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Abstract
Intracerebral hemorrhage (ICH) is the second major stroke type, with high incidence, high disability rate, and high mortality. 
At present, there is no effective and reliable treatment for ICH. As a result, most patients have a poor prognosis. Minimally 
invasive surgery (MIS) is the fastest treatment method to remove hematoma, which is characterized by less trauma and easy 
operation. Some studies have confirmed the safety of MIS, but there are still no reports showing that it can significantly 
improve the functional outcome of ICH patients. Intracranial pressure (ICP) monitoring is considered to be an important part 
of successful treatment in traumatic brain diseases. By monitoring ICP in real time, keeping stable ICP could help patients 
with craniocerebral injury get a good prognosis. In the course of MIS treatment of ICH patients, keeping ICP stable may 
also promote patient recovery. In this review, we will take ICP monitoring as the starting point for an in-depth discussion.
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Introduction

Intracerebral hemorrhage is the hemorrhage of blood in 
the cerebral parenchyma, accounting for 27.9% of all new 
strokes. The annual incidence is 36.53~47.88/100,000 peo-
ple, and the case-fatality rate is 32.98~38.67/100,000 peo-
ple. It causes a heavy burden of disease for the society and 
families [1]. The most critical factors affecting the prog-
nosis of ICH patients are hematoma volume and location. 
Secondary injuries such as inflammatory response are also 
strongly associated with prognosis [2, 3]. At present, the 
treatment of ICH includes medical treatment and surgical 

treatment. Surgery has become an important method for 
the treatment of ICH because of its advantages including 
rapid hematoma removal, intracranial hypertension relief, 
mechanical compression relief, and alleviation of neurotox-
icity and inflammatory cascade reactions. Surgery mainly 
includes craniotomy and MIS (methods including catheters 
and machinery). Accurate selection of patients with surgical 
indications for ICH treatment is crucial to treatment success 
[4]. In the 2022 AHA/ASA guidelines for the management 
of patients with spontaneous ICH, MIS is recommended for 
the removal of a hematoma associated with supratentorial 
ICH and intraventricular hemorrhage (IVH) as it has a lower 
incidence of mortality than drug therapy alone. None of the 
clinical studies in previous years have confirmed that surgi-
cal treatment significantly improves the prognosis of ICH 
patients [5]. However, there is now a turnaround in this pre-
dicament. The early minimally invasive removal of intrac-
erebral hemorrhage (ENRICH) trial is a randomized con-
trolled clinical trial evaluating the efficacy of a minimally 
invasive transcallosal fascial pars operas (MIPS) approach 
for the treatment of supratentorial ICH [6]. The results of the 
ENRICH trial were made public for the first time at the 2023 
American Association of Neurological Surgeons (ANNS) 
Conference. The results show that surgical treatment signifi-
cantly improves the 6-month functional prognosis, reduces 
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30-day mortality, shortens the length of ICH hospitalization, 
and lowers costs of ICH patients. We await details as to the 
results of this trial. In addition, data from a recent systematic 
review showed that endoscopic treatment of IVH patients 
reduced the length of ICH hospitalization and the risk of 
persistent cerebrospinal fluid diversion [7].

The results of the minimally invasive surgery plus alteplase 
for intracerebral hemorrhage evacuation (MISTIE III) trial 
indicated that to successfully evacuate a hematoma, its vol-
ume must be reduced by more than 70% or its residual volume 
must be less than 15 mL to achieve good functional outcomes 
at 1 year, thereby proving that the success of evacuation is 
related to functional outcomes [8]. The success of hematoma 
removal is first related to the experience of the surgeon. Sec-
ond, optimizing the surgical route can reduce the incidence 
of sustaining an iatrogenic injury, thus facilitating the com-
plete removal of the hematoma. Finally, the development of 
a hematoma removal strategy needs to balance the need to 
achieve a good hemostatic effect with its occupying effect 
on its pulling of the surrounding tissue and toxicity. ICP was 
increased by the intracranial mass effect, hematoma expan-
sion, cerebral edema, and changes in cerebrospinal fluid 
circulation dynamics after ICH treatment, which decreased 
following the removal of the hematoma. The average inci-
dence of increased ICP after cerebral hemorrhage is about 
67% [9]. MIS reduces elevated ICP and reduced CPP duration 
after ICH, which is significantly associated with improved 
patient prognosis [10]. However, it is important to note that 
surgery may also lead to a rapid decrease in intracranial pres-
sure, which in turn may cause rebleeding and cerebral edema. 
Typically, ICP decreased slowly during MIS, whereas ICP 
decreased rapidly in the major craniotomy group. After com-
pletion of hematoma removal, ICP decreased to normal lev-
els in equal proportions in both groups [11]. Previous studies 
have shown that postoperative ICP monitoring is significantly 
associated with 3-day mortality after ICH treatment and the 
Glasgow Outcome Score (GOS) at discharge. ICP monitor-
ing can provide real-time feedback on the local intracranial 
environment and help to lower intracranial pressure [12, 13].

