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Abstract
The recently published DISCHARGE-1 trial supports the observations of earlier autopsy and neuroimaging studies that 
almost 70% of all focal brain damage after aneurysmal subarachnoid hemorrhage are anemic infarcts of the cortex, often 
also affecting the white matter immediately below. The infarcts are not limited by the usual vascular territories. About 
two-fifths of the ischemic damage occurs within ~ 48 h; the remaining three-fifths are delayed (within ~ 3 weeks). Using 
neuromonitoring technology in combination with longitudinal neuroimaging, the entire sequence of both early and delayed 
cortical infarct development after subarachnoid hemorrhage has recently been recorded in patients. Characteristically, cortical 
infarcts are caused by acute severe vasospastic events, so-called spreading ischemia, triggered by spontaneously occurring 
spreading depolarization. In locations where a spreading depolarization passes through, cerebral blood flow can drastically 
drop within a few seconds and remain suppressed for minutes or even hours, often followed by high-amplitude, sustained 
hyperemia. In spreading depolarization, neurons lead the event, and the other cells of the neurovascular unit (endothelium, 
vascular smooth muscle, pericytes, astrocytes, microglia, oligodendrocytes) follow. However, dysregulation in cells of 
all three supersystems—nervous, vascular, and immune—is very likely involved in the dysfunction of the neurovascular 
unit underlying spreading ischemia. It is assumed that subarachnoid blood, which lies directly on the cortex and enters the 
parenchyma via glymphatic channels, triggers these dysregulations. This review discusses the neuroglial, neurovascular, and 
neuroimmunological dysregulations in the context of spreading depolarization and spreading ischemia as critical elements 
in the pathogenesis of cortical infarcts after subarachnoid hemorrhage.
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Abbreviations
AC	� Alternating current
aSAH	� Aneurysmal subarachnoid hemorrhage
BBB	� Blood-brain barrier
BK channel	� Large conductance calcium-activated 

potassium channel (big potassium)
BOXes	� Monopyrrole bilirubin oxidation end 

products
CSF	� Cerebrospinal fluid
CT	� Computed tomography
DC	� Direct current
DCI	� Delayed cerebral ischemia
DISCHARGE-1	� Depolarizations in ischemia after suba-

rachnoid hemorrhage-1
DSA	� Digital subtraction angiography

EBI	� Early brain injury
ECI	� Early cerebral ischemia
ECoG	� Electrocorticography
HDP	� Degradation products of the heme 

molecule
HMGB1	� High-mobility-group-protein B1
ICH	� Intracerebral hemorrhage
ICP	� Intracranial pressure
IQR	� Interquartile range
MCA	� Middle cerebral artery
MCAO	� Middle cerebral artery occlusion
MRI	� Magnetic resonance imaging
MWRST	� Mann-Whitney rank sum test
Na,K-ATPase	� Sodium pump
NET	� Neutrophil extracellular trap
NMDAR	� N-methyl-d-aspartate receptor
NO	� Nitric oxide
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NOS	� Nitric oxide synthase
NUP	� Negative ultraslow potential
NVU	� Neurovascular unit
PDP	� Dipyrrole propentdyopents
PTDDD	� Peak total spreading depolarization-

induced depression duration of a 
recording day

PTDDDdelayed	� Peak total spreading depolarization-
induced depression duration of a 
recording day in the delayed neuromon-
itoring period

PVM	� Perivascular macrophage
rCBF	� Regional cerebral blood flow
SAH	� Subarachnoid hemorrhage
SD	� Spreading depolarization
TCD	� Transcranial Doppler sonography
TDDD	� Total spreading depolarization-induced 

depression duration of a recording day
VAP-1	� Vascular adhesion protein-1

Introduction

Aneurysmal subarachnoid hemorrhage (aSAH) affects 
about 30,000 people annually in the USA alone and has a 
high rate of morbidity and mortality [1]. In the recent pro-
spective, observational, multicenter, diagnostic phase III 
trial DISCHARGE-1, in aSAH patients, cumulative focal 
brain damage from intracerebral hemorrhage (ICH), early 
cerebral ischemia (ECI), and delayed cerebral ischemia 
(DCI) up to day 14, as determined by neuroimaging, was 
the best predictor of patient outcome half a year after the 
initial hemorrhage [2]. Ninety-five of 180 patients (52.8%) 
had ICH. The mean cumulative volume of damage due to 
ICH was 19 ± 29 ml across all patients. Damage due to ECI 
occurred in 123 of 180 patients (68.3%); the mean volume of 
damage was 27 ± 67 ml. The early focal brain injury (EBI), 
composed of ICH and ECI, amounted to 46 ± 73 ml and 
affected 151 of 180 patients (83.9%). Ten patients died early. 
Delayed infarcts occurred in 98 of the 170 early survivors 
(57.6%), and their mean volume was 36 ± 80 ml across all 
early survivors. The relatively high rate of delayed infarcts 
in DISCHARGE-1 might have two reasons: (1) the better 
image quality of MRI compared to CT, typically used in 
standard clinical studies, and (2) the fact that the neurosur-
geons virtually always included patients with large amounts 
of subarachnoid blood [2].

Importantly, DCI is a potentially modifiable cause of 
brain damage during neurocritical care because treatment 
can begin prior to the onset of damage. Since almost 50% of 
focal brain damage in DISCHARGE-1 was due to DCI, the 
patient outcome could have been improved if there had been 
both an effective therapeutic strategy for DCI and, equally 

important, an effective strategy to automatically detect DCI 
in order to target therapeutic interventions. Automated real-
time detection of DCI is particularly important as most high-
risk patients are comatose, and therefore, neurological dete-
rioration cannot be detected clinically. In DISCHARGE-1, 
for example, 90/170 early survivors (52.9%) were not clini-
cally assessable during the entire observation period of 
2 weeks. To make matters worse, these comatose patients 
also had a significantly greater delayed infarct volume than 
the clinically assessable patients [2].

In order to develop effective diagnostic and therapeutic 
strategies, it is important to better understand the pathophys-
iology of focal brain damage and in particular that of corti-
cal infarcts after aSAH. This review is therefore intended to 
provide an overview of this complex pathophysiology, tak-
ing into account all three supersystems—nervous, vascular, 
and immune.

The Large Majority of Early and Delayed 
Infarcts After aSAH Are Cortical

The primary objective of DISCHARGE-1 was to calculate 
(i) sensitivity and (ii) specificity for a known cut-off value 
for the peak total spreading depolarization (SD)-induced 
depression duration of a recording day (PTDDD) during 
the delayed neuromonitoring period (PTDDDdelayed) that 
indicates delayed ischemic infarcts ipsilateral to the record-
ing strip and (iii) to estimate a new cut-off value (https://​
doi.​org/https://​doi.​org/​10.​1186/​ISRCT​N0566​7702) [2]. The 
SDs were measured with a subdural electrode strip placed 
via craniotomy or burr hole trepanation.

