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Abstract
Injuries in the developing brain cause significant long-term neurological deficits. Emerging clinical and preclinical data 
have demonstrated that the pathophysiology of neonatal and childhood stroke share similar mechanisms that regulate brain 
damage, but also have distinct molecular signatures and cellular pathways. The focus of this review is on two different dis-
eases—neonatal and childhood stroke—with emphasis on similarities and distinctions identified thus far in rodent models 
of these diseases. This includes the susceptibility of distinct cell types to brain injury with particular emphasis on the role of 
resident and peripheral immune populations in modulating stroke outcome. Furthermore, we discuss some of the most recent 
and relevant findings in relation to the immune-neurovascular crosstalk and how the influence of inflammatory mediators is 
dependent on specific brain maturation stages. Finally, we comment on the current state of treatments geared toward inducing 
neuroprotection and promoting brain repair after injury and highlight that future prophylactic and therapeutic strategies for 
stroke should be age-specific and consider gender differences in order to achieve optimal translational success.
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Introduction

The dynamic nature of brain development plays a key role in 
injurious cascades following an ischemic event and affects 
the magnitude and evolution of brain damage. The postnatal 
brain maturation stage and the unique pace of individual cell 
type development in the Central Nervous System (CNS) at 
the time of stroke leads to distinct excitotoxic and inflam-
matory signatures. Thus, it is of fundamental importance to 
consider targeting pathophysiological pathways in matura-
tion-specific ways to preserve brain function and promote 
repair of the developing brain after stroke. In this review, we 
summarize both predisposing and modulatory factors that 
determine the extent of maturation-dependent ischemic brain 
injury and describe the inflammatory and molecular patterns 
related to immune-neurovascular interactions.

Brain Development as a Potential Modifying 
Factor in Brain Injury

Development of the human brain is a precisely orchestrated 
process that requires careful synchronization between mat-
uration of CNS barriers and cells within the brain paren-
chyma. In humans, brain development commences when 
neuroepithelial cells of the ectoderm give rise to the neural 
plate and closure of the neuronal tube that initiates the for-
mation of the CNS in gestational week 3 (GW3) [1], fol-
lowed by separation of the CNS from the periphery by the 
brain vasculature by GW5 [2] and subsequent formation of 
the choroid plexus (CP) around GW7 [3] and most of the 
meningeal structures at GW12 [4]. Tight junction (TJ) pro-
teins, such as occludin and claudin-5, which are the struc-
tural foundation of the CNS barriers, are detected in the fetal 
brain at GW16 [5]. Pyramidal neural cells derive from the 
proliferating progenitor cells, such as radial glial cells, as 
early as GW5 [2]. Neurogenesis, which continues through 
early postnatal life [6], peaks between GW9-13 [7], with 
newly formed neurons migrating radially from the subven-
tricular zone (SVZ) to the cortex [2]. Synaptogenesis begins 
as early as GW8 [8] with the neuronal circuits shaped by 
synaptic pruning by microglia and astrocytes [9]. Microglia 
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are found in the brain before vascular sprouting, as early as 
GW5 [10, 11], whereas astrocytes appear later, by GW15 
[12], as are oligodendrocyte (OL) progenitor cells, by GW17 
[13, 14]. Both microglia [15] and pre-OLs [13, 14] continue 
to differentiate overtime. Myelination starts during mid-ges-
tation and continues until late adolescence [16].

In rodents, maturation of the blood-brain barrier (BBB) 
was shown to intimately relate to recruitment of endothelial 
cells and pericytes into the brain [17–19], a process that 
commences around embryonic day (E) 11. Permeability of 
BBB endothelial cells is tightly restricted by E15 in mice 
[20], prior to astrogliogenesis, which begins closer to birth 
[21]. The TJ protein zonula occluden protein 1 (ZO-1) 
starts to be expressed in E15 cerebral vessels in the mouse, 
and by E19, the TJ appears completely differentiated [22], 
demonstrating that astrocytes do not contribute to the early 

induction of “tightness” of the BBB. Figure 1 demonstrates 
the unsynchronized changes in individual components of the 
BBB during fetal and postnatal physiological brain devel-
opment. Figure 2 details changes in expression of TJ pro-
teins during postnatal day (P)9–P60. VEGFR2 deficiency 
prohibits vessel formation, leading to embryonic lethality 
[23]. In contrast to astrocytes, microglial cells have direct 
effects on vasculogenesis and vascular sprouting in the 
embryonic brain [24, 25] by guiding endothelial sprouts, 
largely via VEGF-dependent mechanisms. Microglial defi-
ciency adversely affects vasculature development [26], and 
monocytes cannot substitute for the lack of microglia in vas-
culogenesis in the developing brain [24]. Disrupted integrin 
and chemokine signaling also adversely affect embryonic 
angiogenesis and BBB formation. Microglia also regulate 
embryonic and postnatal physiological brain development 

Fig. 1   Schematic representa-
tion of the development of 
individual cell types and of the 
maturing neurovascular unit 
during embryonic and postnatal 
brain development in rodents. 
Vertical punctate lines indicate 
approximate time for inducing 
tMCAO to mimic PAIS, CAIS, 
and AIS. As is evident from this 
cartoon presentation, physi-
ological neuronal apoptosis 
(i.e., programmed cell death) is 
high in the newborn brain and 
rapidly declines during perinatal 
period. Microglial function 
undergoes changes with devel-
opment. Peripheral cells are 
immature in neonatal mice and 
reach maturation during juve-
nile period. The BBB is estab-
lished by birth but continues to 
change in neonatal and juvenile 
brain. Astrocyte and pericyte 
coverage continues to increase 
in neonatal and juvenile brain. 
Myelination begins during post-
natal period and is complete in 
juvenile rodents. Image created 
with BioRender.com
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via secretion of trophic factors, immuno-surveillance, oli-
godendrogenesis, and neurogenesis and ultimately establish 
brain connectivity network during postnatal brain develop-
ment [27–29]. Therefore, the timing of these developmental 
cues in relation to maturation of individual cell types of the 
neurovascular unit is critical in influencing the pathophysi-
ology of cerebral ischemia depending on the stage of brain 
development.