Based on the above discussion, MIS has certain advan-
tages in hematoma removal. Early hematoma removal, 
reduced incidence of iatrogenic injury and prevention of 
rebleeding are the goals of ICH treatment [14]. To further 
improve the functional outcomes of patients undergoing 
MIS for ICH and make MIS the most promising surgical 
strategy for ICH patients, Feng Hua proposed exploring the 
spatial relationship between the hematoma and corticospinal 
tract during MIS to reduce iatrogenic injury [15–17]. In this 
paper, we propose the idea of guiding MIS through intraop-
erative intracranial pressure monitoring, thereby balancing 
the advantages of hematoma compression and hemostasis 
and reducing the incidence of damage of the surrounding 
brain tissue caused by hematoma through stable reduction 

of intracranial pressure, optimizing the hematoma removal 
strategy and improving the removal efficiency to ultimately 
improve the functional outcomes of ICH patients.

Search Methods and Study Eligibility

An electronic search of studies published up to May 5, 
2023 was conducted on PubMed in accordance with the 
PRISMA (Preferred Reporting Items for Systematic Review 
and Meta-analysis) guidelines [18], using the MeSH topic 
words “Intracranial Pressure,” “Intracerebral Hemorrhage,” 
and “Hemorrhagic Stroke.” The objective was to focus on 
the pathophysiology of ICP changed after ICH, clinical trial, 
and significance of ICP monitoring in ICH, and the selection 
of appropriate monitoring methods. Studies that fell outside 
the scope and intent of this review were excluded.

The first author assessed all relevant studies and the rel-
evant references in each article. Risk of bias was not assessed 
because of significant variability in the studies included in 
this review. The search results were presented in Fig. 1.

Theoretical Basis of ICP Monitoring After ICH

After the occurrence of cerebral hemorrhage, the space-
occupying effect of hematoma and the edema of perihema-
toma increases the intracranial volume, and the ICP increases 
according to the law of intracranial volume- pressure curve 
after exceeding the co-compensatory regulation effect of cer-
ebrospinal fluid and cerebral blood flow [5, 19–22].

Previous studies have shown that elevated ICP is eas-
ily associated with ICH. Godoy et al. analyzed six clini-
cal trials and found that the incidence of an elevated ICP 
(ICP > 20 mmHg) after the development of an ICH was 
67% (95% confidence interval (CI) 51~84%) [9]. In the 
MISTIE III trial, 43.1% of ICH patients had an ICP ≥ 20 
mmHg, and 16.7% had an ICP ≥ 30 mmHg. In total, 72.2% 
of ICH patients had a cerebral perfusion pressure (CPP) ≤ 
70 mmHg, and 34.7% of patients had a CPP ≤ 60 mmHg [8, 
10]. Among ICH patients with obstructive IVH who were 
enrolled in the clot lysis: evaluating accelerated resolution 
of intraventricular hemorrhage (CLEAR III) trial, 73% had 
an elevated ICP [23]. After an ICH developed, the increase 
in ICP was mainly caused by enlargement of the intracra-
nial hematoma, resulting in focal elevated ICP [24]. This 
causes a pressure gradient between the two hemispheres of 
the brain, which can lead to line migration and, in severe 
cases, herniation [25]. The brain needs constant CBF to 
maintain normal metabolic activity. CBF is related to CPP 
and cerebral vascular resistance (CVR), namely, CBF = 
CPP/CVR. A CPP is equal to the mean arterial pressure 
(MAP) minus the ICP. Therefore, when the ICP changes, the 
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cerebral vascular regulation function maintains a stable CBF 
by regulating cerebral artery resistance. Hypoperfusion and 
cerebral edema may occur when the CPP’s automatic regula-
tion range (50~100 mmHg) is exceeded [21]. After an ICH 
occurs, the effects of the damage caused by compression of 
the hematoma on the peripheral cerebral vessels decrease 
the local CBF, leading to peripheral cerebral tissue ischemia, 
hypoxia, and cerebral edema [26]. The occurrence of cer-
ebral edema further increases an elevated ICP, decreases 
the CPP, and decreases the CBF, forming a vicious cycle 
and aggravating a brain injury [27]. A decreased CPP was 
also associated with the onset of a new ischemic stroke (IS) 