In Horst et al. [3], the early and delayed infarct volumes 
in a subpopulation of 136 DISCHARGE-1 patients on the 
side of the subdural electrode strip were examined in more 
detail. The volume of early infarcts involving the cortex was 
significantly larger than the volume of early deep infarcts 
(7.3 ± 22.3 ml versus 1.2 ± 3.2 ml, p = 0.002, Mann–Whit-
ney rank sum test (MWRST)). The difference between cor-
tical and deep infarcts was even greater in delayed infarcts 
(17.8 ± 44.5 ml versus 1.3 ± 5.4 ml, p < 0.001, MWRST). 
In other words, 86% of the early infarcts and 93% of the 
delayed infarcts involved the cortex. Early and delayed corti-
cal infarcts correlated significantly with each other (Spear-
man 0.19, p = 0.032, n = 136), while early and delayed deep 
infarcts did not correlate with each other (Spearman 0.02, 
p = 0.811, n = 136). Pathophysiological processes leading to 
early cortical infarcts could therefore also be relevant for 
delayed cortical infarcts, whereas early and delayed deep 
infarcts are etiologically rather different. Overall, it is esti-
mated that 69% of the total bilateral focal brain damage after 
aSAH was due to early or late ischemic infarcts involving 
the cortex, 23% to ICH, and 8% to deep ischemic infarcts. 
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Two-fifths of the ischemic infarcts occurred early, and three-
fifths were delayed.

Cortical ischemic lesions also represented the predomi-
nant pathomorphological pattern of parenchymal damage in 
previous neuroimaging and autopsy studies in aSAH patients 
[4–8]. Regarding the etiology of these infarcts, it is interest-
ing to note that Stoltenburg-Didinger and Schwarz [8] found 
intravascular thrombi in only four of 106 patients with cor-
tical infarcts in their autopsy study, which never preceded 
the infarcts but were typical of secondary microcirculatory 
disturbances within the necrotic area. Endothelial swelling 
could be excluded as an etiology because this occurs only 
temporarily and would, if at all, obstruct the lumina of capil-
laries. Also, compression was ruled out as a potential cause 
since the subarachnoid blood clot would lead to venous 
compression prior to compression of arteries. The cortical 
infarcts, however, were never primarily hemorrhagic, but 
they were typically anemic. In the autopsy studies, no rela-
tionship was found between the cortical ischemic lesions 
and angiographic vasospasm in either humans or non-human 
primates [6, 9].

A consistent autoptic finding was that the cortical 
lesions typically occurred below subarachnoid blood 
clots, suggesting that local blood products were involved 
in their pathogenesis [8, 9] (Fig. 1). This corresponds 

with the clinical observation that thick layers of suba-
rachnoid blood on admission CT scans are consistently 
among the most important predictors of infarction 
and unfavorable outcome after aSAH [3, 10–15]. The 
autopsy study by Stoltenburg-Didinger and Schwarz [8] 
was published in 1987 which was before the Interna-
tional Cooperative Study on the Timing of Aneurysm 
Surgery [16]. As such, most patients did not receive any 
treatment of the aneurysm (156/207 patients, 75.4%) 
which is much higher than is typical in recent studies. 
Interestingly, the ratio of autopsy cases with cortical 
to territorial infarcts was 13:1 in patients who had not 
undergone clip ligation, whereas it was 3:1 in patients 
who had undergone surgery due to a relative increase in 
the incidence of territorial infarcts (p < 0.001, chi-square 
test). In the pathoanatomical descriptions, the cortical 
infarcts are typically bell-shaped, corresponding to the 
territory of small perforating arteries, or laminar, cor-
responding to the territories of rectangular branches of 
the cortical arteries [4, 6, 8, 9]. Overall, pathologists 
suggest that the most likely etiology of these infarcts is 
spasm and not (micro)thrombosis [8], with the relevant 
spasms affecting the cortical rather than the proximal 
arteries [6, 8]. However, in DISCHARGE-1, many large 
delayed infarcts were not only purely laminar but also 

Fig. 1   Autopsy case of an 80-year-old female patient with subarach-
noid hemorrhage resulting from the rupture of an anterior communi-
cating artery aneurysm. On admission, the patient was comatose and 
showed signs of decerebrate rigidity (World Federation of Neurosur-
gical Societies (WFNS) [212] scale 5). The initial CT demonstrated 
basal subarachnoid hemorrhage with involvement of the ventricles 
(modified Fisher grade 4 [213]). She remained comatose during the 
further clinical course and died 25 days after the initial hemorrhage 
under palliative care. The autopsy revealed an extensive subarach-
noid hemorrhage with a punctum maximum in the basal cisterns. The 
cerebral convexities were also partially covered with blood. Speci-
mens were taken at predefined locations, formalin-fixed and paraffin-

embedded. a, b Hematoxylin and eosin-stained sections of the left 
frontolateral cortex. This area was covered with subarachnoid blood. 
a A wedge-shaped cortical irregularity with its base at the cortical 
surface. At higher magnification (inset), massive infiltration of mac-
rophages, extensive neo-vascularization, and neuronal loss were seen. 
These findings are consistent with a subacute cortical infarct adjacent 
to a thick sulcal blood clot (right upper corner) (scale bar = 1  mm; 
scale bar inset = 100  µm). b Normal appearing cortex adjacent to a 
thinner sulcal blood clot (right upper corner). At higher magnifica-
tion (inset), the normal neuronal somata are clearly visible (scale 
bar = 1 mm; scale bar inset = 100 µm)
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affected the underlying white matter (Fig. 2a). In this 
context, it is important to note that spasms of the arteries 
in the cerebral cortex can lead not only to infarcts in the 
cortex but also to infarcts in the underlying white mat-
ter, since the arteries that supply the white matter first 
pass through the cortex before reaching the white mat-
ter [17–19]. Vasoconstriction at the level of the cortex 
can therefore interrupt the blood supply not only to the 
cortex but also to the underlying white matter. Another 
important feature of these infarcts is that they are not 
limited by the usual territorial boundaries (Fig. 2a).

In accordance with these pathomorphological details, 
severe repetitive vasospastic events lasting up to 2.5 h 
were recorded in the cerebral cortex of patients with 
aSAH [20, 21]. To demonstrate this, optoelectrodes placed 
directly over newly developing infarcts were used. The 
newly developing infarcts were proven with longitudinal 
neuroimaging. These acute vasospastic events were trig-
gered by SDs, which are briefly explained below.

SD

SD is characterized by near-complete breakdown of the 
transmembrane ion gradients, cytotoxic edema, and sus-
tained near-zero depolarization of neurons [22–25]. Neurons 
lead the SD with astrocytes following [26, 27]. SD is typi-
cally observed as a large negative direct current (DC) shift 
[28] (Fig. 3). In alternating current (AC)-electrocorticog-
raphy (ECoG), SD classically triggers a rapidly developing 
reduction in the amplitudes of spontaneous activity, known 
as spreading depression [29, 30] (Figs. 2b and 3).

To prevent the neuronal network from dying in the SD 
state, it must repolarize. In order for it to repolarize, suf-
ficient ATP has to be available to activate the membrane 
pumps and in particular the Na,K-ATPases [31–34]. How-
ever, repolarization must occur before the so-called com-
mitment point of SD is reached, at which point irreversible 
damage to neurons begins [35]. For severe focal cerebral 
ischemia, the commitment point is reached after about 
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20 min [20]. For complete circulatory arrest, it is reached 
earlier [35–40]. SDs that lead to mass neuronal damage typi-
cally show the transition to a negative ultraslow potential 
(NUP) [20, 41] (Fig. 3).

