Skip to main content

Advertisement

Log in

ATG5 Knockdown Attenuates Ischemia‒Reperfusion Injury by Reducing Excessive Autophagy-Induced Ferroptosis

  • Research
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Autophagy has been described to be both protective and pathogenic in cerebral ischemia/reperfusion (I/R) injury. The underlying association between autophagy and ferroptosis in ischemic stroke has not yet been clearly investigated. The purpose of this study was to explore the role of autophagy-related gene 5 (ATG5) in experimental ischemic stroke. After injection of ATG5 shRNA lentivirus, mice underwent surgery for transient middle cerebral artery occlusion (MCAO)-induced focal cerebral ischemia. The infarct volume, neurological function, apoptosis, reactive oxygen species (ROS), autophagy, and ferroptosis levels were evaluated. After MCAO, ATG5-knockdown mice had a smaller infarct size and fewer neurological deficits than wild-type mice. The levels of apoptosis and ROS in ischemic mouse brains were alleviated through ATG5 knockdown. The expression of LC3 I/II was reduced through ATG5 knockdown after MCAO. Additionally, the expression of beclin1 and LC3 II was increased after I/R, but the increase was counteracted by preconditioning with ATG5 knockdown. After ischemic stroke, the levels of Fe2+ and malondialdehyde (MDA) were increased, but they were reduced by ATG5 knockdown. Similarly, the expression of glutathione peroxidase 4 (GPX4) and glutathione (GSH) was decreased by I/R but elevated by ATG5 knockdown. The present study shows that ATG5 knockdown attenuates autophagy-induced ferroptosis, which may offer a novel potential approach for ischemic stroke treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data presented in the study are included in the article/Supplementary Material, and further inquiries can be directed to the corresponding authors.

References

  1. Yang S, Wang H, Yang Y, Wang R, Wang Y, Wu C, et al. Baicalein administered in the subacute phase ameliorates ischemia-reperfusion-induced brain injury by reducing neuroinflammation and neuronal damage. Biomed Pharmacother. 2019;117:109102. https://doi.org/10.1016/j.biopha.2019.109102.

    Article  CAS  PubMed  Google Scholar 

  2. Sommer CJ. Ischemic stroke: experimental models and reality. Acta Neuropathol. 2017;133:245–61. https://doi.org/10.1007/s00401-017-1667-0.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Graham SH, Liu H. Life and death in the trash heap: the ubiquitin proteasome pathway and UCHL1 in brain aging, neurodegenerative disease and cerebral Ischemia. Ageing Res Rev. 2017;34:30–8. https://doi.org/10.1016/j.arr.2016.09.011.

    Article  CAS  PubMed  Google Scholar 

  4. Xie G, Yang S, Chen A, Lan L, Lin Z, Gao Y, et al. Electroacupuncture at Quchi and Zusanli treats cerebral ischemia-reperfusion injury through activation of ERK signaling. Exp Ther Med. 2013;5:1593–7. https://doi.org/10.3892/etm.2013.1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang MM, Zhang M, Feng YS, Xing Y, Tan ZX, Li WB, et al. Electroacupuncture inhibits neuronal autophagy and apoptosis via the PI3K/AKT pathway following ischemic stroke. Front Cell Neurosci. 2020;14:134. https://doi.org/10.3389/fncel.2020.00134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med. 2013;368:651–62. https://doi.org/10.1056/NEJMra1205406.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang X, Yan H, Yuan Y, Gao J, Shen Z, Cheng Y, et al. Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy. 2013;9:1321–33. https://doi.org/10.4161/auto.25132.

    Article  CAS  PubMed  Google Scholar 

  8. Luo C, Ouyang MW, Fang YY, Li SJ, Zhou Q, Fan J, et al. Dexmedetomidine protects mouse brain from ischemia-reperfusion injury via inhibiting neuronal autophagy through up-regulating HIF-1α. Front Cell Neurosci. 2017;11:197. https://doi.org/10.3389/fncel.2017.00197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang DM, Zhang T, Wang MM, Wang XX, Qin YY, Wu J, et al. TIGAR alleviates ischemia/reperfusion-induced autophagy and ischemic brain injury. Free Radic Biol Med. 2019;137:13–23. https://doi.org/10.1016/j.freeradbiomed.2019.04.002.