within 30 days after ICH development [23]. These results 
indicate that ICP plays an important role in injury after ICH.

After ICH, a pressure gradient is generated between the 
hematoma and the brain tissue, which promotes the dis-
placement of the brain tissue, and at the same time, the 
ischemia and hypoxia of the brain tissue around the hema-
toma aggravate the cerebral edema. A sharp rise in ICP 
can cause brain herniation in severe cases. Toxic factors 
are produced during hematoma dissipation, further damag-
ing the surrounding brain tissue, causing cerebral edema 
and exacerbating ICP elevation [28, 29]. In addition, cer-
ebral hypoperfusion after ICH may be due to elevated ICP. 

Fig. 1  Flow diagram of study identification and selection. PRISMA study flow diagram demonstrating the number of articles retained at each 
stage of data acquisition
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However, it has been shown that ICH patients who have 
normal ICP may also experience hypoperfusion, which may 
be a state of congestion [30, 31]. During the removal of the 
hematoma, the pressure in the hematoma cavity decreases 
continuously, creating a negative pressure gradient with the 
surrounding brain tissue, which promotes the reduction of 
the brain tissue. Hematoma removal can be divided into 
passive removal and active removal according to whether 
suction pressure is applied. Passive removal involves 
thrombolysis and passive catheter drainage using a YL-1 
puncture needle combined with urokinase. Active clear-
ance involves emptying the hematoma during the opera-
tion without indwelling the drainage tube or performing 
thrombolysis [32]. Sun et al. studied the changes in ICP in 
different surgical procedures. In patients with craniotomy, 
ICP falls rapidly after craniotomy and slowly and unevenly 
during hematoma resorption. This causes traction on the 
surrounding brain tissue thereby damaging the brain tissue 
and affecting its homing. With endoscopic keyhole, ICP 
does not drop rapidly after craniotomy due to the small bone 
aperture. After the formation of a cortical fistula, the cer-
ebral hematoma and the surrounding tissue form a reverse 
pressure gradient, which promotes the surrounding deviated 
brain tissue to return to its place, and the cerebral hematoma 
actively enters the tube. The endoscopic tube is columnar in 
shape, which creates uniform pressure on the surrounding 
brain tissue and avoids unnecessary traction injury [11]. 
Stereotactic aspiration and thrombolytic techniques used in 
the MISTIE III trial were similar to keyhole endoscopy in 
that intraoperative ICP decreased slowly with hematoma 
clearance. Al-Kawaz et al. found in the MISTIE III trial 
that reducing the hematoma volume through MIS combined 
with rt-PA could reduce the proportion of high ICP and 
decrease CPP events [10]. However, when the residual cav-
ity is large, there is a risk that the cavity may collapse and 
close due to incorrect aspiration, and the residual hematoma 
is isolated in a separate cavity, which is not conducive to the 
complete removal of the hematoma [33, 34]. Therefore, it is 
particularly important to control and monitor intraoperative 
suction negative pressure and ICP. A constant and smooth 
pressure difference between the intracranial and hematoma 
cavities during the surgery procedure is more conducive 
to rapid and complete removal of the hematoma, which is 
most beneficial to the protection of the surrounding brain 
tissue (reduction of cerebral edema and restoration of cer-
ebral blood flow). It is worth noting that combined monitor-
ing of cerebral oxygenation pressure along with monitoring 
of ICP during MIS improves the accuracy of perivascular 
blood flow perfusion [35]. Reducing ICP stably and remov-
ing the hematoma to the greatest extent is the top priority of 
surgical treatment for ICH patients.