Primary Focal Ischemia Triggers SD, While SD 
Can Trigger Secondary Focal Ischemia

Figure 4a shows the standard sequence of a sudden drop 
in regional cerebral blood flow (rCBF) followed by a non-
spreading depression of spontaneous neuronal activity sev-
eral seconds and SD about a minute after middle cerebral 
artery occlusion (MCAO) in a rat (filament occlusion). The 
figure thus shows an example of a typical primary ischemia 
that triggers SD in the ischemic, still fully viable ischemic 
center after a latency period of 1–5 min or even longer 
[42, 43]. The first SD then slowly migrates outwards from 
the site of origin [44]. This standard sequence of primary 
ischemia, which triggers SD many minutes before irrevers-
ible neuronal damage has occurred, and gradually spreads 
from the ischemic center to the periphery, is nicely illus-
trated, for example, in video 1 by Zhao et al. [43] using 
imaging of intracellular calcium after photothrombosis. 
Importantly, the first ischemia-induced SD cannot initi-
ate spreading depression in the ischemic center and inner 
penumbra because these zones have already been subject 
to nonspreading depression and activity cannot be further 
depressed (Fig. 4a). In animals, the standard sequence of 
primary ischemia is basically the same in cardiocirculatory 
arrest: a drop in rCBF followed by a nonspreading depres-
sion of brain activity a short time later and SD with a latency 
of minutes. This sequence of events has also been observed 
in patients with cardiocirculatory arrest during neurocritical 
care [36].

Although ischemia is an important trigger for SD, it is 
by no means the only one. Rather, there is a plethora of dif-
ferent triggers that are more or less pathological [33]. One 
of the standard triggers used experimentally, for example, 
is an increased extracellular potassium concentration [45]. 
Yet, electrographic seizures can also act as a trigger for SD 
[46–49], and there are even genetic conditions that increase 
the likelihood of SD and in some cases have been proven 
to lead to spontaneous SDs [50–55]. Of particular interest 
in the context of aSAH is that decreased nitric oxide avail-
ability (NO) occurs after aSAH via different mechanisms 
[23, 56–62] and that decreased NO availability lowers the 
threshold for SD in both animals and brain slices [63, 64]. 
It has been hypothesized that NO acts in this way because 
it modulates calcium entry through P/Q-type calcium chan-
nels and N-methyl-d-aspartate receptors (NMDAR) in corti-
cal neurons [65]. In vivo, the reduction in rCBF due to NO 
depletion should additionally favor the occurrence of SD.

Fig. 2   a Representative CT and MR images of a 61-year-old female patient 
with subarachnoid hemorrhage resulting from rupture of an aneurysm of 
the left middle cerebral artery (MCA). All images were aligned to the T1 
scan of the MRI on day 14 after the initial hemorrhage. The first three CT 
images from the left show an axial section at the level of the third ventri-
cle. The CT image in the top row on the far right and the MR images in 
the bottom row show a section of the brain at the level of the basal ganglia 
(+ 6 mm in the direction of the vertex in comparison to the first three CT 
images). The initial CT on admission (CT day 0 pre-op = CT1 in b) demon-
strated subarachnoid hemorrhage and massive intraventricular hemorrhage 
that extended into the left cerebral parenchyma. On the same day, a second 
CT was performed after surgical clipping of the aneurysm, placement of a 
subdural electrode strip over the left frontolateral cortex, and evacuation of 
the intracerebral hematoma. Electrodes 2–5 are marked in red. Electrodes 1 
and 6 are not shown. The CT (CT day 0 post-op = CT2) revealed perifocal 
edema surrounding the evacuated intracerebral hemorrhage. Furthermore, 
the left frontal cortex showed a subtle hypodensity between electrodes 2 and 
3. The hypodensity only became clearly visible on the CT of day 4 (= CT5 
in b) (asterisk). These findings are consistent with a cortical infarct develop-
ing in the early phase after the initial hemorrhage. Of note, CT imaging on 
day 4 (far right image in the upper panel) already demonstrated some sulcal 
effacement in the left hemisphere. On day 7, digital subtraction angiogra-
phy (DSA) was performed (not shown). Visual assessment of the left arte-
riogram yielded mild vasospasm of the internal carotid artery and posterior 
circulation (basilar artery, P1 and P2 segment of the left posterior cerebral 
artery (PCA)). Moderate vasospasm was found in the proximal and distal 
segments of the MCA and the anterior cerebral artery. MR imaging on day 
14 showed contrast enhancement of the early infarcted cortex between elec-
trodes 2 and 3 (CE T1 day 14). Posteriorly, the cortex of the left insula and 
the left operculum adjacent to electrodes 4–6 showed marked increase in 
signal intensity compared to the right hemisphere on fluid-attenuated inver-
sion recovery imaging (FLAIR day 14) and a decrease in signal intensity on 
T1 imaging (CE T1 day 14). The interpretation of these signal alterations 
is challenging. As pseudonormalization occurs on images of the apparent 
diffusion coefficient (ADC) in cerebral infarction after ~ 10 days [214], the 
lack of ADC alterations in the left insular and opercular cortex may indi-
cate subacute infarction that developed around day 4. However, this is some-
what contradicted by the fact that no contrast enhancement of the cortex was 
seen (CE T1 day 14), which is typical of infarction after ~ 10 days [214]. 
We therefore favor the diagnosis of incomplete infarction in the left insular 
and opercular cortex adjacent to electrodes 4–6. Further posteriorly, FLAIR 
imaging (FLAIR day 14) and diffusion-weighted imaging (DWI day 14) 
showed a large hyperintense area that was hypointense in the ADC images 
and included the left posterior MCA territory and the part of the convex-
ity supplied by the left PCA, including the occipital pole [215]. In other 
words, this delayed infarct involving gray and white matter was not limited 
by the boundaries of the normal vascular territories. It may be added that 
the DSA showed no fetal-type PCA. Ancillary findings were small scattered 
delayed cerebral infarcts in the right MCA territory and a mixture of cyto-
toxic and vasogenic edema surrounding the evacuated intracerebral hemor-
rhage. b Time course of focal brain damage and spreading depolarization 
(SD)-variables in the same patient as in a. The upper row 1 in b shows the 
progression of focal brain damage from CT1 to CT5 to the MRI on day 14 
based on manual neuroimage segmentation of the hemisphere ipsilateral to 
the recording strip [2]. Rows 2 and 3 below show the time course of the SD 
variables: For each day, SDs were counted, and depression durations were 
scored to determine the total duration of SD-induced activity depression per 
recording day (TDDD) (row 2) and the total number of SDs per recording 
day (row 3). The peak TDDD (PTDDD) and peak SDs/day (peakSD) were 
defined for each patient as the maximal values among all recording days 
(indicated as a dark gray and dark blue bar, respectively). As can be seen, 
the delayed SD cluster began on day 4 and reached its maximum on day 6, 
i.e., in the temporal phase in which the delayed infarct development can be 
assumed on the basis of the neuroimaging in a 

◂
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In otherwise normal tissue of phylogenetically higher 
mammals such as rats, swine, and humans, SD acts as 
a strong stimulus to increase rCBF (spreading hyper-
emia = normal hemodynamic response) (left panels in 
Fig. 4b). After repolarization, this increase is typically fol-
lowed by physiological, long-lasting, moderate hypoperfu-
sion (= oligemia) [21, 66–70]. Under these conditions, SD is 
short-lived and harmless [71]. However, if the neurovascular 
coupling is disturbed, SD can cause severe vasoconstriction 
instead of vasodilation (= inverse hemodynamic response) 
[23, 72]. This means that a long-lasting local perfusion 
deficit occurs during the depolarization phase (= spreading 
ischemia), which prevents repolarization of the tissue and 
can ultimately lead to a brain infarct (Dreier et al., 1998; 

Dreier et al., 2000) (right panels in Fig. 4b). A fact relevant 
to many genetic models is that the rCBF response to SD 
in mice under physiological conditions is already slightly 
shifted towards an inverse response [54, 73, 74] (Fig. 4b).

