Skip to main content
Log in

NODDI Identifies Cognitive Associations with In Vivo Microstructural Changes in Remote Cortical Regions and Thalamocortical Pathways in Thalamic Stroke

  • Research
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

The roles of cerebral structures distal to isolated thalamic infarcts in cognitive deficits remain unclear. We aimed to identify the in vivo microstructural characteristics of remote gray matter (GM) and thalamic pathways and elucidate their roles across cognitive domains. Patients with isolated ischemic thalamic stroke and healthy controls underwent neuropsychological assessment and magnetic resonance imaging. Neurite orientation dispersion and density imaging (NODDI) was modeled to derive the intracellular volume fraction (VFic) and orientation dispersion index. Fiber density (FD) was determined by constrained spherical deconvolution, and tensor-derived fractional anisotropy (FA) was calculated. Voxel-wise GM analysis and thalamic pathway tractography were performed. Twenty-six patients and 26 healthy controls were included. Patients exhibited reduced VFic in remote GM regions, including ipsilesional insular and temporal subregions. The microstructural metrics VFic, FD, and FA within ipsilesional thalamic pathways decreased (false discovery rate [FDR]-p < 0.05). Noteworthy associations emerged as VFic within insular cortices (ρ = −0.791 to −0.630; FDR-p < 0.05) and FD in tracts connecting the thalamus and insula (ρ = 0.830 to 0.971; FDR-p < 0.001) were closely associated with executive function. The VFic in Brodmann area 52 (ρ = −0.839; FDR-p = 0.005) and FA within its thalamic pathway (ρ = −0.799; FDR-p = 0.003) correlated with total auditory memory scores. In conclusion, NODDI revealed neurite loss in remote normal-appearing GM regions and ipsilesional thalamic pathways in thalamic stroke. Reduced cortical dendritic density and axonal density of thalamocortical tracts in specific subregions were associated with improved cognitive functions. Subacute microstructural alterations beyond focal thalamic infarcts might reflect beneficial remodeling indicating post-stroke plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data are available upon reasonable request. Anonymized data used in this study are available to qualified investigators on reasonable request to the corresponding author.

References

  1. Obayashi S. Cognitive and linguistic dysfunction after thalamic stroke and recovery process: possible mechanism. Aims Neurosci. 2022;9:1–11. https://doi.org/10.3934/Neuroscience.2022001.

    Article  PubMed  Google Scholar 

  2. Schaller-Paule MA, Oeckel AM, Schure J-R, et al. Isolated thalamic stroke - analysis of clinical characteristics and asymmetry of lesion distribution in a retrospective cohort study. Neurol Res Pract. 2021;3:49–9. https://doi.org/10.1186/s42466-021-00148-7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Saez de Ocariz MM, Nader JA, Santos JA, Bautista M. Thalamic vascular lesions. Risk factors and clinical course for infarcts and hemorrhages. Stroke. 1996;27:1530–6. https://doi.org/10.1161/01.str.27.9.1530.

    Article  PubMed  CAS  Google Scholar 

  4. Scharf A-C, Gronewold J, Todica O, et al. Evolution of neuropsychological deficits in first-ever isolated ischemic thalamic stroke and their association with stroke topography: a case-control study. Stroke. 2022;53:1904–14. https://doi.org/10.1161/STROKEAHA.121.037750.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Nishio Y, Hashimoto M, Ishii K, Mori E. Neuroanatomy of a neurobehavioral disturbance in the left anterior thalamic infarction. J Neurol Neurosurg Psychiatry. 2011;82:1195–200. https://doi.org/10.1136/jnnp.2010.236463.

    Article  PubMed  Google Scholar 

  6. Danet L, Pariente J, Eustache P, et al. Medial thalamic stroke and its impact on familiarity and recollection. Elife. 2017;6 https://doi.org/10.7554/eLife.28141.

  7. Kraft A, Irlbacher K, Finke K, et al. Dissociable spatial and non-spatial attentional deficits after circumscribed thalamic stroke. Cortex. 2015;64:327–42. https://doi.org/10.1016/j.cortex.2014.12.005.

