatNMF MultiNMF SULF GNMF MvFisher MvSL-S MvSL-L MvSL-T

10 24.56 ± 0.98 27.41 ± 0.83 26.26 ± 0.95 27.47 ± 1.03 28.03 ± 1.17 28.15 ± 0.84 29.76 ± 0.89 30.92 ± 0.44 31.52 ± 0.58
20 25.37 ± 0.85 31.24 ± 0.93 30.39 ± 1.12 30.94 ± 1.25 31.55 ± 1.14 31.67 ± 1.31 32.96 ± 1.04 33.83 ± 1.52 34.12 ± 1.27
30 26.09 ± 0.71 32.47 ± 0.80 31.85 ± 0.87 33.13 ± 0.87 34.15 ± 0.51 33.92 ± 1.52 34.36 ± 0.73 35.80 ± 0.68 36.16 ± 0.67
40 28.03 ± 0.46 34.25 ± 0.71 33.48 ± 0.65 34.94 ± 0.65 35.26 ± 0.97 35.75 ± 0.85 36.20 ± 0.56 37.12 ± 0.73 37.68 ± 0.43
50 28.06 ± 0.28 35.08 ± 0.48 34.33 ± 0.56 36.32 ± 0.56 37.28 ± 0.48 37.33 ± 0.72 37.48 ± 0.52 38.16 ± 0.65 38.62 ± 0.41
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methods (MvSL) have an advantage over the implicitly 
constrained ones. The detailed observations are revealed as 
follows.

•	 Semi-supervised algorithms are superior to unsupervised 
algorithms in general, which denoted that using label 
information could obtain better discriminative structures 
in the latent spaces.

•	 Multi-view algorithms are more preferable for multi-view 
data. This is in accord with the results of previous multi-
view learning work.

•	 MvSL, MvFisher and GNMF show superior performance 
over SULF. SULF models partial label information as a 
factorization constraint on �l, which can be viewed as 
indirect affinity constraints on encoding of within-class 
items. On the contrary, the graph embedding terms in 
MvSL, MvFisher and GNMF impose direct affinity con-
straints on item encodings and therefore could be favor 
to learn more explicit semantic structures in the learned 
latent spaces.

•	 MvFisher shows superior performance over GNMF. 
MvFisher takes into account both the variance between 
the classes and the variance within the classes , but 
GNMF ignores the variance between the classes. So 
MvFisher could lead to a better semantic structures in 
the learned latent spaces.

•	 MvSL methods outperform other algorithms under all 
cases. On the one hand, MvSL methods do not need the 
datasets obey gaussian distribution; on the other hand, 
MvSL methods utilize the partial label information to 
construct a graph embedding framework, which encour-
aged items of the same category to be near with each 
other and kept items belonging to different categories as 
distant as possible in the latent subspace. What’s more, 
MvSL methods allow each latent dimension in the latent 
subspace to be correlative with a subset of views by 
imposing �1,2-norm on each basis �(v) . Therefore, MvSL 
methods can learn flexible latent factor sharing among 
multi-view data.

•	 The performance of MvSL-T is better than that of MvSL-
L and MvSL-S. The reason is that MvSL-T exploits not 
only label information but also unlabel information via 
a graph embedding framework. These properties could 

help MvSL-T to learn a clearer semantic latent space. We 
performed F-test for 5 × 2 cross-validation with signifi-
cance level 0.05. The results indicated that MvSL was 
significantly superior over all the baselines, MvSL-T was 
superior than MvSL-L and MvSL-L was superior than 
MvSL-S.

•	 The clustering results are shown in Figs.    2 and   3, 
for Reuters and MM2.0 respectively. The observations 
were very similar to those for the classification results. 
According to F-test with significance level 0.05, we 
found MvSL outperformed the baseline methods under 
all cases, MvSL-T was superior than MvSL-L and 
MvSL-L was superior than MvSL-S.

In Table  6, we compare MvSL to related methods with 
important properties.