SD-induced spreading ischemia is due to SD-induced 
spasm of pial and cortical arteries, arterioles, and most likely 
also proximal capillary segments [23]. This acute vasospas-
tic event is currently the most severe form of vasospasm 
known. It occurs spontaneously, spreads in the cerebral cor-
tex, affects the entire microcirculation, extends proximally at 
least to the pial arteries, and can occur several times in suc-
cession, whereby the duration can be prolonged. Tissue in 
which the SD passes through experiences drastic and rapid 
(within seconds) rCBF drop. Since the vascular supply to 

Fig. 3   A cluster of spreading depolarizations (SD) precedes the 
development of the large delayed ischemic infarct that is shown in 
Fig. 2 between the CT scan on day 4 and the MRI scan on day 14. 
Traces 1–3 give the raw direct current (DC)/alternating current (AC)-
electrocorticography (ECoG) recordings (band-pass, 0–45 Hz), dem-
onstrating the propagation of the negative DC shifts along the cortex 
from electrode to electrode, which identify the SDs. The ECoG traces 
are oriented according to the convention of electroencephalography 
(EEG) with negativity up and positivity down. The distance between 
two neighboring electrodes is always 1 cm. This section of the cluster 
begins at the start of day 6 with three separate SDs, the first of which 
starts at electrode 3, the second at electrode 5, and the third at elec-
trode 4. The third SD leads to a compaction of the cluster with SDs 
that merge into one another at electrodes 3 and 4. At electrode 4 and 
to a certain extent also at electrode 3, these later SDs are superim-
posed on a negative ultraslow potential (NUP) (current sink), while 
the SDs at electrode 5 remain more clearly separated from each other, 
retain their high amplitudes, and are superimposed on a positive 
ultraslow potential (current source). The traces at electrodes 3 and 

4 are therefore typical for an area where ischemic damage develops, 
while the trace at electrode 5 is typical for a more peripheral area of 
damage development [20]. This is also supported by the changes in 
spontaneous brain activity. The depressive effect of the SDs on the 
spontaneous activity is assessed in traces 4–6 using the integral of the 
power in the AC frequency band between 0.5 and 45 Hz (red asterisks 
mark the onsets of SD-induced spreading depression) [99]. While 
there is a recovery of spontaneous brain activity after the first two 
SDs at all three electrodes, the third SD leads to a persistent depres-
sion of spontaneous activity. In contrast to electrodes 3 and 4, there 
is then a spontaneous recovery of brain activity at electrode 5 a lit-
tle less than 4  h after the start of the third SD, which supports the 
hypothesis that the electrophysiological events at this electrode were 
less severe than at electrodes 3 and 4. The whole course of the SD-
induced depressions is shown in Fig.  2b. The intracranial pressure 
(ICP) was measured via an external ventricular drain (EVD) (trace 
7) and the arterial pressure via a catheter in the radial artery (trace 
8). The fluctuations in the ICP result from short-term opening of the 
EVD



Translational Stroke Research	

the white matter is via the cortical circulation [17–19], the 
white matter under the cortex may also become ischemic 
[75]. SD-induced spreading ischemia in aSAH patients may 
last from several tens of seconds to at least 2.5 h and is often 
followed by high-amplitude, persistent hyperemia, which 
may then revert to oligemia [20, 21, 76] (Fig. 4b). In aSAH 
patients, SD-induced spreading ischemia leading to cerebral 
infarction in the area of the probes in longitudinal neuroim-
aging started at a median partial pressure of oxygen (ptiO2) 
of 12.5 mmHg (interquartile range (IQR), 9.2–15.2) in the 
brain tissue [20], which is already below the normal range 
[77]. As ischemia spread, ptiO2 then fell further to 3.3 mmHg 
(IQR, 2.4–7.4). Similarly, rCBF showed a downward trend 
even before the onset of SD-induced spreading ischemia. 
Immediately before the onset of spreading ischemia lead-
ing to infarction, rCBF was 57% (IQR, 53–65) compared 
to baseline and then dropped to 26% (IQR, 16–42) during 
spreading ischemia [20].

In summary, SD is the characteristic response of the 
assembly of neurons, astrocytes, and other cell types to pri-
mary focal ischemia in the cerebral cortex before they die, 
but SD can also start in non-ischemic or mildly ischemic 
cortical tissue and cause severe spreading ischemia as a 
form of secondary ischemia. SD-induced spreading ischemia 
rather than primary ischemia is typically observed during 
the development of delayed infarcts after aSAH [2, 20, 21, 
23, 72] (Fig. 4b).

PTDDDdelayed

As a result of SD-induced spreading ischemia, the ATP 
level decreases even more than during normal SD [31, 32], 
the Na,K-ATPase activity necessary for tissue repolariza-
tion correspondingly lacks, and both the SD and the SD-
associated depression of neuronal activity are prolonged. 
Accordingly, the duration of SD-induced spreading ischemia 
strongly correlates with the durations of both the SD and the 
activity depression [21, 78] (Fig. 4b). However, when com-
paring the two, the zone of persistent activity depression is 
always much larger than that of depolarization [79], which 
could be related, for example, to the increased release of 
adenosine in a large radius around the ischemic zone [80].

Accordingly, PTDDDdelayed was the strongest predictor 
of DCI (reversible delayed neurological deficit or delayed 
infarct) in DISCHARGE-1 [2]. Based on the analyses in 
Horst et al. [3], PTDDDdelayed correlated with delayed cor-
tical infarcts (Spearman 0.54, p < 0.001, n = 136) but not 
with delayed deep infarcts (Spearman 0.10, p = 0.234, 
n = 136). Conversely, angiographic vasospasm correlated 
with delayed cortical infarcts (Spearman 0.27, p = 0.006, 
n = 106) and with delayed deep infarcts (Spearman 0.20, 
p = 0.044, n = 106). Delayed cortical and deep infarcts 

correlated with each other (Spearman 0.22, p = 0.009, 
n = 136). Figure 5 shows the time course of the total SD-
induced depression durations per recording day (TDDD) 
in DISCHARGE-1 patients with EBI compared to patients 
without EBI (Fig. 5a) and in patients with delayed infarcts 
compared to patients without delayed infarcts (Fig. 5b). 
While TDDDs were significantly higher in patients with 
EBI compared to patients without EBI in the first half of the 
neuromonitoring period, patients with delayed infarcts had 
significantly higher TDDDs on days 1, 5–11, and 14 com-
pared to patients without delayed infarcts. These results fit 
quite well with the respective time periods of EBI and DCI 
but also show some overlap. That is, EBI appears to possi-
bly induce SDs and SD-induced depression during the first 
week after the initial hemorrhage. Such an aftereffect of EBI 
complicates the detection of new delayed infarcts. However, 
all SDs after aSAH may be a marker for potential damage 
development. For example, patients with at least one SD in 
DISCHARGE-1 had an overall 3.1-fold increased relative 
risk and a 42% increased absolute risk of a poor outcome 
half a year after the initial hemorrhage [2]. Thus, depending 
on the type of intervention, it may not be necessarily critical 
to know whether the damage to an existing lesion progresses 
[79, 81] or whether new lesions develop elsewhere in order 
to decide if a therapeutic intervention should be performed. 
This assessment receives additional indirect support from 
the fact that the mechanisms of early and delayed cortical 
infarct development also appear to overlap [20, 82].

