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Abstract
Candidate gene studies have identified genetic variants associated with clinical outcomes following aneurysmal subarach-
noid haemorrhage (aSAH), but no genome-wide association studies have been performed to date. Here we report the results 
of the discovery phase of a two-stage genome-wide meta-analysis of outcome after aSAH. We identified 157 independent 
loci harbouring 756 genetic variants associated with outcome after aSAH (p < 1 ×  10−4), which require validation. A single 
variant (rs12949158), in SPNS2, achieved genome-wide significance (p = 4.29 ×  10−8) implicating sphingosine-1-phosphate 
signalling in outcome after aSAH. A large multicentre international effort to recruit samples for validation is required and 
ongoing. Validation of these findings will provide significant insight into the pathophysiology of outcomes after aSAH with 
potential implications for treatment.
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Introduction

Aneurysmal subarachnoid haemorrhage (aSAH) is a devas-
tating form of stroke with the worst outcomes and highest 
socioeconomic burden of any stroke type [1]. The pathophys-
iology of neurological injury following aSAH is incompletely 
understood. The mechanism is thought to be multifactorial 
with the initial surge in intracranial pressure following haem-
orrhage combined with the presence of blood breakdown 
products in the cerebrospinal fluid leading to a pattern of 
injury characterised by inflammation, cerebral vasospasm, 
microthrombosis, oxidative injury and cortical spreading 
depression [2–4]. Despite multiple clinical trials, nimodipine 
is the only therapeutic agent to improve outcomes [5]. It is 
our incomplete understanding of the mechanisms underlying 
neurological injury that is, at least in part, responsible for the 
lack of therapeutic innovation to improve outcomes.

The best outcome prediction model after aSAH, utilis-
ing clinical, demographic and imaging characteristics only 
explains up to 31% of the variation in outcome following 
aSAH [6]. Consequently, a large proportion of variation in 
outcome following aSAH is unexplained. There is a growing 
body of evidence from candidate gene studies that genetic 
background accounts for a proportion of this unexplained 
variation [7, 8]. However, no genome-wide analysis has been 
performed. Such a study would have the potential to provide 
valuable insights into the mechanisms underlying neurologi-
cal injury following aSAH by identifying, as yet unstudied, 
genes associated with outcome and thus novel targets for 
therapeutic intervention.

In 2018, the HATCH consortium highlighted the need to 
better understand the pathophysiological mechanisms under-
lying outcome and proposed a large multicentre genetic 
analysis of outcome following aSAH [2]. The HATCH con-
sortium has developed this proposal into an international 
collaboration to undertake a two-stage (discovery and vali-
dation) genome-wide association (GWA) study of outcome 
following aSAH, the protocol for which was published in 
this journal [9].

The aim of this manuscript is to (1) report the completion 
of the discovery stage of the study including preliminary 
results and (2) raise awareness of the study to recruit further 
samples for the validation stage.

Methods

This is a two-stage (discovery and validation) GWA meta-
analysis of outcome following aSAH. The results of the dis-
covery analysis are reported in this manuscript. All analyses 
were performed according to the published protocol [9]. The 
study has both national ethical (REC 19 SC 0485) and insti-
tutional (ERGO 49253) approval.

For the discovery analysis, individuals were identified 
from (1) six studies from the HATCH consortium network 
and (2) the UK Biobank, a major biomedical database with 
extensive genetic and clinical data, previously described in 
detail[10] (application number 49305).

In the HATCH dataset, the primary outcome was the 
modified Rankin Scale (mRS) [11, 12] or Glasgow Outcome 
Scale (GOS) [13, 14] dichotomised into good (mRS 0–2, 
GOS 4–5) and poor (mRS 3–6, GOS 1–3) outcomes in the 
first two years following aSAH. The mRS and/or GOS are 
not available in the UK Biobank and, therefore, a measure of 
cognitive performance, psychomotor reaction time, was used 
since cognition is highly correlated with mRS/GOS follow-
ing aSAH [15] and reaction time is significantly slower in 
aSAH cases compared to controls in the UK Biobank [16]. 
Reaction times were ranked from fastest to slowest and then 
the UK Biobank was dichotomised into good (faster) and 
poor (slower) outcomes, generating an equivalent proportion 
of good outcome individuals to the HATCH dataset.

