Skip to main content

Advertisement

Log in

Metformin Alleviates Delayed Hydrocephalus after Intraventricular Hemorrhage by Inhibiting Inflammation and Fibrosis

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Intraventricular hemorrhage (IVH) is a subtype of intracerebral hemorrhage (ICH) with high morbidity and mortality. Posthemorrhagic hydrocephalus (PHH) is a common and major complication that affects prognosis, but the mechanism is still unclear. Inflammation and fibrosis have been well established as the major causes of PHH after IVH. In this study, we aimed to investigate the effects of metformin on IVH in adult male mice and further explored the underlying molecular mechanisms of these effects. In the acute phase, metformin treatment exerted dose-dependent neuroprotective effects by reducing periependymal apoptosis and neuronal degeneration and decreasing brain edema. Moreover, high-dose metformin reduced inflammatory cell infiltration and the release of proinflammatory factors, thus protecting ependymal structure integrity and subependymal neurons. In the chronic phase, metformin administration improved neurocognitive function and reduced delayed hydrocephalus. Additionally, metformin significantly inhibited basal subarachnoid fibrosis and ependymal glial scarring. The ependymal structures partially restored. Mechanically, IVH reduced phospho-AMPK (p-AMPK) and SIRT1 expression and activated the phospho-NF-κB (p-NF-κB) inflammatory signaling pathway. However, metformin treatment increased AMPK/SIRT1 expression and lowered the protein expression of p-NF-κB and its downstream inflammation. Compound C and EX527 administration reversed the anti-inflammatory effect of metformin. In conclusion, metformin attenuated neuroinflammation and subsequent fibrosis after IVH by regulating AMPK /SIRT1/ NF-κB pathways, thereby reducing delayed hydrocephalus. Metformin may be a promising therapeutic agent to prevent delayed hydrocephalus following IVH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

IVH :

Intraventricular hemorrhage

PHH :

Posthemorrhagic hydrocephalus

ICH :

Intracerebral hemorrhage

GMH :

Germinal matrix hemorrhage

ICP :

Intracranial pressure

ETV :

Endoscopic third ventriculostomy

CSF :

Cerebrospinal fluid

CPe :

Choroid plexus epithelium

SVZ :

Subventricular zone

CNS :

Central nervous system

AMPK :

AMP-activated protein kinase

NF-κB :

Nuclear factor-κB

MRI :

Magnetic resonance imaging

TUNEL :

Terminal deoxynucleotidyl transferase mediated dUTP nick end labeling

FJC :

Fluoro-Jade C

HE :

Hematoxylin and eosin

PBS :

Phosphate-buffered saline

Iba-1 :

Ionized calcium bindingadaptor molecule-1

GFAP :

Glial fibrillary acidic protein

SEM :

Scanning electron microscopy

PBST :

PBS plus Tween-2

References

  1. Hanley DF, Lane K, McBee N, Ziai W, Tuhrim S, Lees KR, et al. Thrombolytic removal of intraventricular haemorrhage in treatment of severe stroke: results of the randomised, multicentre, multiregion, placebo-controlled CLEAR III trial. Lancet. 2017;389(10069):603–11. https://doi.org/10.1016/S0140-6736(16)32410-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Garton T, Hua Y, Xiang J, Xi G, Keep RF. Challenges for intraventricular hemorrhage research and emerging therapeutic targets. Expert Opin Ther Targets. 2017;21(12):1111–22. https://doi.org/10.1080/14728222.2017.1397628.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Strahle J, Garton HJ, Maher CO, Muraszko KM, Keep RF, Xi G. Mechanisms of hydrocephalus after neonatal and adult intraventricular hemorrhage. Transl Stroke Res. 2012;3(Suppl 1):25–38. https://doi.org/10.1007/s12975-012-0182-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bu Y, Chen M, Gao T, Wang X, Li X, Gao F. Mechanisms of hydrocephalus after intraventricular haemorrhage in adults. Stroke Vasc Neurol. 2016;1(1):23–7. https://doi.org/10.1136/svn-2015-000003.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cherian S, Whitelaw A, Thoresen M, Love S. The pathogenesis of neonatal post-hemorrhagic hydrocephalus. Brain Pathol. 2004;14(3):305–11. https://doi.org/10.1111/j.1750-3639.2004.tb00069.x.

    Article  CAS  PubMed  Google Scholar 

  6. Hallevi H, Albright KC, Aronowski J, Barreto AD, Martin-Schild S, Khaja AM, et al. Intraventricular hemorrhage: Anatomic relationships and clinical implications. Neurology. 2008;70(11):848–52. https://doi.org/10.1212/01.wnl.0000304930.47751.75.