Figure 5 shows the time course of a surrogate marker for 
proximal vasospasm, namely the mean blood flow veloci-
ties of the middle cerebral artery (MCA) ipsilateral to the 
subdural electrodes measured daily by transcranial Doppler 
sonography (TCD). The observation that there were no sig-
nificant differences in mean velocities between patients with 
EBI and patients without EBI was to be expected (Fig. 5c). 
However, there was also no significant difference in mean 
velocities between patients with delayed infarcts and patients 
without delayed infarcts on any day (Fig. 5d).

In the DISCHARGE-1 population, angiographic vasos-
pasm was found to be a statistical mediator between intra-
ventricular blood volume and delayed infarct volume, but 
it showed a weaker overall correlation with delayed infarct 
volume than the delayed SD variables [3]. The delayed SD 
variables were a significant mediator between subarachnoid 
blood volume and delayed infarct volume [3]. Angiographic 
vasospasm and delayed SD variables did not correlate with 
each other [2]. Although it is likely that the chronic increase 
in vascular tone throughout the arterial tree down to the capil-
laries is relevant for rCBF decline before SD-induced spread-
ing ischemia and should additionally favor a greater rCBF 
decline during spreading ischemia [3, 83], the lack of correla-
tion between angiographic vasospasm and delayed SD vari-
ables fits well with the clinical studies in which angiographic 
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vasospasm could be effectively controlled pharmacologically, 
but without achieving a resounding success in the prophy-
laxis of DCI [84–87]. In other words, although the absence of 
angiographic vasospasm is statistically favorable, its presence 
alone does not seem to be sufficient to explain DCI. This is 
also supported by the result of the only randomized trial of 
mechanical and pharmacological angioplasty, which recently 
showed no reduction in delayed infarcts and a significantly 
worse patient outcome [88]. Oral nimodipine remains the 
only drug that has been shown to reduce the risk of DCI 
although it has no detectable effect on angiographic vasos-
pasm at the dosage used [89–91]. However, the effect of oral 
nimodipine is certainly not sufficient. Accordingly, practi-
cally all patients in DISCHARGE-1 were treated with oral 
nimodipine, but damage due to DCI occurred in 98 of 170 
early survivors (57.6%) [2].

Animal Models of ECI and DCI

A model of delayed neurological deficits and cortical infarcts 
after injection of blood into the subarachnoid space was 
first described in dogs over 60 years ago [92]. Non-human 
primates exposed to subarachnoid blood clots also showed 
virtually identical cortical infarcts below the clots as aSAH 
patients [9]. Specifically for ECI after aSAH, the swine 
sulcal clot model exists as a model in which subarachnoid 
blood clots alone are sufficient to induce SDs and adjacent 
cortical infarcts in the early period [82]. This model might 
be pathophysiologically more relevant for human ECI than 
endovascular puncture models in rodents, which, similar to 
MCAO, lead to primary territorial ischemia and on this basis 
to early SDs [93]. Typical rodent models of experimental 
SAH use cisternal injection of blood or vessel puncture and 
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convincingly replicate the evolution of angiographic vasos-
pasm, but fail to replicate the characteristic clinical course 
of delayed infarcts in patients [94]. Accordingly, the cis-
ternal injection model of blood in mice did not result in 
SDs either [95], and endovascular puncture failed to show 
spontaneous SDs in the delayed phase [96, 97]. The limita-
tion of rodent models for DCI is that thick subarachnoid 
blood clots on admission CT scans are consistently among 
the most important predictors of delayed infarcts [3, 10–15], 
but the small lissencephalic brains of rodents, unlike the 
larger gyrencephalic brains of non-human primates, swine, 

and dogs, do not permit thick subarachnoid clots required 
for infarction. The conclusion is that although experimental 
SAH in rodents is on the one hand important for the inves-
tigation of selected aspects, it is on the other hand limited 
because, unlike in patients, delayed SD clusters and delayed 
infarcts as shown in Figs. 1, 2, and 3 do not occur [94, 98].

Possible Mechanisms of Inverse 
Hemodynamic Responses

Even if the mesoscopic level of delayed infarct development 
in the human brain has been largely clarified on the basis 
of neuromonitoring technology [20, 21, 99], the question 
remains as to why exactly SDs on the one hand and inverse 
rCBF responses on the other occur after human aSAH [23]. 
An interesting observation is that although NO depletion 
alone was not sufficient to cause full-blown SD-induced 
spreading ischemia in previous rodent studies [72, 100, 101], 
no experimental protocol has yet been found that resulted 
in SD-induced spreading ischemia but simultaneously did 
not cause NO depletion [34, 72, 102, 103]. In this context, 
it may be mechanistically relevant that the vasodilator NO 
is well suited to attenuate the vasoconstrictor effects of an 
increase in free cytosolic calcium, since in both neuronal and 
endothelial nitric oxide synthase (NOS), calmodulin bind-
ing is caused by an increase in free cytosolic calcium with 
a half-maximal activity between 200 and 400 nM. When 
calmodulin affinity to NOS increases, it facilitates electron 
flow from NADPH in the reductase domain to heme in the 
oxygenase domain, thereby increasing NO synthesis [104]. 
SD causes a strong increase in cytosolic calcium in various 
cell types [105]. Accordingly, SD was found to induce NO 
synthesis in neurons and endothelial cells [64]. Many stud-
ies have shown that NO depletion is a characteristic feature 
after SAH [23, 56–62].

In addition to NO depletion, at least one additional 
experimental condition is required to produce SD-induced 
spreading ischemia [23, 72]. This second condition may ulti-
mately be a decrease in α2 activity of Na,K-ATPase lead-
ing to increased calcium uptake by internal stores of astro-
cytes, vascular myocytes, and pericytes due to a decrease 
in calcium efflux via the plasmalemmal sodium/calcium 
exchanger [34, 106]. Increased calcium mobilization from 
internal stores during SD should then increase vasoconstric-
tion and thus contribute to spreading ischemia if, in addition, 
the antagonistic effect of NO is absent [34].

Another interesting point is that inverse (vasoconstric-
tive) rCBF responses can be triggered not only by SDs 
in aSAH patients [20, 21], in animal models mimicking 
conditions after aSAH [34, 63, 72, 78, 106–110] and after 
experimental SAH [97]. Rather, they can also be triggered 
by (1) electrographic seizures in aSAH patients [111], and, 