Table 5   Classification performance of different factorization methods on the imageNet dataset (accuracy ± std dev, %)

Labeled % NMF-b ConcatNMF MultiNMF SULF GNMF MvFisher MvSL-S MvSL-L MvSL-T

10 12.90 ± 0.98 17.15 ± 0.83 16.37 ± 0.95 19.95 ± 1.03 21.59 ± 0.81 20.79 ± 0.45 20.40 ± 0.30 21.12 ± 0.37 21.24 ± 0.73
20 14.54 ± 0.85 20.03 ± 0.93 20.29 ± 1.12 22.55 ± 1.25 24.61 ± 0.48 25.06 ± 0.89 25.73 ± 0.49 25.90 ± 0.59 26.33 ± 1.45
30 15.93 ± 0.71 22.07 ± 0.80 22.31 ± 0.87 23.79 ± 0.87 25.72 ± 0.86 26.26 ± 0.46 27.81 ± 0.62 28.23 ± 0.45 28.51 ± 0.47
40 17.21 ± 0.46 23.28 ± 0.71 23.79 ± 0.65 24.37 ± 0.65 26.72 ± 0.75 27.11 ± 0.43 29.15 ± 0.71 29.24 ± 0.71 30.86 ± 0.58
50 18.08 ± 0.28 24.32 ± 0.48 24.59 ± 0.56 25.29 ± 0.56 27.41 ± 1.04 28.33 ± 0.53 30.76 ± 0.93 31.04 ± 0.96 31.80 ± 0.46
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Fig. 2   Clustering performance of different methods on Reuters. Error 
bars represent standard deviations
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6.4 � Parameter sensitive analysis

There are two essential parameters in new methods. � con-
trols the importance of the semi-supervised part of MvSL, 
while � measures the sparsity degree of the basis matri-
ces. We study their influence on MvSL’s performance by 
changing one parameter while keeping the other parameter 
constant.

The results are shown in Figs. 4 and 5 for Reuters and 
MM2.0 respectively. It is easy to see that the general behav-
ior of the two parameters was the same: when increasing the 
parameter from 0, the performance curves went up firstly and 
then went down. This denotes that when assigned appropri-
ate weights, the sparseness and semi-supervised constraints 
really promote to learn a better latent subspace. On the one 
hand, the models performance was not very sensitive to the 
value of � . MvSL achieved its best performance when � 
was in [15, 25] and [10, 20] for Reuters and MM2.0 respec-
tively. On the other hand, � ’s impact in Reuters seemed to be 
weaker than its impact in image datasets. The reason may be 
that in Reuters � prevailed the performance boost (as shown 
in Fig. 4a). Based observations, we set � = 15 , � = 0.02 for 
other experiments. As to real number � in (12), we found 
that when � = 2 experiments have well performance.
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Fig. 3   Clustering performance of different methods on MM2.0. Error 
bars represent standard deviations

Table 6   Comparison between MvSL and related works

NMF-b ConcatNMF MultiNMF SULF GNMF MvFisher MvSL-S MvSL-L MvSL-T

Feature learning
√ √ √ √ √ √ √ √ √

Locality
√ √ √

Discriminability
√ √ √ √ √

Sparseness
√ √ √

Transductivity
√
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Fig. 4   Influence of different parameter settings on the performance of MvSL in the Reuters dataset: a varying � while setting � = 0.02 , b vary-
ing � while setting � = 15
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As we described, MvSL uses ka nearest neighbor graph 
and kp nearest neighbor graph to character the intra-class 
and inter-class relationship, respectively. The affinity graph 
of MvSL relies on how the assumption that two neighbor-
ing items share the same label. Obviously this assumption 
is more likely to fail as ka increases. The observations of kp 
was very similar to ka. This is the reason why the perfor-
mance of MvSL decreases as ka or kp increases, as shown 
in Fig. 6.

7 � Conclusion

In this paper, we have proposed a novel nonnegative latent 
representation learning algorithm, called Multi-view 
semantic learning (MvSL), for representation learning 
with multi-view data. MvSL efficiently learns a latent sub-
space embedded in multiple views based on non-negative 
matrix factorization. A graph embedding framework was 
constructed by both partial label information and unlabel 

information, which encouraged items came from same cat-
egory to be near with each other and kept items belonging 
to various categories as distant as possible. What’s more, 
a novel multiple kernel learning method effectively esti-
mated the items pair similarity among multi-view data, 
which further extended graph embedding framework. 
Another property of MvSL was that it encourages each 
latent dimension of learned latent subspace only to be 
associated with a subset of views by imposing �1,2-norm 
on each basis �(v) . Therefore, MvSL is able to learn a more 
meaningful latent subspace shared across the views. An 
efficient multiplicative-based iterative algorithm is devel-
oped to solve the proposed optimization problem. We used 
three real-world datasets to evaluate the empirical per-
formance of MvSL. Experimental results indicated that 
MvSL was effective and outperformed baseline methods.
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