Epidemiology of Neonatal (Perinatal) 
and Childhood Stroke

Stroke in the neonatal/perinatal period (i.e., between ges-
tational week 20 to the first 28 days of life) could manifest 
acutely or in a delayed form, can be arterial or venous, and 
present as ischemic or hemorrhagic [30]. The incidence of 
neonatal stroke is 1 per 2300–5000 births, and it commonly 
presents with seizures, encephalopathy, neurological defi-
cits, and is typically diagnosed by MRI [31–35]. Estimates 
from 2015 indicate that the overall under 5-year-old mortal-
ity rate following ischemic events in infants and children is 
43 per 1000 live births, of which 45% of the deaths occur 
during the neonatal period [36]. Gestational diabetes, preec-
lampsia, and chorioamnionitis are considered risk factors 
that may affect stroke occurrence [37], while systemic infec-
tion, pre-term brain injury, asphyxia, and stroke during the 
perinatal period all include inflammatory components [38].

Compared to perinatal arterial ischemic stroke (PAIS), 
childhood AIS (CAIS) has a distinct pathophysiology. The 
incidence of CAIS is low, 1–2 children per 100,000 [39], 
but its recurrence is high, making it one of the top 10 causes 

of pediatric mortality [40, 41]. Recent cohort studies have 
reported that childhood stroke is associated with long-term 
mortality, even 20 years after stroke [42]. Furthermore, age 
at the time of the insult negatively affects long-term cogni-
tive and motor outcomes and increases the risk of attention 
deficit/hyperactivity disorder (ADHD) in older children 
[43–45]. One unique discovered aspect of CAIS is that it 
frequently occurs shortly after viral infection [46], such 
as Varicella Zoster Virus (VZV) [47], and virus-induced 
immune-related cerebral arteriopathies [48].

Models of Neonatal and Childhood Stroke

Age that approximates the human brain at term is species-
dependent (reviewed in [49–51]). As an example, sheep are 
precocial, and thus, to relate to human brain development, 
hypoxia studies are performed during pregnancy, and tran-
sient occlusion of the umbilical cord prior to birth is used in 
non-human primates to model severe asphyxia [52]. Other 
commonly used non-rodent large mammal species to induce 
ischemia-related brain injury is performed in rabbits and 
pigs. Species that have a white/gray matter ratio similar to 
the human brain and pigs in particular are useful for moni-
toring post-stroke cerebral blood flow (CBF) changes, but 
these models mimic hypoxia–ischemia (HI).

In rats and mice, most brain development occurs after 
birth like humans, yet the developmental growth of indi-
vidual brain regions is distinct in rodents and humans, thus 
making it difficult to adhere to a single postnatal day as a 
comprehensive representation of brain development in 
humans. Cross-comparisons of gross neuroanatomy, the 
timing of neurogenesis, synaptogenesis, gliogenesis, matu-
ration, and myelination as well as age-dependent molecu-
lar and biochemical changes in rodents and humans have 
demonstrated that the rodent brain at P1–P5 corresponds 
to 23–32 weeks of gestation in humans and is thus suitable 
for studies of preterm injury, whereas the rodent brain at 
P7–P10 corresponds to 36–40 weeks of gestation in humans, 
thus suitable for studying brain injury close to or at term 
(reviewed in [53]). Brain myelination in rodents is com-
pleted between P17 and P25, and brain maturation is thought 
to correspond to that of a toddler.

For quite some time, all data regarding ischemia-related 
pathology in the neonatal rodent brain was based on the 
Rice-Vannucci HI model in P7 rats, which involves unilat-
eral/bilateral ligation of the common carotid artery followed 
by systemic hypoxia of variable length and oxygen depriva-
tion [54–56], and in P9 mice (reviewed in [51, 57, 58]). Due 
to the presence of systemic hypoxia, however, the HI model 
is more representative of hypoxic-ischemic encephalopathy 
(HIE) and not focal stroke (reviewed in [59, 60]).

Fig. 2   Developmental changes in expression of individual TJ proteins 
during postnatal days P9–P60. On Y axes, 1 represents expression of 
individual proteins in P7 rat brain based on Western Blot data pub-
lished in [108]
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A different group of models was developed to exam-
ine the pathophysiology of neonatal stroke by using mid-
dle cerebral artery occlusion (MCAO), the most common 
type of ischemic stroke in at term infants. Transient MCAO 
(tMCAO) was achieved in P17 rats [61] or P7 rats [62] or 
via permanent left middle cerebral artery occlusion in asso-
ciation with occlusion of the left common carotid artery 
[63]. Additional tMCAO models of different durations were 
developed in P10 rats [64] and P9–P10 mice [65]. Varying 
duration of MCAO between 1.5 and 3 h enabled injury of 
different severities [65–67]. MRI during MCAO and after 
retraction of suture filament demarcated ischemic injury in 
the vascular territory of the MCA with a definable ischemic 
core and penumbra [68, 69] and demonstrated injury evolu-
tion over time [70–74].