    Article  PubMed  Google Scholar 

  8. Ferris J, Greeley B, Yeganeh NM, et al. Exploring biomarkers of processing speed and executive function: the role of the anterior thalamic radiations. Neuroimage Clin. 2022;36 https://doi.org/10.1016/j.nicl.2022.103174.

  9. Duru AD, Duru DG, Yumerhodzha S, Bebek N. Analysis of correlation between white matter changes and functional responses in thalamic stroke: a DTI & EEG study. Brain Imaging Behav. 2016;10:424–36. https://doi.org/10.1007/s11682-015-9397-1.

    Article  PubMed  Google Scholar 

  10. Chen L, Luo T, Wang K, et al. Effects of thalamic infarction on the structural and functional connectivity of the ipsilesional primary somatosensory cortex. Eur Radiol. 2019;29:4904–13. https://doi.org/10.1007/s00330-019-06068-0.

    Article  PubMed  Google Scholar 

  11. Conrad J, Habs M, Ruehl RM, et al. White matter volume loss drives cortical reshaping after thalamic infarcts. Neuroimage Clin. 2022;33 https://doi.org/10.1016/j.nicl.2022.102953.

  12. Sebastian R, Schein MG, Davis C, et al. Aphasia or neglect after thalamic stroke: the various ways they may be related to cortical hypoperfusion. Front Neurol. 2014;5 https://doi.org/10.3389/fneur.2014.00231.

  13. Meguro K, Akanuma K, Ouchi Y, et al. Vascular dementia with left thalamic infarction: neuropsychological and behavioral implications suggested by involvement of the thalamic nucleus and the remote effect on cerebral cortex. The Osaki-Tajiri project. Psychiat Res Neuroim. 2013;213:56–62. https://doi.org/10.1016/j.pscychresns.2012.12.004.

    Article  Google Scholar 

  14. Nazeri A, Schifani C, Anderson JAE, Ameis SH, Voineskos AN. In vivo imaging of gray matter microstructure in major psychiatric disorders: opportunities for clinical translation. Biol Psychiatry Cogn Neurosci Neuroim. 2020;5:855–64. https://doi.org/10.1016/j.bpsc.2020.03.003.

    Article  Google Scholar 

  15. Brodt S, Gais S, Beck J, et al. Fast track to the neocortex: a memory engram in the posterior parietal cortex. Science. 2018;362:1045–8. https://doi.org/10.1126/science.aau2528.

    Article  PubMed  CAS  Google Scholar 

  16. Beloozerova IN. Neuronal activity reorganization in motor cortex for successful locomotion after a lesion in the ventrolateral thalamus. J Neurophysiol. 2022;127:56–85. https://doi.org/10.1152/jn.00191.2021.

    Article  PubMed  CAS  Google Scholar 

  17. Weiskopf N, Edwards LJ, Helms G, Mohammadi S, Kirilina E. Quantitative magnetic resonance imaging of brain anatomy and in vivo histology. Nat Rev Phys. 2021;3:570–88. https://doi.org/10.1038/s42254-021-00326-1.

    Article  CAS  Google Scholar 

  18. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage. 2012;61:1000–16. https://doi.org/10.1016/j.neuroimage.2012.03.072.

    Article  PubMed  Google Scholar 

  19. Kamiya K, Hori M, Aoki S. NODDI in clinical research. J Neurosci Methods. 2020;346:108908. https://doi.org/10.1016/j.jneumeth.2020.108908.

    Article  PubMed  Google Scholar 

  20. Wang Z, Zhang S, Liu C, et al. A study of neurite orientation dispersion and density imaging in ischemic stroke. Magn Reson Imaging. 2019;57:28–33. https://doi.org/10.1016/j.mri.2018.10.018.

    Article  PubMed  Google Scholar 

  21. Yasuno F, Ando D, Yamamoto A, Koshino K, Yokota C. Dendrite complexity of the posterior cingulate cortex as a substrate for recovery from post-stroke depression: A pilot study. Psychiat Res Neuroim. 2019;287:49–55. https://doi.org/10.1016/j.pscychresns.2019.01.015.