Genotype information from eligible patients underwent 
quality control and imputation as required (see protocol 
for details [9]). Within individual cohorts, genetic variants 
were tested for association with dichotomised outcome using 
multivariable logistic regression under an additive model, 
controlling for confounding variables (age and genetic 
ancestry). A fixed effects meta-analysis was performed to 
determine each genetic variant’s overall effect size and sig-
nificance. The meta-analysis was performed on all datasets 
and repeated in the HATCH dataset alone (i.e. excluding the 
UK Biobank given its alternative outcome metric). Inde-
pendent loci were identified for validation using a clumping 
procedure to group single nucleotide polymorphisms (SNPs) 
in linkage disequilibrium (LD) (R2 > 0.2) and within 250 kb 
of each other. Index SNPs with suggestive significance 
(p < 1 ×  10−4) were selected for validation. The threshold for 
genome-wide significance was p ≤ 5 ×  10−8 and all analyses 
were performed using PLINK, STATA (StataCorp. 2011. 
Stata Statistical Software: Release 16. College Station, TX: 
StataCorp LP), wANNOVAR [17] and FUMA [18].



683Translational Stroke Research (2023) 14:681–687 

1 3

Table 1  Demographics and outcome data for included samples 
divided by dataset. If both mRS and GOS were available for a single 
study, the scale with greater data availability was used. If data avail-

ability was equal for mRS and GOS then mRS was used as it is the 
preferred outcome scale in stroke research. WFNS, World Federation 
of Neurological Surgeons; SD: standard deviation; ms: millisecond

HATCH dataset UK Biobank

Dataset 1 2 3 4 5 6 7
Origin GOSH, UK Utrecht, Nether-

lands
Geneva, Switzer-

land
Hallym, South 

Korea
Pittsburgh, USA Geisinger, USA UK Biobank

Selected publica-
tion detailing 
dataset

Bakker et al Bakker et al Bakker et al Hong et al Kim et al Li et al www. ukbio bank. 
ac. uk/ enable- 
your- resea rch/ 
about- our- data/ 
genet ic- data

Sample size (n) 817 470 63 89 180 66 804
Age
  Mean (± SD) 54.4 (± 12.4) 57.2 (± 12.9) 53.6 (± 13.0) 58.7 (± 11.6) 54.9 (± 11.1) 57.7 (± 13.2) 47.6 (± 11.5)

Sex
  Male (n, %) 230 (28.2%) 129 (27.4%) 15 (23.8%) 32 (36.0%) 55 (30.6%) 21 (31.8%) 336 (41.8%)
  Female (n, %) 587 (71.8%) 341 (72.6%) 48 (76.2%) 57 (64.0%) 125 (69.4% 45 (68.2%) 468 (58.2%)

WFNS grade 
(n, %)

Hunt and Hess

  1 473 (57.9%) 216 (46.0%) 39 (61.9%) 48 (53.9%) 27 (15.0%) 30 (45.5%) -
  2 171 (20.9%) 127 (27.0%) 7 (11.1%) 1 (1.1%) 56 (31.1%) 12 (18.2%) -
  3 36 (4.4%) 23 (4.9%) 5 (7.9%) 10 (11.2%) 61 (33.9%) 4 (6.1%) -
  4 88 (10.8%) 57 (12.1%) 5 (7.9%) 20 (22.5%) 23 (12.8%) 8 (12.1%) -
  5 42 (5.1%) 44 (9.4%) 7 (11.1%) 10 (11.2%) 13 (7.2%) 12 (18.2%) -
  Missing 7 (0.9%) 3 (0.6%) - - - - 804 (100.0%)

Time to follow-up (months)
  Mean (± SD) 9.4 (± 6.8) 3.0 (± 0) 6.5 (± 2.5) 5.6 (± 1.2) 6.0 (± 2.2) 3.0 (± 0) 129.3 (± 122.1)
  Missing (n, %) 89 (10.9%) - - - - -