CAIS has different etiologies, risk factors, and presen-
tation compared to either neonates or adults [39, 46, 75]. 
To understand the pathophysiology of CAIS, models of 
MCAO or endothelin-1 injection were developed in juve-
nile (P17–P25) rodents [61, 76–78]. As we discuss below, 
comparative studies between newborn, juvenile, and adult 
rodents subjected to various excitotoxic and inflammatory 
conditions further extended the concept of a critical role of 
maturational stage in influencing stroke pathology. These 
models include intracortical IL-1β injection [79, 80], brain 
trauma [81–83], and ischemic arterial stroke [77, 78, 84]. 
In addition, to examine the role of infection in ultimately 
predisposing childhood brain to stroke, we developed a 
model of viral-like infection (viral mimetic Poly-IC) in P18 
mice and demonstrated infection-induced arteriopathy [85]. 
Nonetheless, experimental studies of CAIS remain sparse 
and molecular mechanisms of susceptibility to CAIS and its 
recurrence are insufficiently defined.

Pathophysiology and Early Mechanisms 
of Injury

There are both common and distinct mechanisms between 
the pathophysiology of PAIS and CAIS related to particular 
circumstances that occur around the time of birth (neonates) 
such as evolving myelination and modulation of mitochon-
drial function (children).

Cerebral Blood Flow, Energy Metabolism, and Cell 
Death

Cerebral ischemia rapidly disrupts brain homeostasis in 
both the adult and immature brain, leading to generalized 
shutdown of ATP-dependent processes; increased anaerobic 
glycolysis; Na + /K + pump malfunction; Na+, Cl−, and H2O 
influx; cytotoxic edema; neuronal membrane destabilization; 
glutamate release; stimulation of NMDA/AMPA receptors 

to massively release intracellular Ca2+ ions; and ensuing 
mitochondrial damage. These processes are very nuanced 
depending on the age due to multiple factors. Early col-
lateral recruitment after stroke differs in infants and adults 
[86]. In rodents, the brain vasculature undergoes extensive 
endothelial proliferation and branching in the first postnatal 
month. Endothelial cell proliferation peaks around P10 [87], 
and vascular density increases from P8 to peak at P21 [88]. 
NMDA receptors undergo changes during brain develop-
ment [89]. These factors, together with maturational switch 
from predominant glycolysis to oxidative phosphorylation 
during the second postnatal week in rodents, play an impor-
tant role in energy deprivation, phenomena extensively stud-
ied in neonatal HI model (reviewed in [90–92]). Altogether, 
oxidative damage and excitotoxicity instigate microvascular 
injury, triggering robust post-ischemic inflammation driven 
by resident and peripheral immune cells, signaling that can 
trigger both necrotic and apoptotic cell death [90, 93–96]. 
Apoptotic pathways are more readily activated following 
tMCAO in neonates compared to adults due to expressed 
proteins involved in developmental programmed cell death 
[69, 97, 98], processes more prominent in the penumbra 
than in the ischemic core of neonatal rodents. Importantly, 
sex-related differences in apoptotic pathways were identi-
fied after neonatal cerebral ischemia [99, 100]. Other types 
of cell death have been described in HI models, autophagy 
and ferroptosis, but those have not been studied in arterial 
ischemic stroke models. Oxidative stress was demonstrated 
to influence collateral flow of reperfused vessels following 
ischemic events in cerebral vessels of post-ischemic neonatal 
and juvenile brain [101], but oxidative stress mechanisms are 
yet to be defined in CAIS models.

The Brain Barrier Interfaces

The brain is protected by multiple barrier systems that 
include the BBB, the blood-cerebrospinal fluid barrier 
(BCSFB) in the CP, and the leptomeningeal CNS barrier 
[102, 103]. During pathological conditions, altered BBB 
functionality and peripheral immune cells undermine the 
isolated nature of the CNS [104, 105]. The breakdown 
of the BBB is well characterized after adult stroke [106, 
107], whereas emerging evidence has suggested that the 
early postnatal BBB is not as permeable as the adult BBB 
after an ischemic insult [104, 108]. Studies in a model of 
tMCAO showed that albumin leakage into injured regions 
was markedly increased during 2–24h reperfusion in adult 
rats compared to P7 rats, whereas expression of collagen-IV, 
laminin, claudin-5, occludin, and ZO-1 was relatively low 
[108]. Infiltration of peripheral immune cells into the acutely 
injured neonatal brain was also limited in neonates. The CP 
has lately been identified as the gate for lymphocyte traffick-
ing and entry to the parenchyma under both physiological 
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and pathological circumstances [109]. In fact, the CP senses 
change in the CSF to alter circulating immune cells [110] 
as well as recruit inflammatory cells of myeloid lineage to 
the damaged area in models of CNS injuries [111, 112]. 
In a neonatal mouse stroke model, robust accumulation of 
myeloid cells, including neutrophils as well as inflamma-
tory and beneficial monocytes, has been identified in the 
CP ipsilateral to injury [105], likely contributing to inflam-
matory injury component in the parenchyma. The meninges 
have been shown to support brain development and serve as 
an important site of immune cell expansion and reactivity 
during early phases of immune response after preterm brain 
injury [113], but the role of the meninges in stroke in the 
immature brain is relatively unexplored.

BBB permeability differs in a rodent CAIS model com-
pared to both PAIS and AIS models [78, 108]. BBB disrup-
tion is also much higher in juvenile that in newborn or adult 
rats following intracerebral IL-1β administration [79], with 
distinctions likely due to myelination and leukocyte matu-
ration during postnatal development (Fig. 1). Furthermore, 
in the mouse brain, cortical vessel branching reaches a pla-
teau between P15 and P25, which could affect the extent in 
collateral flow and stroke severity [86]. Systemic immune 
activation in juveniles can also promote procoagulant effects 
and local inflammation to induce fragility of cerebral arter-
ies and yield the juvenile brain susceptible to subsequent 
stroke [114].