    Article  Google Scholar 

  22. Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019;50:e344–418. https://doi.org/10.1161/STR.0000000000000211.

    Article  PubMed  Google Scholar 

  23. Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006;31:1116–28. https://doi.org/10.1016/j.neuroimage.2006.01.015.

    Article  PubMed  Google Scholar 

  24. Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23(Suppl 1):S208–19. https://doi.org/10.1016/j.neuroimage.2004.07.051.

    Article  PubMed  Google Scholar 

  25. Tustison NJ, Avants BB, Cook PA, et al. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010;29:1310–20. https://doi.org/10.1109/TMI.2010.2046908.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mollink J, Kleinnijenhuis M, Cappellen van Walsum AV, et al. Evaluating fibre orientation dispersion in white matter: comparison of diffusion MRI, histology and polarized light imaging. Neuroimage. 2017;157:561–74. https://doi.org/10.1016/j.neuroimage.2017.06.001.

    Article  PubMed  Google Scholar 

  27. Raffelt DA, Tournier JD, Smith RE, et al. Investigating white matter fibre density and morphology using fixel-based analysis. Neuroimage. 2017;144:58–73. https://doi.org/10.1016/j.neuroimage.2016.09.029.

    Article  PubMed  Google Scholar 

  28. Nazeri A, Mulsant BH, Rajji TK, et al. Gray matter neuritic microstructure deficits in schizophrenia and bipolar disorder. Biol Psychiat. 2017;82:726–36. https://doi.org/10.1016/j.biopsych.2016.12.005.

    Article  PubMed  Google Scholar 

  29. Huang CC, Rolls ET, Feng J, Lin CP. An extended Human Connectome Project multimodal parcellation atlas of the human cortex and subcortical areas. Brain Struct Funct. 2022;227:763–78. https://doi.org/10.1007/s00429-021-02421-6.

    Article  PubMed  CAS  Google Scholar 

  30. Weishaupt N, Riccio P, Dobbs T, Hachinski VC, Whitehead SN. Characterization of behaviour and remote degeneration following thalamic stroke in the rat. Int J Mol Sci. 2015;16:13921–36. https://doi.org/10.3390/ijms160613921.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Conrad J, Baier B, Eberle L, et al. Network architecture of verticality processing in the human thalamus. Ann Neurol. 2023;94:133–45. https://doi.org/10.1002/ana.26652.

    Article  PubMed  CAS  Google Scholar 

  32. Mu J, Hao L, Wang Z, et al. Visualizing Wallerian degeneration in the corticospinal tract after sensorimotor cortex ischemia in mice. Neural Regen Res. 2024;19:636–41. https://doi.org/10.4103/1673-5374.380903.

    Article  PubMed  Google Scholar 

  33. Hara S, Hori M, Murata S, et al. Microstructural damage in normal-appearing brain parenchyma and neurocognitive dysfunction in adult moyamoya disease. Stroke. 2018;49:2504–7. https://doi.org/10.1161/STROKEAHA.118.022367.

    Article  PubMed  Google Scholar 

  34. Shahid SS, Wen Q, Risacher SL, et al. Hippocampal-subfield microstructures and their relation to plasma biomarkers in Alzheimer’s disease. Brain. 2022;145:2149–60. https://doi.org/10.1093/brain/awac138.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhao H, Cheng J, Jiang J, et al. Geometric microstructural damage of white matter with functional compensation in post-stroke. Neuropsychologia. 2021;160 https://doi.org/10.1016/j.neuropsychologia.2021.107980.

  36. Reuss S, Siebrecht E, Stier U, et al. Modeling vestibular compensation: neural plasticity upon thalamic lesion. Front Neurol. 2020;11 https://doi.org/10.3389/fneur.2020.00441.

  37. Schwartz M. Macrophages and microglia in central nervous system injury: are they helpful or harmful? J Cereb Blood Flow Metab. 2003;23:385–94. https://doi.org/10.1097/01.WCB.0000061881.75234.5E.