Outcome
  mRS
    0 (n, %) 260 (31.8%) 5 (1.1%) 6 (9.5%) 0 (0.0%) 43 (23.9%) 5 (7.6%) -
    1 (n, %) 300 (36.9%) 26 (5.5%) 19 (30.2%) 48 (53.9%) 64 (35.6%) 22 (33.3%) -
    2 (n, %) 134 (16.5%) 319 (67.9%) 18 (28.6%) 9 (10.1%) 27 (15.0%) 18 (27.3%) -
    3 (n, %) 59 (7.2%) 20 (4.3%) 12 (19.0%) 15 (16.9%) 9 (5.0%) 6 (9.1%) -
    4 (n, %) 24 (2.9%) 33 (7.0%) 1 (1.6%) 7 (7.9%) 3 (1.7%) 4 (6.1%) -
    5 (n, %) 11 (1.4%) 30 (6.4%) 0 (0.0%) 3 (3.4%) 5 (2.8%) 12 (18.2%) -
    6 (n, %) 0 (0.0%) 37 (7.9%) 7 (11.1%) 7 (7.9%) 29 (16.1%) 0 -
    Missing (n, %) 29 (3.6%) - - - - - -
  GOS
    1 (n, %) 31 (3.8%) 37 (7.9%) - 7 (7.9%) 29 (16.1%) - -
    2 (n, %) 0 (0.0%) 1 (0.2%) - 2 (2.2%) 0 (0.0%) - -
    3 (n, %) 33 (4.1%) 62 (13.2%) - 11 (12.4%) 10 (5.6%) - -
    4 (n, %) 124 (15.2%) 123 (26.2%) - 13 (14.6%) 42 (23.3%) - -
    5 (n, %) 629 (77.3%) 247 (52.6%) - 56 (62.9%) 99 (55.0%) - -
    Missing (n, %) - - - - - - -

Reaction time (ms)
  Mean (± SD) - - - - - - 587.2 (± 138.3)
  Missing - - - - - - -
  Metric defin-

ingout come
GOS mRS mRS mRS mRS mRS Reaction time

  Good (n, %) 753 (92.5%) 350 (74.0%) 43 (68.3%) 57 (64.0%) 134 (74.4%) 45 (68.1%) 653 (81.2%)
  Poor (n, %) 64 (7.9%) 120 (26.0%) 20 (31.7%) 32 (36.0%) 46 (25.6%) 21 (31.8%) 151 (18.8%)

http://www.ukbiobank.ac.uk/enable-your-research/about-our-data/genetic-data
http://www.ukbiobank.ac.uk/enable-your-research/about-our-data/genetic-data
http://www.ukbiobank.ac.uk/enable-your-research/about-our-data/genetic-data
http://www.ukbiobank.ac.uk/enable-your-research/about-our-data/genetic-data
http://www.ukbiobank.ac.uk/enable-your-research/about-our-data/genetic-data
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Results

A total of 2489 samples were used for the discovery analysis 
following quality control. These samples were drawn from 
six datasets from the HATCH consortium [19–22] (n = 1685 
patients) and 804 individuals from the UK Biobank. After 
dichotomisation of mRS/GOS within the HATCH consor-
tium data, 1382 (82.0%) patients were classified as good out-
come and 303 (18.0%) as poor outcome. Based on reaction 
times in the UK Biobank, 653 (81.2%) individuals were clas-
sified as good outcome and 151 (18.8%) as poor outcome. 
Table 1 details the demographics and other characteristics 
of the included datasets.

Analysis of samples from the HATCH consortium 
(n = 1685) identified 403 SNPs associated with clinical out-
come (p < 1 ×  10−4) within 97 independent loci after LD-based 
SNP clumping (Fig. 1A and Supplementary Table 1A and B). 
No genetic variants reached genome-wide significance.

Including all seven datasets (n = 2489) 85 independent 
loci were identified from 406 SNPs, associated with clini-
cal outcome (p < 1 ×  10−4) (Fig. 1B and Supplementary 
Table 2A and B). A single variant, rs12949158, reached 
genome-wide significance (p = 4.29 ×  10−8). rs12949158 
is located on chromosome 17 in an intronic region of the 
sphingolipid transporter 2 (SPNS2) gene, which codes for 
the major transporter of sphingosine-1-phosphate (S1P) 
(Supplementary Table  2A). The rs12949158 SNP was 
only genotyped in two datasets [UK Biobank (n = 744) and 
Korean datasets (n = 89)] (Fig. 1C). Arrays used in the other 
datasets did not include rs12949158 or any other SNPs with 
sufficient LD to allow reliable imputation. The rs12949158 
alternate A allele was associated with an increased risk of 
poor outcome with an odds ratio of 2.15 (95% confidence 
interval 1.63–2.82). The association of rs12949158 with 
psychomotor reaction time was specific to aSAH, since in a 
previously published UK Biobank control cohort matched to 
the same aSAH population[16], this relationship was absent 
(p = 0.55).

Including both analyses, a total of 157 independent loci 
were identified from 756 unique SNPs and these will be 
taken forward for validation.