The Neurovascular Unit

Endothelial cells (ECs) are very sensitive to oxidative and 
inflammatory processes. TJ damage due to post-ischemic 
ROS accumulation can lead to EC dysfunction and death 
[115, 116], gradual loss of EC proliferative capacity, dys-
functional endothelial progenitor cell (EPC) migration, and 
impaired secretion of growth factors [117]. VEGF recep-
tor inhibition after neonatal stroke was shown to reduce 
EC proliferation [118, 119]. Furthermore, transcriptional 
analysis of ECs isolated from adult and neonatal rat brains 
24 h after tMCAO revealed a strikingly different gene regu-
lation pattern among ages, where neonates had a better pre-
served expression of occludin, claudin-5, and ZO-1 [108], 
thus highlighting age-specific signaling between adults and 
neonates in neurovascular and immune cells after brain 
injury. ECs were recently reported to directly cross-talk with 
perivascular macrophages (PVMs) and shift their phenotype 
to anti-inflammatory in support of the BBB in the adult brain 
[120].

The extracellular matrix (ECM)/basement membranes 
provide structural support to cells but also serve as reservoir 
of growth factors that direct and fine-tune cellular functions. 
Type IV collagens are a major component of all basement 
membranes which, together with laminins, play a major 

regulatory role in determining the molecular stoichiometry. 
Mutations in the α1(IV) chain (or COL4A1) cause perina-
tal cerebral hemorrhage [121]. Degradation of the ECM is 
central to BBB disruption in adult stroke [122]. Activation 
of MMPs, MMP-9, MMP-3, and MMP-2 in particular, plays 
important roles in mediating ECM breakdown, degradation 
of TJs, laminin, collagen, and fibronectin, leading to vaso-
genic edema, BBB leakage, and immune cell infiltration 
[123–128]. Infiltrating immune cells, microglia and activated 
astrocytes are major sources of MMPs after stroke [129, 
130]. MMPs produced by activated astrocytes and neurons 
were also reported to promote repair [131, 132]. In rodent 
neonatal post-ischemic brain, upregulation of MMP-9 was 
observed as early as 24 h after injury ([133] and Fig. 3A). 
MMPs could also enable signaling of adhesion molecules 
and EC activation and be critical in monocyte trafficking and 
recruitment, forming post-ischemic inflammatory cascades 
in injured neonatal brain [134–136].

Pericyte number is low in neonatal brain, and their 
recruitment from vessels to newly formed capillaries is 
tightly synchronized during development [19]. Pericytes 
modulate blood flow resistance during development [137] 
and contribute to the BBB structure by producing many 
components of the basement membrane that surround ECs 
[19, 138, 139] and support angiogenesis, microvasculature 
stabilization, capillary diameter regulation, and clearance 
of toxic compounds [140]. In models of adult stroke, peri-
cyte loss or dissociation from vessels causes edema, impairs 
CBF, and upregulates MMP-9 [141–146], leading to leuko-
cyte extravasation and BBB breakdown, but there is essen-
tially no information on the role of pericytes in the post-
ischemic developing brain.

Astrocytes can maintain BBB function via direct 
physical interaction with brain cells through their end-
feet, regulation of calcium signaling and CBF [147], as 
well as sustaining of signaling molecules, such as VEGF, 
GDNF, angiopoierin-1, and TGF-β [148, 149]. Upon 
injury, astrocyte activation is associated with gliosis and 
scar formation, production of cytokines, and other inflam-
matory events, such as MMPs activation, modulating the 
neurovasculature both by promoting and disrupting BBB 
functionality [131, 150–152]. Increased IL-15 produc-
tion by astrocytes after neonatal HI has been linked to T 
and NK cell recruitment and aggravation of brain damage 
[153]. In co-cultures, astrocytes were also shown to have 
a direct cross-talk with microglia and to induce an anti-
inflammatory phenotype [154]. Although astrocytes are 
rather resistant to ischemic injury, their increase of acqua-
porin-4 (Aqp-4) expression in the adult brain is associated 
with swelling due to impaired water fluxes and consequent 
brain edema [155]. These phenomena were, however, not 
observed in a neonatal stroke model, since vasogenic 
edema that usually characterizes injured regions was not 
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apparent in brain areas with high expression of Aqp-4 
[71]. Early after tMCAO in P7 rats, we observed disas-
sociation of astrocytes from the vasculature and reduced 
Aqp-4 vascular coverage (Fig. 3B). The multifunctional 
capabilities of astrocytes during neuroinflammation make 
them intriguing candidates for maturation-specific thera-
peutic interventions during stroke in different developmen-
tal stages as reviewed elsewhere [156, 157].

Neuroinflammation

Neuroinflammation itself is a major contributor to neonatal 
and juvenile brain injury. It is mediated by several different 
cell types, both local and peripheral, which upon activation 
can release a plethora of signaling molecules [91, 158]. The 
contribution of inflammatory cascades and immune media-
tors, however, varies upon the developmental stage at the 
time of the insult (summarized in Fig. 4).

Brain Immune Cells

Microglia are the primary immune cells in the brain 
under normal physiological conditions and represent 
12–15% of the CNS cellular component. Microglia 
provide support for CNS development, including dur-
ing phases of neurogenesis, angiogenesis, myelination, 
synaptogenesis, as well as govern synaptic pruning 
[159–161]. Upon injury, activated microglia have been 
traditionally considered toxic by releasing inflamma-
tory mediators and ROS [162, 163], yet recent data in 
tMCAO models have demonstrated their protective role. 
In an adult tMCAO model, microglial depletion reduced 
the threshold of spreading depolarization and the related 
potassium uptake in the mouse brain [164], demonstrat-
ing that microglia preserve neuronal function through 
specialized somatic purinergic junctions [165]. Micro-
glial depletion using intracerebral administration of lipo-
some-encapsulated clodronate prior to tMCAO in neona-
tal rats and mice actually enhanced neuroinflammation, 