Clinical Relevance

Guideline Recommendation

Studies have shown that patients with an elevated ICP after 
ICH treatment have higher mortality [9]. In the 2022 AHA/
ASA Guidelines for the management of patients with spon-
taneous ICH, ICP monitoring and treatment are suggested to 
help reduce the incidence of mortality and to improve out-
comes in patients with moderate-severe spontaneous ICH 
with a decreased level of consciousness (Glasgow Coma 
Scale (GCS) ≤ 8) (evidence level IIb). ICP monitoring is 
recommended for patients with a GCS score of 3~8 and an 
ICP maintained at < 22 mmHg, and a CPP maintained at 
50~70 mmHg are needed for brain autoregulation [5]. The 
European Stroke Organization does not recommend ICP 
monitoring due to a lack of RCT trials [36]. The role of ICP 
monitoring in traumatic brain injury (TBI) has been widely 
studied and accepted [22]. However, research on ICH is lim-
ited. Therefore, this study focuses on the changes in ICP after 
ICH treatment, emphasizes the importance of ICP monitor-
ing in the clinical management of ICH patients, and proposes 
suggestions for individualized treatment based on ICP.

Selection of Intracranial Pressure Monitoring 
Methods

ICP monitoring methods can be classified as invasive and 
non-invasive. Intraventricular pressure (IVP) monitoring is 
regarded as the gold standard for ICP monitoring and can 
be used for CSF drainage and treatment as well as whole-
brain ICP monitoring. However, this method is not suitable 
for patients with compression or displacement of the ven-
tricle who cannot be continuously monitored. Some studies 
suggest that for ICH patients, there is a pressure difference 
between near and far hematomas, and external ventricu-
lar drainage (EVD) may not accurately represent the local 
space-occupying effect caused by the hematoma and perifo-
cal edema [37, 38]. In recent years, the monitoring of brain 
parenchyma pressure (BPP) using optical fiber sensors has 
been developed and popularized in clinical practice [39]. 
BPP is suitable for continuous monitoring and is suitable 
for the whole brain or local ICP. The measurement error 
of BPP is mainly from the zero drift. Microtransducers are 
often placed in the right frontal cortex and parenchyma but 
can be placed in other locations as needed. Its advantages 
include simple readout, independence from patient position, 
easy surgical maneuvering, low incidence of bleeding and 
infection, and few measurement artifacts. Its disadvantages 
include the tendency of the system to drift with prolonged 
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use, the inability to recalibrate, the inability to drain cer-
ebrospinal fluid, and the inability to perform whole-brain 
ICP monitoring.

Current methods of non-invasive ICP monitoring are 
based on changes associated with elevated ICP. Evalu-
ation methods, including morphological (assessment by 
magnetic resonance, computed tomography, transcranial 
Doppler (TCD), ocular optic sheath diameter ultrasound 
[40], and fundus microscopy) and physiological (pupil 
diameter, tympanometry, near-infrared spectroscopy, 
electroencephalography, visual evoked potential, and otoa-
coustic emission), were developed [41, 42]. The invasive 
vs. non-invasive measurement of intracranial pressure in 
brain injury trial (IMPRESSIT-2) is a prospective multi-
center international clinical trial that has identified tran-
scranial Doppler sonography as a screening tool to exclude 
intracranial hypertension in patients with an acute brain 
injury (including TBI, ICH, and IS) [43]. In general, non-
invasive monitoring is easy to use, inexpensive, accurate, 
has few contraindications to its use, and is low in infec-
tion and bleeding adverse effects compared with invasive 
monitoring. The potential of non-invasive ICP monitor-
ing to replace the gold standard invasive ICP monitoring 
has been demonstrated [44]. At present non-invasive ICP 
monitoring can be used as a screening tool for an elevated 
ICP, but it is not recommended to guide treatment for ICP 
control [41, 43, 45–47]. In addition to this, artificial intel-
ligence (AI) can help in finding accurate features to predict 
elevated ICP from large amounts of mixed and multidi-
mensional data [48]. A recent data for invasive intrac-
ranial pressure monitoring in neurocritical care patients 
suggests that the use of machine learning methods can 
be effective in predicting intracranial pressure changes in 
patients in advance. This can provide sufficient response 
time to alter therapeutic measures [49]. In the future, the 
trend of medical-industrial crossover will provide more 

convenient support for intracranial pressure monitoring 
of cerebral hemorrhage.