Fig. 4   a The characteristic pathophysiological sequence of events 
in the rat after filament occlusion of the middle cerebral artery 
(MCAO). Trace 1 from top to bottom gives regional cerebral blood 
flow (rCBF). The first reaction to filament occlusion is the steep 
drop in rCBF. Trace 2 shows the spontaneous brain activity using 
alternating current (AC)-electrocorticography (ECoG) (band-pass, 
0.5–45  Hz). The primary focal ischemia triggers a rapidly develop-
ing reduction in the amplitudes of spontaneous brain activity within 
a few seconds, which typically begins practically simultaneously in 
the entire ischemic region (= nonspreading depression of activity) [2, 
20, 23]. The ECoG traces are oriented according to the convention 
of electroencephalography (EEG) with negativity up and positiv-
ity down. Trace 3 gives an epidural direct current (DC)/AC-ECoG 
recording (band-pass, 0–45 Hz) where spreading depolarization (SD) 
is observed as a large negative DC shift with a delay of 1 min after 
the onset of the primary focal ischemia. These original recordings 
emphasize again that in primary focal ischemia, the first SD in the 
region of minimal perfusion typically occurs 1 min or later after the 
onset of ischemia, as there is obviously still sufficient ATP for the 
membrane pumps to prevent SD in the first minute(s) [42, 216–220]. 
In addition, trace 2 shows that SD can no longer trigger spreading 
depression of spontaneous activity in the region of minimal perfu-
sion, since spontaneous activity is already depressed by the previous 
occurrence of nonspreading depression of activity. b Normal rCBF 
responses to SD in naïve human, rat, and mouse (B57BL/6) cortex 
(left panels, light blue) and inverse rCBF responses to SD in human 
and rat cortex with disturbed neurovascular unit (NVU) (right panels, 
pink). In naïve human cortex, SD (dark blue arrow between negative 
DC shifts) induces predominant hyperemia (laser-Doppler flowmetry 
(LDF)) and lasts only a short time. In contrast, the panel at the top 
right shows an SD inducing a characteristic drop in rCBF typical of 
spreading ischemia (asterisk) after aneurysmal subarachnoid hemor-
rhage (aSAH). The spreading ischemia lasted for 50 min followed by 
marked, long-lasting hyperemia. Note that the durations of the nega-
tive DC shifts correlate well with the durations of the SD-induced 
hypoperfusions at the two different recording sites because decrease 
in perfusion and energy supply limits Na,K-ATPase activity and pro-
longs the depolarization [23]. The spreading ischemia was recorded 
on day 9 after aSAH [20]. The patient developed a delayed infarct at 
the recording site between two CT scans on days 8 and 12. On day 
13, she died from the progressive brain infarctions. The panels below 
show that the phenomenologies of both normal spreading hyperemia 
and spreading ischemia in rats are indistinguishable from those in 
humans. In the rat, spreading ischemia resulted from an aSAH-mim-
icking model based on NO deprivation and elevated baseline extra-
cellular potassium concentration [23, 72, 106]. The rCBF response 
to SD in naïve mouse cortex appears to start from a high baseline 
level and occupies an intermediate position between the normal and 
inverse responses of phylogenetically higher mammals. Extracellular 
potassium was recorded here with an ion-sensitive microelectrode

◂
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Fig. 5   For each recording day, the respective total duration of activ-
ity depression induced by spreading depolarization (SD) of a record-
ing day (TDDD) was compared between a patients with focal brain 
damage due to early brain injury (EBI) on the one hand and patients 
without focal brain damage due to EBI on the other hand and between 
b patients with focal brain damage due to delayed cerebral ischemia 
(DCI) on the one hand and patients without focal brain damage due to 
DCI on the other hand using Mann–Whitney rank sum tests and post-
hoc Bonferroni correction. EBI was composed of focal brain damage 
due to intracerebral hemorrhage and early cerebral ischemia. Red 
asterisks indicate significant results after strict Bonferroni correction. 
c The comparison of mean blood flow velocities in the middle cer-
ebral artery (MCA) ipsilateral to the subdural recording strip, meas-
ured by transcranial Doppler sonography (TCD), between patients 
with focal brain damage due to EBI compared to patients without 
focal brain damage due to EBI. d The comparison of mean blood 
flow velocities in the MCA between patients with focal brain dam-

age due to DCI compared to patients without focal brain damage due 
to DCI. After strict Bonferroni correction, we could no longer detect 
any significant differences between the two groups compared in c and 
d, respectively. However, without strict Bonferroni correction, the 
mean velocities on the 15 days (= 15 tests) in d showed statistical dif-
ferences between p = 0.0500 and p = 0.0033 on each day from day 6 
to day 10 (= 5 tests). With 15 tests, only one uncorrected significant 
result is to be expected by chance. Since we observed significance 
in 5 out of 15 tests and then also on consecutive days, and consider-
ing that the statistical hypothesis tested is related to the same basic 
hypothesis—mean velocities correlate with delayed infarcts—one 
could argue that the Bonferroni correction is too conservative in this 
case. However, even without strict Bonferroni correction, it remains 
the case that the association of delayed infarcts with ECoG-measured 
TDDDs was stronger than their association with TCD-measured 
mean blood flow velocities
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after experimental SAH, by (2) functional activation in vivo 
[112] and by (3) electrical field stimulation in brain slices 
[113]. These observations may be mechanistically relevant 
although the extent of vasoconstriction in response to sei-
zures, functional activation, or electrical stimulation is far 
less pronounced than in SD-induced spreading ischemia, 
consistent with the fact that, for example, the increase in 
cytosolic calcium under these conditions is also much less 
than during SD [33, 105, 114].

Calcium is an important second messenger in many cells, 
including astrocytes. Astrocytic processes encase more than 
90% of the surface area of intracortical arterioles [115]. 
Astrocytes cause vasodilation under physiological condi-
tions via calcium-dependent activation of BK channels and 
potassium release from astrocytic endfeet [116]. As long as 
the local increase in extracellular potassium concentration 
remains below 20 mM, BK channel-mediated potassium 
release from astrocytic endfeet activates inward rectifier 
potassium channels on the side of vascular myocytes, which 
hyperpolarizes their plasma membrane, closes voltage-gated 
L-type calcium channels. and leads to vasodilation. How-
ever, when the intraastrocytic calcium response doubles 
from the normal 300–400 nM to 700–800 nM at the endfeet, 
astrocyte-mediated vasoconstriction occurs instead of vaso-
dilation [117]. Since BK channels have a 16-fold increased 
probability of opening when the intraastrocytic calcium 
response doubles, BK channel activation is greatly increased 
under these conditions [118]. As a result, the local extracel-
lular potassium concentration in the confined perivascular 
space may potentially exceed 20 mM. This would lead to (1) 
depolarization of vascular myocytes, (2) activation of L-type 
calcium channels, and thus (3) vasoconstriction [117]. In the 

context of aSAH and the inverse neurovascular response, 
this mechanism could be interesting because increased BK 
channel activity in response to increased activity-induced 
astrocytic calcium oscillations converted vasodilation to 
vasoconstriction in neocortical slices from rats that had pre-
viously undergone experimental SAH [113, 119].

However, it is not trivial to reconcile this BK chan-
nel-based hypothesis of inverse neurovascular responses 
with the effects of the degradation products of the heme 
molecule (HDPs). In addition to the tetrapyrroles heme, 
biliverdin, and bilirubin, HDPs also include the non-
enzymatic breakdown of bilirubin formed under the influ-
ence of inflammatory processes and elevated concentra-
tions of reactive oxygen species [120, 121]. The resulting 
regio isomers are divided into two substance classes: the 
dipyrrole propentdyopents (PDPs) as intermediates of 
direct cleavage of the bilirubin ring structure [122] and 
monopyrrole bilirubin oxidation end products (BOXes) 
as final derivatives of bilirubin and PDP cleavage [123, 
124] (Fig. 6). The structural-chemical elucidation iden-
tified four regio isomers within the substance class of 
PDPs (PDP A1/A2, PDP B1/B2) and four further regio 
isomers within the BOXes cohort (BOX A, BOX B, BOX 
C, and BOX D). The A and B isomers of PDPs and BOXes 
identified so far can exist in two different configurations, 
the Z and E configuration as a result of a rotation at the 
exocyclic double bonds [125]. In studies investigating 
the amount of HDPs in cerebrospinal fluid (CSF), serum/
plasma, and bile, exclusively Z-configured BOXes and 
PDPs were detected. This leads to the conclusion that the 
naturally occurring Z-configuration of PDPs and BOXes 
is the thermodynamically most stable form, while the 