Fig. 3   Examples of effects of 
3h MCAO followed by 24h rep-
erfusion in P7 rats on the ECM 
degradation (A), vascular Aqp-4 
coverage (B), and BBB integrity 
(C). A In situ zymography in 
coronal section (right) shows 
ECM degradation in the penum-
bral and ischemic core regions, 
regions defined by Nissl stain-
ing (left). B Aqp-4 coverage of 
vessels in contralateral region 
(top) and ischemic-reperfused 
region (bottom). Note that 
Aqp-4 expression is reduced 
and detracted from the vessels 
in ischemic-reperfused region. 
C 70-kDa Dextran adminis-
tered 23 h after reperfusion is 
observed within vessels in both 
contralateral (image on the left) 
and the injured cortex (image 
on the right)
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exacerbated brain injury, and triggered brain hemor- 
rhages 24 h after stroke [166, 167] whereas BBB integrity  
is preserved in injured pups with unperturbed microglia  
(Fig. 3C). TGFβ signaling in microglial cells was shown  
to protect neonatal rat and mouse brains from hemor-
rhagic transformation after tMCAO [166]. This protec-
tive role is further supported by a recent study where 
microglia depletion before induction of neonatal HI 
aggravated brain injury and reduced expression of TGFβ 
and IL-10 [168]. Furthermore, microglia can modulate 
injury in concert with leukocytes, revealing the role of a 
specific microglia-leucocyte axis in PAIS [94, 169, 170].

Border-associated macrophages (BAMs) are another 
type of resident macrophages that populate the CP, 
meninges, and perivascular spaces and express both 
genes found in resident microglia and bone marrow-
derived cells. About 30% of BAMs share genetic ori-
gins with monocytes that are suggested to repopulate 
the perivascular spaces after ischemia [171]. Specific 
transcriptome differences in BAMs at the meninges were 
identified in the developing brain, shedding new light on 
BAMs role under physiological or pathological condi-
tions [113], but there are no data yet on the role of BAMs 
after ischemic stroke during different brain maturation 
stages.

Oligodendrocyte development and its implications in 
perinatal white matter injury and HIE have been recently 
reviewed elsewhere [172, 173].

Peripheral Immune Cells

Neutrophils are well described as first responders to stroke 
[174–178]. Although neutrophil infiltration into the neonatal 
brain 1–24 h after tMCAO is negligible, they are chemoat-
tracted through CINC-1/KC signaling [179] and accumulate 
at the level of CP, where they release cytokines and ROS, 
shortly after reperfusion [105, 108]. Comparisons of neu-
trophil accumulation within 24 h after tMCAO in P7–P9 
[108] and P21 rodents [78] depicted more profound neu-
trophil accumulation into injured juvenile brain compared 
to neonatal brain and increased BBB albumin leakage. 
Importantly, neutrophil activation and recruitment to the 
brain are reported to be regulated via cross-talk with both 
microglia and monocytes via CCR2 signaling in monocytes. 
Juvenile mice deficient in CCR2 and CX3CR1 displayed 
lower neutrophil numbers, more preserved brain vascula-
ture, and smaller infarct compared to wild type mice due 
to decreased accumulation of monocytes and macrophages 
within the ischemic brain [105, 180]. These results suggest 
that mechanisms that maintain BBB integrity after stroke 
during neonatal period undergo changes during postnatal 

Fig. 4   Brain maturation–dependent differences in individual mechanisms of acute injury in rodent models of PAIS, CAIS, and AIS
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development and that children may be more susceptible to 
peripheral immune-mediated brain damage following stroke 
compared to neonates.

Release of neutrophil extracellular traps (NETosis) is 
one of mechanisms of neutrophil-mediated injury in adult 
stroke, in part via HMGB1-mediated mechanisms [129, 
181–184]. While this process is currently under investiga-
tion in the post-ischemic neonatal brain, administration of 
viral mimetic toll-like receptor (TLR) 3 agonist Poly-IC 
to juvenile mice rapidly activated neutrophil elastase and 
NET formation, inducing vascular leakage and immune 
cell recruitment to the cerebral vasculature. Importantly, 
pharmacological inhibition of neutrophil elastase prevented 
vascular distortions, revealing a potential novel therapy for 
arteriopathy-induced strokes in children [85]. Overall, these 
findings highlight potential key role of neutrophils in influ-
encing CAIS.

Monocytes, that can be categorized as classi-
cal (Ly6hiCCR2+CX3CR1mid) and non-classical 
(Ly6lowCCR2−CX3CR1hi) subtypes based on their pheno-
type and function, are recruited to the injury site where they 
differentiate into macrophages, phagocyte cellular debris, 
and take part in the inflammatory cascades [185, 186]. In 
neonates, monocytes have lower adhesion and antigen pres-
entation capabilities compared to adults and thus are less 
capable of infiltrating into the developing brain [187] but 
have a greater capability for cytokine secretion, affecting 
inflammatory response [188]. Infiltration into the post-
ischemic brain is thus age- and model-dependent and can 
play both beneficial and detrimental roles, depending on tim-
ing and the severity of injury [78, 189–191]. After neonatal 
tMCAO, monocytes are rapidly recruited via the CX3CR1-
CCR2 axis and signal at the level of the CPs with limited 
transmigration into the brain parenchyma [105]. While only 
few CCR2 + monocytes are seen in the injured parenchyma 
within 24 h after tMCAO in neonatal mice, their numbers 
increase, while injury and endothelial cell death evolve. In 
models of neonatal HI brain injury, instead, monocytes and 
MDMs were shown to reach the injury site biphasically via 
a disrupted BBB, contribute to brain damage [191], and to 
become pathological microglia-like cells by maintaining a 
long-term inflammatory phenotype [192]. Transmigrated 
monocytes can gradually differentiate into microglia-like 
cells with ramified cell bodies in support of the local pool 
of resident cells [193].