    Article  CAS  PubMed  Google Scholar 

  7. Hallevi H, Walker KC, Kasam M, Bornstein N, Grotta JC, Savitz SI. Inflammatory response to intraventricular hemorrhage: time course, magnitude and effect of t-PA. J Neurol Sci. 2012;315(1–2):93–5. https://doi.org/10.1016/j.jns.2011.11.019.

    Article  PubMed  Google Scholar 

  8. Del Bigio MR. Pathophysiologic consequences of hydrocephalus. Neurosurg Clin N Am. 2001;12(4):639–49, vii.

    Article  PubMed  Google Scholar 

  9. Stagno V, Navarrete EA, Mirone G, Esposito F. Management of hydrocephalus around the world. World Neurosurg. 2013;79(2 Suppl):S23 e17–20. https://doi.org/10.1016/j.wneu.2012.02.004.

  10. Kahle KT, Kulkarni AV, Limbrick DD Jr, Warf BC. Hydrocephalus in children. Lancet. 2016;387(10020):788–99. https://doi.org/10.1016/S0140-6736(15)60694-8.

    Article  PubMed  Google Scholar 

  11. Kulkarni AV, Riva-Cambrin J, Butler J, Browd SR, Drake JM, Holubkov R, et al. Outcomes of CSF shunting in children: comparison of Hydrocephalus Clinical Research Network cohort with historical controls: clinical article. J Neurosurg Pediatr. 2013;12(4):334–8. https://doi.org/10.3171/2013.7.PEDS12637.

    Article  PubMed  Google Scholar 

  12. Karimy JK, Reeves BC, Damisah E, Duy PQ, Antwi P, David W, et al. Inflammation in acquired hydrocephalus: pathogenic mechanisms and therapeutic targets. Nat Rev Neurol. 2020;16(5):285–96. https://doi.org/10.1038/s41582-020-0321-y.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kulkarni AV, Drake JM, Kestle JR, Mallucci CL, Sgouros S, Constantini S, et al. Endoscopic third ventriculostomy vs cerebrospinal fluid shunt in the treatment of hydrocephalus in children: a propensity score-adjusted analysis. Neurosurgery. 2010;67(3):588–93. https://doi.org/10.1227/01.NEU.0000373199.79462.21.

    Article  PubMed  Google Scholar 

  14. Kulkarni AV, Schiff SJ, Mbabazi-Kabachelor E, Mugamba J, Ssenyonga P, Donnelly R, et al. Endoscopic Treatment versus Shunting for Infant Hydrocephalus in Uganda. N Engl J Med. 2017;377(25):2456–64. https://doi.org/10.1056/NEJMoa1707568.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vardakis JC, Tully BJ, Ventikos Y. Exploring the efficacy of endoscopic ventriculostomy for hydrocephalus treatment via a multicompartmental poroelastic model of CSF transport: a computational perspective. PLoS ONE. 2013;8(12): e84577. https://doi.org/10.1371/journal.pone.0084577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Raper D, Louveau A, Kipnis J. How Do Meningeal Lymphatic Vessels Drain the CNS? Trends Neurosci. 2016;39(9):581–6. https://doi.org/10.1016/j.tins.2016.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol. 2018;17(11):1016–24. https://doi.org/10.1016/S1474-4422(18)30318-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Karimy JK, Zhang J, Kurland DB, Theriault BC, Duran D, Stokum JA, et al. Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat Med. 2017;23(8):997–1003. https://doi.org/10.1038/nm.4361.

    Article  CAS  PubMed  Google Scholar 

  19. Banizs B, Pike MM, Millican CL, Ferguson WB, Komlosi P, Sheetz J, et al. Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development. 2005;132(23):5329–39. https://doi.org/10.1242/dev.02153.

    Article  CAS  PubMed  Google Scholar 

  20. Bai B, Chen H. Metformin: A Novel Weapon Against Inflammation. Front Pharmacol. 2021;12: 622262. https://doi.org/10.3389/fphar.2021.622262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tao L, Li D, Liu H, Jiang F, Xu Y, Cao Y, et al. Neuroprotective effects of metformin on traumatic brain injury in rats associated with NF-kappaB and MAPK signaling pathway. Brain Res Bull. 2018;140:154–61. https://doi.org/10.1016/j.brainresbull.2018.04.008.

    Article  CAS  PubMed  Google Scholar 

  22. Qi B, Hu L, Zhu L, Shang L, Wang X, Liu N, et al. Metformin Attenuates Neurological Deficit after Intracerebral Hemorrhage by Inhibiting Apoptosis, Oxidative Stress and Neuroinflammation in Rats. Neurochem Res. 2017;42(10):2912–20. https://doi.org/10.1007/s11064-017-2322-9.