    Article  CAS  PubMed  Google Scholar 

  10. Wang L, Xiong X, Zhang X, Ye Y, Jian Z, Gao W, et al. Sodium tanshinone IIA sulfonate protects against cerebral ischemia-reperfusion injury by inhibiting autophagy and inflammation. Neuroscience. 2020;441:46–57. https://doi.org/10.1016/j.neuroscience.2020.05.054.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang M, Qiu H, Mao L, Wang B, Li N, Fan Y, et al. Ammonium tetrathiomolybdate triggers autophagy-dependent NRF2 activation in vascular endothelial cells. Cell Death Dis. 2022;13:733. https://doi.org/10.1038/s41419-022-05183-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gao M, Monian P, Pan Q, Zhang W, Xiang J, Jiang X. Ferroptosis is an autophagic cell death process. Cell Res. 2016;26:1021–32. https://doi.org/10.1038/cr.2016.95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ 3rd, et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 2016;12:1425–8. https://doi.org/10.1080/15548627.2016.1187366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G, Tang D. Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol. 2020;66:89–100. https://doi.org/10.1016/j.semcancer.2019.03.002.

    Article  CAS  PubMed  Google Scholar 

  15. Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis. Free Radic Biol Med. 2019;133:130–43. https://doi.org/10.1016/j.freeradbiomed.2018.09.043.

    Article  CAS  PubMed  Google Scholar 

  16. Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL, et al. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry. 2017;22:1520–30. https://doi.org/10.1038/mp.2017.171.

    Article  CAS  PubMed  Google Scholar 

  17. Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E, et al. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell. 2019;177:1262-1279.e25. https://doi.org/10.1016/j.cell.2019.03.032.

    Article  CAS  PubMed  Google Scholar 

  18. Liang T, Qiang T, Ren L, Cheng F, Wang B, Li M, et al. Near-infrared fluorescent probe for hydrogen sulfide: high-fidelity ferroptosis evaluation in vivo during stroke. Chem Sci. 2022;13:2992–3001. https://doi.org/10.1039/d1sc05930k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu J, Kuang F, Kroemer G, Klionsky DJ, Kang R, Tang D. Autophagy-dependent ferroptosis: machinery and regulation. Cell Chem Biol. 2020;27:420–35. https://doi.org/10.1016/j.chembiol.2020.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kang R, Tang D. Autophagy and Ferroptosis - What’s the connection? Curr Pathobiol Rep. 2017;5:153–9. https://doi.org/10.1007/s40139-017-0139-5.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu J, Guo ZN, Yan XL, Huang S, Ren JX, Luo Y, et al. Crosstalk between autophagy and ferroptosis and its putative role in ischemic stroke. Front Cell Neurosci. 2020;14:577403. https://doi.org/10.3389/fncel.2020.577403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kang R, Zhu S, Zeh HJ, Klionsky DJ, Tang D. BECN1 is a new driver of ferroptosis. Autophagy. 2018;14:2173–5. https://doi.org/10.1080/15548627.2018.1513758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bai Y, Meng L, Han L, Jia Y, Zhao Y, Gao H, et al. Lipid storage and lipophagy regulates ferroptosis. Biochem Biophys Res Commun. 2019;508:997–1003. https://doi.org/10.1016/j.bbrc.2018.12.039.

    Article  CAS  PubMed  Google Scholar 

  24. Zhou L, Li F, Xu HB, Luo CX, Wu HY, Zhu MM, et al. Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nat Med. 2010;16:1439–43. https://doi.org/10.1038/nm.2245.

    Article  CAS  PubMed  Google Scholar 

  25. Guo Z, Cao G, Yang H, Zhou H, Li L, Cao Z, et al. A combination of four active compounds alleviates cerebral ischemia-reperfusion injury in correlation with inhibition of autophagy and modulation of AMPK/mTOR and JNK pathways. J Neurosci Res. 2014;92:1295–306. https://doi.org/10.1002/jnr.23400.

    Article  CAS  PubMed  Google Scholar 

  26. Zhu H, Jian Z, Zhong Y, Ye Y, Zhang Y, Hu X, et al. Janus kinase inhibition ameliorates ischemic stroke injury and neuroinflammation through reducing NLRP3 inflammasome activation via JAK2/STAT3 pathway inhibition. Front Immunol. 2021;12:714943. https://doi.org/10.3389/fimmu.2021.714943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li M, Gao WW, Liu L, Gao Y, Wang YF, Zhao B, et al. The Akt/glycogen synthase kinase-3β pathway participates in the neuroprotective effect of interleukin-4 against cerebral ischemia/reperfusion injury. Neural Regen Res. 2020;15:1716–23. https://doi.org/10.4103/1673-5374.276343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xiong X, Ye Y, Gao X, Zhu H, Hu W, Li C, et al. An ultrasensitive fluorescent platform for monitoring GSH variation during ischemic stroke. Chem Eng J. 2022;450:137931. https://doi.org/10.1016/j.cej.2022.137931.

    Article  CAS  Google Scholar 

  29. Li R, Liang T, Chen Z, Zhang S, Lin X, Huang R. L-dopa methyl ester attenuates amblyopia-induced neuronal injury in visual cortex of amblyopic cat. Gene. 2013;527:115–22. https://doi.org/10.1016/j.gene.2013.05.072.