Fig. 6   Subarachnoid hemorrhage (SAH) is associated with hemor-
rhage into the cerebrospinal fluid space. In 85% of cases, SAH results 
from a rupture of an aneurysm at a basal cerebral artery. Delayed cer-
ebral ischemia is the most important in-hospital complication after 
aneurysmal SAH (aSAH) and can significantly worsen the prognosis 
of affected patients [221]. In addition to spreading depolarizations 
(SD), increased vascular tone and altered neurovascular reactivity, 
particularly of arteries and arterioles in the cerebral cortex, play an 
important role in the pathogenesis of DCI. It is assumed that these 
vascular changes are caused by factors of hemolysis such as higher-
order heme degradation products. These include both propentdyo-

pents (PDPs) and bilirubin oxidation end products (BOXes). In addi-
tion to their occurrence in the cerebrospinal fluid of aSAH patients, 
a vasoconstrictive effect on cerebral blood vessels has been demon-
strated under in  vitro and in  vivo conditions in mouse models. The 
structural-chemical elucidation identified individual isomers within 
the substance classes of PDPs and BOXes, which can exist in a Z and 
E configuration. In the chemical conversion, UV light and visible 
light are involved. In the specific example of Z-BOX A, photoconver-
sion into E-BOX A was accompanied by a loss of the vasoconstric-
tive effect
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exposure to UV light and visible light induces the conver-
sion of E-isomers, which leads to higher-energetic, i.e., 
more labile states [126]. Using high-performance liquid 
chromatography coupled to mass spectrometry Z-BOXes 
and Z-PDPs were quantified in the CSF of aSAH patients 
resulting in nanomolar concentrations, whereas these com-
pounds were barely detectable in the control group [127]. 
In aSAH patients, the concentration of PDPs exceeded that 
of BOXes many times over. This suggests that especially 
PDPs have the potential to influence the pathogenesis of 
increased cerebrovascular tone after aSAH.

Data from Hou et al. [128] suggested that BK chan-
nels may be a target of HDP-mediated action on the neu-
rovascular unit. Using a transgenic mouse model with a 
conventional knockout of the BK channel-encoding Slo1 
gene, the vasoactivity of HDP isomers was investigated 
as a function of BK channel expression under in vitro and 
in vivo conditions. Acute vasoconstriction of cerebral arte-
rioles was detected in both in vitro mouse brain slices and 
in vivo two-photon imaging. The subsequently tested PDPs 
also had a comparable vasoconstrictive effect on cerebral 
arterioles. The vasoconstrictor effect was dependent on 
the expression of the BK channel. In Slo1 knockout mice 
without a functional BK channel, there was no change in 
diameter [127, 129]. In addition, the E-configured BOX 
A regio isomer failed to induce a vasoconstrictive effect 
under in vitro and in vivo conditions, which underlines the 
dependence on the molecular structure [125].

In addition to these diameter data from acute experi-
ments, Joerk et al. [127] investigated cerebral perfusion in 
mice using contrast-enhanced high-resonance MRI (9.4 T) 
over a period of up to 14 days. After intrathecal injec-
tion of autologous blood via the cisterna magna (positive 
control of an experimentally induced SAH) as well as for 
Z-PDPs, a delayed cortical perfusion delay, reversible after 
14 days, could be demonstrated as a functional correlate in 
the mouse model. The effect reached its peak between days 
3 and 7 after the intervention. The Z-PDP concentrations 
used were based on concentrations in human CSF samples.

In summary, the model of the inverse (vasoconstrictive) 
response to functional activation after experimental SAH by 
Koide et al. [113] is based on the assumption of increased BK 
channel activity, while the model of chronic vasoconstriction 
by increased Z-PDP by Joerk et al. [127] after experimental 
SAH is based on reduced BK channel activity. This real or 
apparent contradiction requires further investigation.

Neuroinflammation

The neurovascular unit (NVU) is comprised of vascular 
cells (endothelium, vascular smooth muscle cells, peri-
cytes), glia (astrocytes, microglia, oligodendrocytes), and 

neurons. It is assumed that the extravasated blood in the 
subarachnoid space has toxic and inflammatory effects that 
involve all NVU elements. According to the outside-in 
principle, the strongest effects are to be expected directly 
at the interface to the subarachnoid blood. Fitting to the 
fact that these effects are central to the mechanism of dam-
age, the maximum ischemic brain damage develops in the 
cortex covered by subarachnoid clots [8].

Blood components pass from the clot via perivascular, 
glymphatic channels into the parenchyma of the cortex and 
also into the CSF, where they can be measured together 
with factors involved in neuroinflammation. For example, 
multiple studies have shown that inflammatory cytokines 
are significantly upregulated in CSF of aSAH patients, 
including TNF-α, soluble TNF receptor 1, IL-6, IL-8, and 
IL-1 receptor antagonist [130–133]. Several studies have 
reported a correlation of TNF-α, IL-6, and IL-8 with the 
development of DCI [134–137]. Moreover, the increase of 
inflammatory cytokines is also accompanied by an acti-
vation of complement components in human CSF after 
aSAH. Literature suggests that the complement activation 
in parallel with the formation of membrane attack complex 
may contribute to angiographic vasospasm, while deple-
tion of complement decreased angiographic vasospasm 
after experimental SAH [138–141].

Next to the release of cytokines and complement acti-
vation in the subarachnoid space, the blood constituents 
recruit immune cells to the site of aneurysm rupture, with 
emerging evidence pointing towards involvement of these 
innate immune cells in the inflammatory processes after 
SAH [142–146]. Neutrophils are recruited to the endothe-
lium as part of the intravascular inflammation in the acute 
stage of SAH, mediated by ICAM-1 on endothelial cells 
and PSGL-1 on neutrophils, which could contribute to 
delayed injury [147]. In experimental SAH, neutrophils 
have been implicated in causing early hypoperfusion 
[148]. Neutrophil count (or its ratio to other cell types) 
may predict aSAH patients at risk for DCI and poor out-
come [149–152].

Complementary studies have revealed further inflam-
matory signaling within cerebral vessels after SAH. The 
upregulation of pro-inflammatory mediators such as 
IL-1, IL-6, and MMP-9 has been linked to the activa-
tion of the MEK-ERK1/2 signaling pathway in isolated 
cerebral vessels from rat models [153]. Surface proteins 
on leukocytes, including Toll-like receptor-4 (TLR-4), 
TRIF, and MyD88, have been implicated in the media-
tion of neuronal apoptosis and increased vascular tone 
through the NFkB and IRAK4 pathway [154]. Interest-
ingly, inhibition of vascular adhesion protein-1 (VAP-1) 
led to reduced neutrophil trafficking, and subsequently, 
an improvement in SAH-associated cerebrovascular dilat-
ing dysfunction [155, 156].
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A relatively new, emerging concept as part of the inflam-
matory activation is the release of so-called neutrophil extra-
cellular traps (NETs), which are fibril matrixes containing 
DNA, granular proteins, and histones, released by neutro-
phils upon stimulation [157]. NETs have been shown to be 
involved in various immune reactions [146, 158, 159]. After 
SAH, they begin to be released into the subarachnoid space 
ipsilateral to the hemorrhage shortly after its occurrence and 
gradually accumulate in the parenchyma over time, even at 
remote compartments [160]. Both depletion of neutrophils 
by anti-Ly6G as well as DNase I treatment reduced NET for-
mation and microthrombi, and ameliorated neuronal injury 
after experimental SAH in mice [161]. Similarly, Zeng et al. 
demonstrated that NET accumulation occurs after SAH and 

found that inhibition of NET formation by the PAD4 antago-
nist GSK484 and by DNase I inhibited NET-associated neu-
roinflammation [162]. More recently, neutrophils and NETs 
have been observed to cause microvascular occlusion after 
experimental SAH in mice [163]. It has also been observed 
that inhibition of neutrophils (through depletion or other tar-
gets) leads to a decrease in delayed vasospasm and improved 
memory function in mice [164–166].