In the International Multidisciplinary Multimodal Moni-
toring consensus meeting, it was suggested that non-TBI 
patients requiring monitoring should receive an invasive 
device (parenchymal or intraventricular) rather than a non-
invasive device and that intraparenchymal monitors (IPM) 
and EVD are equally reliable in providing ICP monitoring 
[50]. Therefore, ICP monitoring has certain advantages in 
managing ICH post-BPP.

Clinical Trials Related to ICP Monitoring

Most existing ICP monitoring studies have focused on 
patients with a TBI, and there are few data on the associa-
tion between an elevated ICP and neurological deteriora-
tion after ICH treatment or whether ICP monitoring helps 
reduce the incidences of mortality and disability (Table 1). 
Intracranial pressure monitoring in patients with an acute 
brain injury in the intensive care unit (SYNAPSE-ICU) is an 
international prospective observational cohort study analyz-
ing the effect of ICP monitoring on the prognosis of ICH. A 
weighted Cox regression model showed that ICP monitor-
ing was associated with a significant reduction in 6-month 
mortality rates (hazard ratio (HR) 0.49; 95% CI 0.35~0.71; P 
= 0.001) but was not related to neurological outcomes (odds 
ratio (OR) 0.83; 95% CI 0.41~1.68; P = 0.6077) [51, 52]. 
The CLEAR III trial conclusions support the combination 
of ICP and CPP management in ICH treatment, especially 
for patients with obstructive IVH requiring EVD [23]. The 
results of the ethnic/racial variations of intracerebral hemor-
rhage (ERICH) study showed that ICH patients without an 
IVH who were monitored by ICP had a lower 90-day mortal-
ity rate than those who were not monitored by ICP (23.4% 
vs. 36%; OR 0.543; 95% CI 0.302~0.975; P = 0.041), but 
there was no improvement in 90-day functional outcomes 

Table 1  Clinical trials of ICP monitoring in ICH treatment

ICH intracerebral hemorrhage, ICP intracranial pressure, SYNAPSE-ICU intracranial pressure monitoring in patients with acute brain injury 
in the intensive care unit, ERICH ethnic/racial variations of intracerebral hemorrhage, MISTIE minimally invasive surgery plus alteplase for 
intracerebral hemorrhage, EVD external ventricular drainage, IPM intraparenchymal monitors, HR hazard ratio, OR odds ratio

References Included patients Monitoring devices Outcomes

No-ICP ICP

SYNAPSE-ICU [52] 306 281 EVD (148, 53.6%)
IPM (119, 43.1%)
Others (9, 3.3%)

6-month mortality HR = 0.49 95% CI (0.35–0.71) P = 0.001
6-month functional outcome OR = 0.83 95% CI (0.41–1.68) P = 0.6077

ERICH [38] 2434 566 - 90-days mortality OR = 0.543 CI (0.302–0.975) P = 0.041
mRs score 0-2 at 90 days OR = 0.416 CI (0.203–0.813) P = 0.010

MISTIE III [53] 424 70 EVD (49, 70%)
IPM (21, 30%)

mRs score 4-6 at 1 year OR = 2.37 CI (1.15–4.86) P = 0.019
1-year mortality OR = 1.13 CI (0.68–2.60) P = 0.411
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(modified Rankin score (mRS) 0~2) in these patients (14.4% 
vs. 28.8%; OR 0.416; 95% CI 0.203~0.813; P = 0.010), and 
ICP monitoring was associated with increased use of hyper-
tonia therapy, increased surgery rate, and longer hospital 
stay. This study did not provide evidence to support the rou-
tine use of ICP monitoring in ICH patients [38]. Menacho 
et al.’s secondary analysis of the MISTIE III trial showed 
that ICP-monitored patients had a higher incidence of new or 
worsening ICH than unmonitored patients (41.4% vs. 22.9%; 
P = 0.001) and a higher likelihood of intracranial infection 
(7.1% vs. 1.7%; P = 0.006). The infection rate was higher in 
EVD patients (10.2% vs. 1.7%; P < 0.001), and IPM patients 
had a higher incidence of new or worsening ICH (57.1% 
vs. 22.9%; P < 0.001). The results may be associated with 
higher disease severity in patients receiving ICP monitoring 
[53]. In addition, several prospective/retrospective single-
center clinical studies with small samples have shown that 
MIS combined with ICP monitoring is associated with better 
outcomes in ICH patients [54–57].