Discussion

In this discovery genome-wide meta-analysis, we identified 
157 independent loci from 756 unique SNPs associated with 
outcome following aSAH (p < 1 ×  10−4) for validation. We 
also report that the rs12949158 alternate A allele, located 
within the SPNS2 gene, was associated with an increased risk 
of poor outcome after aSAH (OR 2.15 95% CI 1.63–2.82) 
with genome-wide significance (p = 4.29 ×  10−8). Although 

one possible alternative explanation is that rs12949158 asso-
ciates with psychomotor reaction time independent of aSAH, 
this association was not observed in control individuals in 
the UK Biobank.

The genome-wide significant rs12949158 finding is not 
conclusive and requires validation. Firstly, the rs12949158 
genotype was only typed in a subset of the discovery cohort 
(n = 833). Secondly, the finding is primarily driven by the 
UK Biobank, which uses an outcome measure that is dif-
ferent from the other datasets (psychomotor reaction time). 
In the second stage, a customised genotyping array will be 
used to directly capture all variants targeted for validation 
including rs12949158.

The rs12949158 variant is intronic, located within the 
gene SPNS2, a member of the S1P signalling pathway. While 
variation in a gene intron does not guarantee that the same 
gene is involved, intron-mediated enhancement of gene 
expression is increasingly recognised and the intronic vari-
ation is most likely to regulate the closest gene [23]. Moreo-
ver, the S1P signalling pathway is a biologically plausible 
candidate to influence outcomes after aSAH since S1P has 
been implicated in neurological injury following stroke via 
activation of S1P receptors (S1PR) leading to microglial 
activation, neuronal death, inflammation and blood–brain 
barrier disruption [24, 25]. Specifically, after human aSAH, 
S1P was found to be elevated in the cerebrospinal fluid 
where its concentration correlated with haemorrhage vol-
ume [26] and worse neurological outcome [26]. A possible 
mechanism linking S1P to clinical outcome is provided by 
studies showing that S1P induces cerebral vasospasm in 
canine basilar artery in vitro and in vivo [27] and in murine 
basilar artery in vitro via S1PR3 [28]. This pathway is of 
particular interest since S1PR-modulating drugs, already 
licensed in other neurological conditions (e.g. fingolimod) 
have been shown to be neuroprotective in ischemic stroke 
[29] and intracerebral haemorrhage [30] in humans and 
could be re-purposed for aSAH if this finding is validated.

The study’s population was biased towards participants 
with a good outcome almost certainly because individuals 
with a poor prognosis were less likely to be recruited. How-
ever, this study’s aim was to better understand the patho-
physiological mechanisms underlying outcomes in survivors 
with a view to developing treatments to improve outcomes. 
Individuals dying in the acute phase or early after admission 
will unfortunately be unlikely to benefit from such interven-
tions. Hence, while this study was biased towards partici-
pants with a good outcome, these are the individuals most 
likely to benefit from the findings.

This discovery study achieved its prespecified sample 
size in a timely manner and represents a highly success-
ful international collaboration generating interesting results 
to take forward to validation. The total target sample size 
including the validation cohort is 5000 [9] which would be 
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Fig. 1  A Manhattan plot from the meta-analysis that includes 
HATCH datasets alone. B Manhattan plot from the meta-analysis 
that includes UK Biobank and HATCH datasets. The red dotted line 
signifies genome-wide significance (p < 5 ×  10−8), green dotted line 

signifies suggestive significance (p < 1 × 10.−4). Manhattan plots gen-
erated using FUMA. C Forest plot for genome-wide significant SNP 
rs12949158. rs12949158 genotypes in: UK Biobank: AA 252, AG 
346, GG 146; Korean dataset: AA 22, AG 42, GG 25
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powered to detect common variation (minor allele frequency 
(MAF = 0.4) with an effect size of 1.39 and rare variation 
(MAF = 0.1) with an effect size of 1.66 at genome-wide sig-
nificance. Recruitment is ongoing for validation and inves-
tigators wishing to collaborate using either retrospective or 
prospective data can find further information on the study 
website. The study has been designed to maximise inclu-
sivity. It is open to any investigator able to provide the fol-
lowing de-identified biosamples or data from patients with 
aSAH: genome-wide genotype information (or DNA/cellu-
lar sample for genotyping), mRS/GOS within two years of 
haemorrhage, age, sex and evidence of institutional review 
board approval. In addition, funding will be provided to 
facilitate genotyping where local funding is not already in 
place. Where data availability allows we will also explore 
whether significant genetic variants mediate the effect of 
other factors, known to influence outcome after aSAH such 
as clinical and radiological features.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12975- 022- 01095-4.
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