    Article  CAS  PubMed  Google Scholar 

  30. Zhong Y, Gu L, Ye Y, Zhu H, Pu B, Wang J, et al. JAK2/STAT3 axis intermediates microglia/macrophage polarization during cerebral ischemia/reperfusion injury. Neuroscience. 2022;496:119–28. https://doi.org/10.1016/j.neuroscience.2022.05.016.

    Article  CAS  PubMed  Google Scholar 

  31. Xu Q, Ye Y, Wang Z, Zhu H, Li Y, Wang J, et al. NLRP3 knockout protects against lung injury induced by cerebral ischemia-reperfusion. Oxid Med Cell Longev. 2022;2022:6260102. https://doi.org/10.1155/2022/6260102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li Y, Zhu H, Wang X, Cui Y, Gu L, Hou X, et al. Small-molecule fluorophores for near-infrared iib imaging and image-guided therapy of vascular diseases. CCS Chem 2022;0:1–16 https://doi.org/10.31635/ccschem.022.202101547

  33. Yingze Y, Zhihong J, Tong J, Yina L, Zhi Z, Xu Z, et al. NOX2-mediated reactive oxygen species are double-edged swords in focal cerebral ischemia in mice. J Neuroinflammation. 2022;19:184. https://doi.org/10.1186/s12974-022-02551-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Han B, Jiang W, Liu H, Wang J, Zheng K, Cui P, et al. Upregulation of neuronal PGC-1α ameliorates cognitive impairment induced by chronic cerebral hypoperfusion. Theranostics. 2020;10:2832–48. https://doi.org/10.7150/thno.37119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu J, Dou Y, Liu W, Zhao Y, Liu X. Osteocalcin improves outcome after acute ischemic stroke. Aging (Albany NY). 2020;12:387–96. https://doi.org/10.18632/aging.102629.

    Article  PubMed  Google Scholar 

  36. Wang P, Shao BZ, Deng Z, Chen S, Yue Z, Miao CY. Autophagy in ischemic stroke. Prog Neurobiol. 2018;163–164:98–117. https://doi.org/10.1016/j.pneurobio.2018.01.001.

    Article  CAS  PubMed  Google Scholar 

  37. Wang P, Guan YF, Du H, Zhai QW, Su DF, Miao CY. Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy. 2012;8:77–87. https://doi.org/10.4161/auto.8.1.18274.

    Article  CAS  PubMed  Google Scholar 

  38. Wang P, Xu TY, Wei K, Guan YF, Wang X, Xu H, et al. ARRB1/β-arrestin-1 mediates neuroprotection through coordination of BECN1-dependent autophagy in cerebral ischemia. Autophagy. 2014;10:1535–48. https://doi.org/10.4161/auto.29203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu Y, Xue X, Zhang H, Che X, Luo J, Wang P, et al. Neuronal-targeted TFEB rescues dysfunction of the autophagy-lysosomal pathway and alleviates ischemic injury in permanent cerebral ischemia. Autophagy. 2019;15:493–509. https://doi.org/10.1080/15548627.2018.1531196.

    Article  CAS  PubMed  Google Scholar 

  40. Tian F, Deguchi K, Yamashita T, Ohta Y, Morimoto N, Shang J, et al. In vivo imaging of autophagy in a mouse stroke model. Autophagy. 2010;6:1107–14. https://doi.org/10.4161/auto.6.8.13427.

    Article  PubMed  Google Scholar 

  41. Garg AD, Dudek AM, Ferreira GB, Verfaillie T, Vandenabeele P, Krysko DV, et al. ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy. 2013;9:1292–307. https://doi.org/10.4161/auto.25399.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 81870939 and 82171336 to Xiaoxing Xiong; Nos. 82071339 and 82271370 to Lijuan Gu).

Author information

Authors and Affiliations

Authors

Contributions

Xiaoxing Xiong and Lijuan Gu designed this work. Hua Zhu and Yi Zhong wrote the manuscript. Hua Zhu, Ran Chen, Yuntao Li, Ran Chen, Lei Wang, Zhihong Jian, and Yi Zhong performed the experiments and analyzed the data. All authors contributed to manuscript revision and read and approved the submitted version.

Corresponding authors

Correspondence to Lijuan Gu or Xiaoxing Xiong.

Ethics declarations

Ethics Statement

The animal study was reviewed and approved by the Ethics Committee of Renmin Hospital of Wuhan University.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1973 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Zhong, Y., Chen, R. et al. ATG5 Knockdown Attenuates Ischemia‒Reperfusion Injury by Reducing Excessive Autophagy-Induced Ferroptosis. Transl. Stroke Res. 15, 153–164 (2024). https://doi.org/10.1007/s12975-022-01118-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-022-01118-0

Keywords

Navigation