Postoperative observation of ICH patients often relies on 
clinical signs and is then confirmed by imaging methods. 
Postoperative rebleeding tends to occur in patients with a 
high ICP due to irritability or pain, but using sedatives may 
interfere with the assessment of the patient’s consciousness. 
ICP monitoring can solve this problem by dynamically 
detecting the patients’ conditions before clinical signs appear 
and actively guiding clinical intervention [58–60]. Rasulo 
et al. used brain microdialysis to monitor the metabolic 
level of the brain tissue around the hematoma (monitoring 
the contents of glucose, pyruvate, lactic acid, glutamic 
acid, and glycerol in the injected artificial cerebrospinal 
fluid) and combined it with patient hemodynamic variables 
(MAP, ICP, CPP, and pressure reactivity index (PRx)) to 
predict the prognosis of ICH [61]. Yang et al. proposed 
that ICP combined with ICP dose (DICP), PRx, and CPP 
multiparameter ICP monitoring of regression can be used 
to predict the prognosis of ICH and facilitate individualized 
treatment of patients [62].

The Guiding Role of ICP Monitoring in MIS 
for ICH

The Significance of ICP Monitoring for MIS in ICH 
Patients 

The significance of ICP monitoring comes from the 
guidance of treatment rather than the recording of stress 
itself [46]. Choosing appropriate surgical methods combined 
with ICP monitoring to guide postoperative management 
can effectively control ICP and prevent complications in a 
timely manner, thus benefitting patients. Because clinical 
studies such as MISTIE III and ERICH were not used to 

evaluate the specific results related to ICP monitoring, the 
type of ICP monitor, the position of the device relative to the 
hematoma, the duration of monitoring, the ICP waveform, 
and CPP measurements were not discussed [10, 38]. Studies 
have shown that the brains of elderly patients have low 
tolerability [63, 64], poor ability to cope with ICP changes, 
and greater negative pressure on the wall of the hematoma, 
which may lead to blood vessel rupture and bleeding. The 
hemostatic mechanism after ICH is affected not only by the 
patient’s coagulation function but also by the tamponade 
effect of the hematoma, which can prevent the expansion 
of the hematoma [65, 66]. Therefore, it is necessary to 
prevent rebleeding due to the failure of hemostasis caused by 
mechanical compression due to an excessively fast or slow 
reduction in ICP during the operation. The development of 
intracerebral parenchymal transducers makes it possible to 
monitor ICP intraoperatively.

Age, GCS score, and initial hematoma volume are all 
important predictors of ICH functional prognosis [67], 
but these cannot be changed, and the degree of hematoma 
clearance and time window of surgical treatment are 
operable factors [68]. In the MISTIE trials, blood clots were 
pumped manually through a syringe until resistance was felt, 
and then a drainage catheter was inserted for thrombolytic 
medication injection, saline irrigation, and drainage. 
Hematomas are liquid at the early stage, with strong fluidity 
and allowing easy suction, but the risk of hematoma dilation 
and hemostasis needs to be balanced [60]. With the increase 
in the duration of the disease, blood coagulation, and the 
increase in fiber components make it difficult to aspirate, 
and hematoma liquefaction agents (urokinase, rt-PA, etc.) 
are needed to increase the efficiency of aspiration. Some 
auxiliary suction devices, such as the NICO BrainPath 
system and myriad handpiece (NICO Corp., Indianapolis, 
IN, USA), the Artemis system (Penumbra, Alameda, CA, 
USA), and The Apollo system (Penumbra Inc., Alameda, 
CA, USA), can enhance the operator’s control of the suction 
intensity, improve the efficiency of hematoma removal, 
and reduce secondary injuries caused by the operation 
[32, 69–71]. Tang et al. proposed improving the existing 
minimally invasive hematoma suction and flow, especially 
in the hematoma suction process. By strictly controlling 
the initial suction flow and suction negative pressure, the 
mortality and rebleeding rates of ICH patients who undergo 
continuous thrombolysis and drainage are lower than those 
of patients who undergo traditional hematoma suction [72].