As part of the outside-in activation of the inflammatory 
cascade, resident microglia, which are the main immune effec-
tor cells in the brain, accumulate near the site of the vascular 
rupture in experimental rodent studies [145]. Figure 7 depicts 
the current concept of the cellular inflammatory response after 
SAH. Accumulation and activation of microglia peak between 

Fig. 7   After the rupture of an aneurysm, blood leaks into the suba-
rachnoid space, which is located between the pia mater and the 
arachnoid membrane and is therefore practically directly adjacent 
to the cortical brain tissue. In addition, the blood can also reach the 
parenchyma of the cortex via glymphatic channels. The spatial prox-
imity between blood and cortex tissue could be of great importance, 
as almost 70% of focal brain damage detected in neuroimaging after 
aneurysmal subarachnoid hemorrhage (aSAH) involves the cor-
tex. Following aSAH, a sequence of inflammatory reactions unfolds 
from the outer to the inner regions: in the brain’s microvascular sys-
tem, there is a noticeable clustering of neutrophil granulocytes on the 
endothelium, driven by ICAM-1 on endothelial cells and PSGL-1 on 

neutrophils. Neutrophil extracellular traps (NETs) are released into 
the subarachnoid space ipsilateral to the hemorrhage shortly after the 
initial hemorrhage and gradually accumulate in the parenchyma over 
time, spreading to cortical and periventricular compartments distant 
from the maximum hemorrhage localization. Microglial accumula-
tion and activation occur approximately 1 week following the injury, 
marked by their release of pro-inflammatory cytokines such as Il-6, 
TNF-alpha, and Il-1alpha/beta. This surge in microglial activity coin-
cides with microglial-neuronal interactions in the cortex, leading to 
neuronal/axonal damage that is most pronounced from day 7 to day 
14 after the initial hemorrhage
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9 to 14 days following the initial hemorrhage, marked by their 
production of pro-inflammatory cytokines such as IL-6, TNF-
α, and IL-1alpha/beta [145]. Microglial activation is accom-
panied by interactions with neurons that can result in neu-
ronal degeneration after experimental SAH. Overall, however, 
microglia may play a Janus-faced role as a promoter of inflam-
mation on the one hand and as an anti-inflammatory, protec-
tive factor, and eliminator of blood degradation products after 
SAH on the other [167, 168]. SD clusters may induce addi-
tional microglial activation after aSAH subsequent to neuronal 
NLRP3 inflammasome activation [169]. Toll-like receptors 
TLR2/4, the potential receptors of the damage-associated 
molecule pattern HMGB1 [170], appear to be involved in 
this. Although often discussed in the context of migraine with 
aura, SD-induced neuroinflammation might be even more rel-
evant to conditions such as aSAH, where there are multiple, 
longer, and more dangerous SDs [2, 20, 99, 171] (Fig. 3). 
SDs are also involved in the upregulation of proinflammatory 
cytokines such as IL-1, which has been detected in increased 
concentrations in the cerebral cortex and CSF in connection 
with SAH [172]. These increased IL-1 levels catalyze the acti-
vation of matrix metalloproteinases (MMPs), which can lead 
to a dysfunction of the blood–brain barrier (BBB) and pro-
mote further neuroinflammatory reactions [173]. Moreover, 
IL-1 is implicated in contributing to microvascular dysfunc-
tion by promoting sarcoplasmic calcium release, myosin light 
chain phosphorylation, and vasoconstriction [174]. It may be 
added that SDs even open the BBB independently of SAH by 
inducing caveolin-1-dependent endothelial transcytosis [175] 
and activating and upregulating MMP-9 [176].

Next to microglia, perivascular macrophages (PVMs) are 
also intricately involved in the immune response after SAH. 
They are strategically located on the walls of blood vessels 
within the brain, where they perform functions akin to micro-
glia, acting as key players in the immune response [177–180]. 
In addition to these shared roles, PVMs also undertake unique 
tasks, including the clearance of waste from the perivascular 
space [177, 181, 182], BBB maintenance [183], rCBF regula-
tion [184], modulation of endothelial function [185], and acti-
vation of sympathetic nerves through the production of pros-
taglandin E2 and cyclooxygenase 2 [186–191]. These diverse 
functions underscore the importance of PVMs in maintaining 
brain homeostasis. However, under pathological conditions, 
such as after SAH, PVMs can be strongly activated, leading 
to an acceleration of brain inflammation and potentially con-
tributing to DCI [192]. In SAH, sympathetic nerve activation 
is associated with worse prognosis and clinical severity [193, 
194]. For example, PVMs could influence DCI by mediating 
systemic inflammation and sympathetic nerve activation. To 
further elucidate the mechanisms and roles of PVMs, research-
ers have employed clodronate liposomes to selectively deplete 
PVMs and observe the resulting differences compared to con-
trol groups. Notably, intracerebroventricular administration 

of clodronate has been shown to selectively deplete PVMs 
without affecting microglia and circulating macrophages 
[195]. Several studies have shown that intracerebroventricular 
administration of clodronate improves the outcome of SAH in 
animal models [192, 196–199].

As mentioned, astrocytes are another important player. 
They not only regulate rCBF, are an essential BBB compo-
nent, and maintain synaptic homeostasis, but also appear to 
contribute to the inflammatory response [200, 201]. Interest-
ingly, ex vivo and in vitro studies have shown that SDs affect 
the characteristics and inflammatory response of astrocytes, 
including an increase in their pro-inflammatory cytokine pro-
duction such as TNF-α, IL-1β, IL-6, and MMP-9, particularly 
when exposed to oxyhemoglobin [202, 203]. Concurrently, 
astrocytes produce neurotrophic factors and upregulate MyD88 
and IL-33 after SAH, contributing both to the inflammatory 
response regulation and to neuroprotection, thereby helping to 
maintain the integrity of the BBB [204, 205].

Conclusion

Overall, SDs are increasingly recognized not only as a 
clinical marker for DCI [2], but also as the crucial mech-
anism underlying the development of the characteristic 
cortical infarcts after aSAH. Whether they are harmless, 
or cause infarcts, most likely depends on whether the com-
plex neuroglial, neurovascular, and neuroimmunological 
regulatory circuits that normally protect the cortex and 
allow rapid repolarization after SD are locally disrupted by 
red blood cell products. Possible treatment targets are not 
only an improved elimination of the triggering agent (i.e., 
the extravascular blood [206–211]), and other conditions 
that may contribute to SD, but also a correction of the dys-
functional regulatory circuits that are downstream of SD 
and render it truly dangerous. If these regulatory circuits 
are no longer able to rescue the neurons from the SD state, 
they will inevitably perish. In this way, the cortically local-
ized mechanisms of infarct development in the area of the 
subarachnoid blood clots discussed here and the chronic 
increase in tone in the various segments of the arterial 
tree are also not mutually exclusive, but complementary 
pathomechanisms after aSAH. Overall, we therefore argue 
that therapeutic combination approaches should also be 
pursued further [3].
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