    Article  PubMed  Google Scholar 

  38. Wang M-M, Feng Y-S, Yang S-D, et al. The relationship between autophagy and brain plasticity in neurological diseases. Front Cell Neurosci. 2019;13 https://doi.org/10.3389/fncel.2019.00228.

  39. Molnar-Szakacs I, Uddin LQ. Anterior insula as a gatekeeper of executive control. Neurosci Biobehav Rev. 2022;139 https://doi.org/10.1016/j.neubiorev.2022.104736.

  40. Uddin LQ, Nomi JS, Hebert-Seropian B, Ghaziri J, Boucher O. Structure and function of the human insula. J Clin Neurophysiol. 2017;34:300–6. https://doi.org/10.1097/WNP.0000000000000377.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ramezanpour H, Fallah M. The role of temporal cortex in the control of attention. Curr Res Neurobiol. 2022;3:100038. https://doi.org/10.1016/j.crneur.2022.100038.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Gunawardena D, Ash S, McMillan C, et al. Why are patients with progressive nonfluent aphasia nonfluent? Neurology. 2010;75:588–94. https://doi.org/10.1212/WNL.0b013e3181ed9c7d.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Jenkins LM, Kogan A, Malinab M, et al. Blood pressure, executive function, and network connectivity in middle-aged adults at risk of dementia in late life. Proc Natl Acad Sci USA. 2021;118 https://doi.org/10.1073/pnas.2024265118.

  44. Sleezer BJ, LoConte GA, Castagno MD, Hayden BY. Neuronal responses support a role for orbitofrontal cortex in cognitive set reconfiguration. Eur J Neurosci. 2017;45:940–51. https://doi.org/10.1111/ejn.13532.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Xie C, Bai F, Yu H, et al. Abnormal insula functional network is associated with episodic memory decline in amnestic mild cognitive impairment. Neuroimage. 2012;63:320–7. https://doi.org/10.1016/j.neuroimage.2012.06.062.

    Article  PubMed  Google Scholar 

  46. Zhu Y, Du R, Zhu Y, et al. PET mapping of neurofunctional changes in a posttraumatic stress disorder model. J Nucl Med. 2016;57:1474–7. https://doi.org/10.2967/jnumed.116.173443.

    Article  PubMed  CAS  Google Scholar 

  47. Scheich H, Brechmann A, Brosch M, et al. Behavioral semantics of learning and crossmodal processing in auditory cortex: the semantic processor concept. Hear Res. 2011;271:3–15. https://doi.org/10.1016/j.heares.2010.10.006.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the patients, their families, and the healthy volunteers for their participation.

Funding

This work was funded by grants from the National Natural Science Foundation of China (82272592) (J.Z.), Key Research and Development Program of Zhejiang Province (2022C03064) (B.L.), Natural Science Foundation of Zhejiang Province (LGF22H170003) (J.Z.), and Medical and Health Science and Technology Project of Zhejiang Province (2022KY067) (J.Z.). It also received support from MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University.

Author information

Authors and Affiliations

Authors

Contributions

B.L. and J.Z. were responsible for contributing to the study’s concept and design. L.L., D.S., R.J., Y.W., and L.Z. were involved in data acquisition, while J.Z., X.W., J.H., F.H., and D.W. conducted the statistical analysis and interpretation. The manuscript was drafted by J.Z. and L.L. All authors participated in the manuscript revision for intellectual content. Study supervision was provided by B.L. and X.Y.

Corresponding author

Correspondence to Benyan Luo.

Ethics declarations

Ethics Approval

This study was performed in line with the principles of the Declaration of Helsinki (2013 amendment). The Ethics Committee of the First Affiliated Hospital of Zhejiang University School of Medicine approved the study.

Consent to Participate

All participants provided written informed consent to participate in the study.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, L., Ji, R. et al. NODDI Identifies Cognitive Associations with In Vivo Microstructural Changes in Remote Cortical Regions and Thalamocortical Pathways in Thalamic Stroke. Transl. Stroke Res. (2023). https://doi.org/10.1007/s12975-023-01221-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12975-023-01221-w

Keywords

Navigation