Strategies for Monitoring ICP During MIS in ICH 
Patients 

Therefore, based on the intracranial volume–pressure curve, 
we propose smoothing to reduce ICP through real-time 
monitoring of the ICP of the hematoma cavity, integrating 
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different patient clinical characteristics, such as the hema-
toma situation (including hematoma location, size, shape, 
and degree of liquefaction) and the patient characteristics 
(age, sex, underlying diseases, blood clotting function, arte-
riovenous malformation, aneurysm, etc.) to individually 
adjust the suction flow strategy and accurately reduce the 
intracranial pressure in layers and stages.

The key parameters of the suction strategy include the 
suction rate, suction volume, and use of a liquefaction 
agent. In the case of a severely elevated ICP, the primary 
purpose of surgery is to quickly relieve the mass effect of 
the hematoma, and at this time, large negative pressure can 
be discharged from the hematoma to rapidly reduce the ICP. 
When brain compliance gradually recovers, small intracra-
nial volume changes can lead to a sudden drop in the ICP, 
and at this time, the hematoma cavity generates negative 
pressure on the surrounding tissues, forming a pulling effect. 
To prevent a decompression injury and rebleeding, a stable 
reduction in ICP should be taken as the goal at this stage, 
and eventually, the residual hematoma should be slowly 
removed (Fig. 2). To achieve the purpose of stable reduc-
tion of ICP, it is necessary to rely on animal experiments 
and clinical experiments to collect patient data, establish the 
biological tissue mechanics model of intracranial hematoma, 
build a big data platform, strengthen learning and constantly 
optimize the migration to the decision-making model of doc-
tors, and finally realize the generation of intelligent surgical 
plans. Resources for MIS are limited, and the duration of 
drainage and extubation depends on multiple postoperative 
computerized tomography (CT) evaluations of the hema-
toma. Continuous postoperative ICP monitoring also helps 
the neurosurgeon be more sensitive to detect any abnormal 
increase in ICP and initiate timely intervention.

Prospects of Surgical Robots in MIS and ICP 
Monitoring of ICH Patients 

Robot-assisted surgery, as a new MIS method for the 
treatment of ICH, is superior to traditional MIS or drug-
conservative treatment in that it has lower rebleeding and 
intracranial infection rates and has been associated with 
improved neurological functions [73]. Yan et al. proposed a 
continuum robot that was designed with a precurved inner 
tube and a flexible tip for intracranial hematoma suction, 
which can remove the hematoma more thoroughly and 
reduce damage to healthy brain tissue [74]. However, in 
the design of this kind of concentric tube robot, the suction 
parameters (suction rate, suction volume, etc.) are not 
discussed in detail [75, 76]. The application of robot-assisted 
MIS for the treatment of ICH and simultaneous detection 
of an elevated ICP with multisensor probes is conducive 
to restoring the intracranial environment after hematoma 
removal. Furthermore, the characteristics of the patients 
need to be assessed to allow the creation of a personalized 
MIS treatment plan for ICH.

Conclusion

There is still no standardized protocol for post-ICH 
ICP monitoring. We encourage further research into 
the underlying mechanisms of an increased ICP and an 
intracranial compensatory response after ICH treatment to 
develop more effective treatments. At the same time, whether 
intraoperative and postoperative management of ICH 
patients based on ICP monitoring data or fusion multivariate 
monitoring is effective still needs to be discussed in a large 
sample prospective cohort clinical study.

Fig. 2  ICP monitoring in the management of intracerebral hemorrhage. A. Balance the role of compression hemostasis and the risk of hematoma 
mass.  B. According to the compensatory ability of residual hematoma volume and ICP, the hematoma aspiration strategy was formulated
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invasive surgery; IVH:  intraventricular hemorrhage; MISTIE 
III: minimally invasive surgery plus alteplase for intracerebral 
hemorrhage; ICP: intracranial pressure; GOS: Glasgow outcome score; 
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