In a mouse CAIS model, we demonstrated the presence 
of CCR2 + monocytes after acute injury and attenuated 
brain injury in mice deficient in CX3CR1/CCR2 signaling 
[78]. Along same lines, in human CAIS, differentiation of 
monocytes into a pro-inflammatory phenotype rather than a 
restorative phenotype impaired endothelial repair response 
genes, potentially making these children more susceptible 
to stroke recurrence [194]. Together, these data suggest 

a bidirectional role in monocyte-endothelial signaling in 
childhood stroke.

T cells mediate microvascular dysfunction in post-
ischemic adult brain by producing MMPs, ROS, and pro-
inflammatory factors that degrade ECM and damage ECs 
[195, 196]. In neonates, lymphocytes infiltrate post-ischemic 
brain for months after injury, suggesting their long-term con-
tribution to the inflammatory response [197, 198]. Treatment 
with fingolimod (FTY720), an immunomodulatory drug 
clinically used for multiple sclerosis patients, was shown 
to reduce the number of circulating CD4+ and CD8+ cells 
in neonatal HI model, although data on the neuroprotec-
tive effects are conflicting [199, 200]. While pharmacologi-
cal depletion of T cells after neonatal HI exacerbated brain 
injury and increased infiltration of innate immune cells 
into the brain parenchyma, deficiency of both B and T cells 
using Rag-/- mice reduced lesion size in a neonatal model 
of white matter injury [199, 201]. Interestingly, infiltration 
of regulatory T cells (T regs) into injured brain provided 
endogenous neuroprotection in female mice after neonatal 
HI, while T-reg interaction with brain vessels in male neo-
nates after HI induce secondary neurodegerenation due to 
vascular injury [202]. As of now, the role of lymphocytes in 
PAIS and CAIS is still undefined.

Other immune cells such as mast cells and natural killer 
(NK) cells also affect stroke, but the number of studies on 
the role of these cells in neonatal brain injuries is limited. 
Activated mast cells were reported to be among the first 
responders after neonatal HI and focal stroke by undergoing 
degranulation, histamine release, and release TNF, contrib-
uting to neuronal death [203–205]. A role for spleen-asso-
ciated NK cells in contributing to neonatal brain injury was 
demonstrated in neonatal HI model [153].

Signaling Molecules and Receptors in Inflammation

Communication between different cell types is regulated by 
a variety of signaling molecules. Cytokines, chemokines, 
adhesion molecules, and MMPs are among key components 
involved in the inflammatory process [206, 207].

Cytokines and Chemokines

The cellular source, types, and magnitude of produced 
cytokines and chemokines depend on injury severity, the 
type of insult, and timing after insult. For example, in 
neonatal HI, there was an increase of pro-inflammatory 
cytokines such as IL-1β, IL-6, and TNF-α in the blood and 
the CSF soon after the insult [208, 209], while presence 
of anti-inflammatory molecules like IL-10 was detected 
in the serum and brain of neonatal rats within hours after 
injury [210]. Expression of IL-6 and TNFα in astrocytes, 
microglia, or neurons attracts neutrophils, while release of 
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IL-23 from microglia can contribute to recruitment of T cells 
[177]. Following tMCAO in P7 rats, there is marked robust 
(within 1–3 h after reperfusion) transient increase of IL-1β, 
IL-6, and MCP-1 in the plasma and a more delayed IL-1β, 
IL-6, and MCP-1 accumulation in ischemic-reperfused tis-
sue [179]. Multiple cell types upregulated cytokine and 
chemokine production in injured regions [167], but there 
were no significant increase in TNFα levels in plasma or 
in injured region at 24 h. Similarly, in tMCAO model in 
P9–P10 mice, accumulation of only a subpopulation of 
cytokines and chemokines was observed, that did not include 
TNFα [65, 211]. Several immunomodulatory strategies have 
been shown to reduce inflammation and injury in HI model 
combined with LPS pre-treatment, such as administration 
of IL-1 receptor antagonist (IL-1RA) [212]. A number of 
pre- and post-conditional strategies have been tested, as 
summarized elsewhere [213].

In a CAIS model, accumulation of IL-6, TNFα, MCP-1, 
and KC was marked at 24 h, but there was no increase in 
IL-1β levels and IL-10 and IL-4 in injured regions [78]. 
CX3CR1 and CCR2 deficiency attenuated accumulation 
of chemokines MCP-1 and KC, changes that paralleled 
attenuated monocyte and neutrophil infiltration [78]. These 
data indicate age-dependent patterns of the inflammatory 
response to stroke.

Clinically, children with abnormal neurodevelopmental 
outcome following neonatal encephalopathy have higher 
peripheral levels of several cytokines and chemokines [33]. 
Similarly, increased cytokine and chemokine levels are 
reported in the CSF in children with cerebral arteriopathies 
[214] and neonates following birth asphyxia [209].

Receptors

Pattern recognition receptors (PRRs), including TLR recep-
tors, play a key role across ages in many diseases, including 
stroke and infection (reviewed in [91, 215, 216]). PRRs are 
expressed in multiple immune cells and mediate synthe-
sis of inflammatory molecules like IL-1β, TNF-α, iNOS, 
and COX2 [217], contributing to progression of cell death. 
Activation of TLR1/2/3 increases the vulnerability of the 
neonatal brain to HI [217, 218], in part by mediating leu-
kocyte trafficking to the developing brain through the CP 
[219]. There are major differences in TLR2 expression after 
tMCAO between adult and neonatal brain, a rapid marked 
increase in expression following adult tMCAO [220] and 
only marginal difference following neonatal tMCAO [221]. 
In neonates, increased immune cell trafficking via the CP 
ipsilateral to the MCAO occurs in a TLR2-dependent man-
ner [105] and increases BCSFB permeability, thus suggest-
ing that post-ischemic inflammatory patterns in the neonatal 
brain are stimuli-dependent upon TLR activation and, more 

importantly, through communication with other receptors 
[219]. Our studies also revealed more than 30 fold decrease 
in TLR2 expression between P8 and P28 under physiological 
conditions [221], making age-dependent TLR2 contribution 
to stroke likely.

CC and CXC receptors, receptors that attract monocytes 
and neutrophils, respectively, are upregulated in PAIS and 
CAIS models [78, 108, 167]. As we already discussed, KC/
CINC-1-dependent neutrophil infiltration is low in PAIS 
model [108] but is increased in a CAIS model [78]. The 
injurious role of CCR2 and CX3CR1 became evident by 
attenuated acute injury in mice with disrupted receptors. 
Of note, neutrophil infiltration was attenuated as well, dem-
onstrating an interplay between monocyte and neutrophil 
signaling after neonatal stroke.

The scavenger receptor CD36 is central to multiple bio-
logical functions in ECs, microglia, and monocytes, includ-
ing uptake of long-chain fatty acids and oxLDL, phagocy-
tosis of apoptotic debris, and cell chemotaxis [222–225]. 
Via multiple ligands (phospholipids, advanced glycation 
end products, etc.) and partnering with multiple receptors 
in the lipid fraction (including TLR2/4/6, LOX) [226], 
CD36 serves as “master switch” in assembling and trigger-
ing inflammatory pathways and ROS production. CD36 is 
injurious after acute adult stroke [65, 227, 228] but pro-
tective in acute perinatal stroke by phagocytosis apoptotic 
debris [229]. Such a rather opposing maturation-dependent 
response in part depends on availability of ligands in neo-
natal vs. adult brains as well as the recruitment of both neu-
trophils and monocytes at the level of the CP, influencing 
the metabolic and ECM signaling [230]. CD36 function thus 
differs depending on brain maturation, and further studies 
are needed to define age-dependent effects in the develop-
ing brain.

An array of other receptors play fundamental roles after 
stroke. For example, microglial expression of purinergic 
receptors P2X and P2Y (P2RY12) was shown to promote 
microglia-vessel interactions to maintain BBB closure after 
cerebrovascular damage [231] and to protect neuronal func-
tions [165]. Also, TGFBR2 in endothelial cells was shown to 
modulate vascular sprouting during fetal development [232] 
and TGFBR2 signaling in microglial cells to protect BBB 
integrity in PAIS [166]. The role of dynamic neurodevelop-
ment changes in expression of these receptors in relation to 
their impact on stroke pathology in different age groups is 
yet to be understood.

Sex Differences

Neonatal and childhood stroke are sexually dimorphic, 
in large due to a complex interplay between sex- and sex 
hormone-related immune activation in the brain, as evident 
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in humans and in animal models [33, 100, 233–235]. Male 
neonates are reported to be more susceptible than female 
neonates and have worse outcomes compared to females 
with similar injury [236]. Although the nature of the spe-
cific mechanisms explaining such differences between 
males and females is far from being understood, several 
biological processes have been identified, including higher 
susceptibility to oxidative stress and enhanced microglial 
responses in the male brain [100, 237]. Microglia are 
reported to be sexually dimorphic in the neonatal brain 
under physiological conditions, with differences evident 
in microglial cell morphology, transcriptional state, and 
functionality [237–240]. Recent findings have also high-
lighted opposite functions of Treg after neonatal HI [202], 
suggesting different neuroinflammatory responses after 
injury. Sex-dependent effects of inflammation in neonatal 
brains were also identified to have implications for neuro-
psychiatric disorders [241]. Thus, consideration to sex 
dependence should be given while developing therapeutic 
approaches for infants and children.

Brain Repair After Stroke in Immature 
Rodents

Research over the past decade pointed out the need to focus 
on long-term brain repair, especially given only short-term 
success of various therapeutic approaches in neonatal HI 
and arterial stroke models [91]. While literature is exten-
sive of neural repair in neonatal HI, long-term studies in 
PAIS model are sparse [242]. One important observation 
made in neonatal rat tMCAO is based on the assumption 
that angiogenesis and repair should take off early after injury 
and be more profound in neonatal than in adult stroke due 
to developmental plasticity. Nonetheless, while ECs prolif-
eration occurs in P7 [88] and P10 rats [243] subjected to 
tMCAO, the number of proliferating ECs was significantly 
reduced in the core and perifocal lesions up to 2 weeks after 
tMCAO in neonatal rats [88]. Conversely, the angiogenic 
response following adult stroke was reported within 24 h 
after tMCAO [244–246]. While there were no follow-up 
studies to fully understand this unexpected injury pattern, 
brain plasticity can be controlled at the molecular and net-
work level at different developmental stages and depend on 
the state of the neurovascular unit, perhaps its low permis-
siveness, adversely affecting the recovery of functional neu-
ronal circuits [247]. Growth factors (i.e., VEGF and BDNF) 
that are needed in the peri-infarct areas for cell migration 
towards the penumbra [248, 249] and promoting both angio-
genesis and proliferation in neurogenic areas, such as SVZ 
and hippocampus, are present in both neonatal and adult 
stroke [250–253], thus, making it unlikely to be limiting 

repair. However, the endogenous repair mechanisms in the 
post-ischemic brain can also be limited as the differentiation 
of proliferative cells into astrocytes rather than neurons and 
OLs can contribute to astrogliosis to inhibit neural repair and 
brain connectivity [254]. As discussed below, cell therapies 
and growth factor administration could enhance the repair.

Therapies

Collateral blood flow is rather extensive in the develop-
ing brain [86] and the penumbra, which has long been 
the pharmacological target for acute ischemic stroke treat-
ment [255], observed on MRI in more than half neonates 
after PAIS, giving hope for development effective thera-
pies. Although several strategies are being considered for 
cerebral palsy and stroke (reviewed in [256]), there are 
essentially no effective therapies that protect the develop-
ing brain through adulthood, and therapeutic approaches 
meant at attenuating effects of cerebral ischemia in neo-
nates have proven to be short-lived, demonstrating the 
need to focus on neural repair after neonatal stroke.

Therapeutic hypothermia (HT) is the only approved 
treatment for HIE that offers neuroprotection and reduces 
long-term disability [257]. The beneficial role of HT, how-
ever, is limited to milder HIE cases, and its applicability to 
neonatal arterial stroke has not been clearly demonstrated. 
The premise of HT is to delay cell membrane depolariza-
tion and attenuate intracellular Ca2 + influx and extracellu-
lar glutamate release [258]. HT also modulates the inflam-
matory pathways, including reducing pro-inflammatory 
cytokine production and attenuating microglia proliferation 
[259–261]. At the same time, studies in humans and in 
animal models have revealed the need to better understand 
re-warming patterns to limit unwanted adverse effects. Sev-
eral pharmacological strategies geared towards promoting 
neurogenesis have also been tested in clinical trials after 
promising preclinical outcomes, but with little success as 
of now. For example, erythropoietin treatment in neona-
tal rats after tMCAO induced neurogenesis and oligoden-
drogenesis and offered long-term neuroprotection [262, 
263], even when treatment was delayed to 72 h after injury 
[264], but clinical efficacy was not demonstrated [265], at 
least in preterm babies (reviewed in [266]). Recent studies 
have also suggested PJ34, the poly(ADP-ribose) polymer-
ase inhibitor, and SAG, the Shh-Smoothened agonist, to 
be neuroprotective after MCAO in neonatal rodents [267, 
268].

During the past decades, cell-based therapies have 
provided encouraging results preventing perinatal brain 
injuries or enhancing repair in experimental settings, as 
recently reviewed in detail elsewhere [253, 269–271]. 
Administration of umbilical cord blood cells (UCBCs), for 
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instance, inhibited microglial activation following neonatal 
HI [272], attenuated reactive gliosis and reduced infiltra-
tion of leukocytes into the brain, and supported BBB func-
tion [273]. Mesenchymal stem cells (MSCs) were shown to 
promote regeneration and reduce gliosis when administered 
intranasally 10 days after HI [274]. Similarly, MSC admin-
istration in P10 rats after tMCAO improved long-term 
functional outcomes and provided white matter protection 
when administered 3 days after injury [74, 275]. Of inter-
est, the first human study has recently shown the feasibil-
ity of intranasal administration of MSCs without serious 
adverse effects, suggesting the safety of the treatment and 
route of administration [276]. Studies in neonatal HI model 
showed that transplanted cells are short-lived and become 
undetectable soon after administration [277], but they 
affect local environment, oligodendrogenesis, and myelina-
tion. MSCs were shown to promote angiogenesis, increase 
neurovascular remodeling, and improve neurogenesis and 
neurological outcomes by rewiring neuronal circuitry after 
stroke by releasing extracellular vesicles (EVs), exosomes 
in particular [278, 279]. In tMCAO in P9 mice MSCs-
derived EVs were shown to act via modulatory effects on 
microglial cells and ECs [280]. Transfer of microvesicles, 
but not exosomes, improved mitochondrial function in EC 
cultures subjected to oxygen–glucose deprivation. EC-
derived EVs resulted in a greater extent of energy transfer 
compared to macrophage-derived EVs, demonstrating EVs 
potential to maintain healthy ECs and prevent alteration 
of BBB functionality after stroke [281]. Cell modulation 
via EVs could thus represent a novel potentially powerful 
therapeutic alternative to cell-based treatments, but efficacy 
and safety are yet to be demonstrated in clinical trials.

In children, given the influence of infection-induced 
immune activation that contributes to arteriopathies and vas-
cular dysfunction-induced stroke, steroid treatments have been 
utilized. While administration of steroids could be beneficial 
for limiting infection-induced arteriopathies, more data is 
required to show that they can either treat or prevent arteri-
opathy-induced stroke by muting the immune response [48]. 
Given the high association between infections and stroke in 
children, another line of investigation is focused on quelling 
infection-induced immunity [282]. Based on these data, one 
possible preventive approach is vaccine administration that 
would promote immune quiescence and induce resilience of 
cerebral arteries to infection and associated strokes. Finally, 
preconditioning, a phenomenon that consists of induction of 
sublethal stress (i.e., hypoxia, ischemia) or drug administra-
tion before the main ischemic event, as well as post-condi-
tioning, meant to induce resistance to a subsequent potentially 
lethal ischemic insult, has been demonstrated to be safe and 
is being actively studied in adult animal stroke models and 
in small stroke clinical trials [283–285]. This therapeutic 
approach may also prove beneficial in children.

Overall, therapies for both reducing the outcomes and/or 
preventing the incidence of neonatal and childhood stroke 
are lacking. Thus, it is crucial that more preclinical stud-
ies that reveal age-specific stroke mechanisms and more 
clinical studies that identify risk factors and biomarkers for 
ischemic brain disease are conducted.

Summary and Conclusions

It is no longer disputed that the developmental stage of the brain 
at stroke onset plays a key role in injury and that inflammation 
is an established hallmark of brain injury in infants and chil-
dren. Establishment of PAIS and CAIS models enabled iden-
tification of several brain-maturation mechanisms of injury, 
findings that we discuss in this review. However, substantial 
gaps exist in the understanding of the pathophysiology of PAIS 
and CAIS. An improved understanding of the specific cellular 
and molecular pathways involved in the post-ischemic cascades 
during different stages of brain maturation will help identify 
brain maturation-specific targets and therapies for newborns 
and children who suffer stroke.
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