    Article  CAS  PubMed  Google Scholar 

  23. Saffari PM, Alijanpour S, Takzaree N, Sahebgharani M, Etemad-Moghadam S, Noorbakhsh F, et al. Metformin loaded phosphatidylserine nanoliposomes improve memory deficit and reduce neuroinflammation in streptozotocin-induced Alzheimer’s disease model. Life Sci. 2020;255: 117861. https://doi.org/10.1016/j.lfs.2020.117861.

    Article  CAS  PubMed  Google Scholar 

  24. Paudel YN, Angelopoulou E, Piperi C, Shaikh MF, Othman I. Emerging neuroprotective effect of metformin in Parkinson’s disease: A molecular crosstalk. Pharmacol Res. 2020;152: 104593. https://doi.org/10.1016/j.phrs.2019.104593.

    Article  CAS  PubMed  Google Scholar 

  25. Benjanuwattra J, Apaijai N, Chunchai T, Kerdphoo S, Jaiwongkam T, Arunsak B, et al. Metformin preferentially provides neuroprotection following cardiac ischemia/reperfusion in non-diabetic rats. Biochim Biophys Acta Mol Basis Dis. 2020;1866(10): 165893. https://doi.org/10.1016/j.bbadis.2020.165893.

    Article  CAS  PubMed  Google Scholar 

  26. Fan YY, Wang YJ, Guo J, Wu MN, Zhang MS, Niu BL, et al. Delayed metformin treatment improves functional recovery following traumatic brain injury via central AMPK-dependent brain tissue repair. Brain Res Bull. 2020;164:146–56. https://doi.org/10.1016/j.brainresbull.2020.08.021.

    Article  CAS  PubMed  Google Scholar 

  27. Ou Z, Kong X, Sun X, He X, Zhang L, Gong Z, et al. Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behav Immun. 2018;69:351–63. https://doi.org/10.1016/j.bbi.2017.12.009.

    Article  CAS  PubMed  Google Scholar 

  28. Rangarajan S, Bone NB, Zmijewska AA, Jiang S, Park DW, Bernard K, et al. Metformin reverses established lung fibrosis in a bleomycin model. Nat Med. 2018;24(8):1121–7. https://doi.org/10.1038/s41591-018-0087-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yi H, Huang C, Shi Y, Cao Q, Chen J, Chen XM, et al. Metformin Attenuates Renal Fibrosis in a Mouse Model of Adenine-Induced Renal Injury Through Inhibiting TGF-beta1 Signaling Pathways. Front Cell Dev Biol. 2021;9:603802. https://doi.org/10.3389/fcell.2021.603802.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jia W, Bai T, Zeng J, Niu Z, Fan D, Xu X, et al. Combined Administration of Metformin and Atorvastatin Attenuates Diabetic Cardiomyopathy by Inhibiting Inflammation, Apoptosis, and Oxidative Stress in Type 2 Diabetic Mice. Front Cell Dev Biol. 2021;9: 634900. https://doi.org/10.3389/fcell.2021.634900.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhu W, Gao Y, Chang CF, Wan JR, Zhu SS, Wang J. Mouse models of intracerebral hemorrhage in ventricle, cortex, and hippocampus by injections of autologous blood or collagenase. PLoS ONE. 2014;9(5): e97423. https://doi.org/10.1371/journal.pone.0097423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu SP, Huang L, Flores J, Ding Y, Li P, Peng J, et al. Secukinumab attenuates reactive astrogliosis via IL-17RA/(C/EBPbeta)/SIRT1 pathway in a rat model of germinal matrix hemorrhage. CNS Neurosci Ther. 2019;25(10):1151–61. https://doi.org/10.1111/cns.13144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bloch O, Auguste KI, Manley GT, Verkman AS. Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. J Cereb Blood Flow Metab. 2006;26(12):1527–37. https://doi.org/10.1038/sj.jcbfm.9600306.

    Article  CAS  PubMed  Google Scholar 

  34. Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006;1(2):848–58. https://doi.org/10.1038/nprot.2006.116.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Feng Z, Tan Q, Tang J, Li L, Tao Y, Chen Y, et al. Intraventricular administration of urokinase as a novel therapeutic approach for communicating hydrocephalus. Transl Res. 2017;180:77-90 e2. https://doi.org/10.1016/j.trsl.2016.08.004.

    Article  CAS  PubMed  Google Scholar 

  36. Garton T, Keep RF, Wilkinson DA, Strahle JM, Hua Y, Garton HJ, et al. Intraventricular Hemorrhage: the Role of Blood Components in Secondary Injury and Hydrocephalus. Transl Stroke Res. 2016;7(6):447–51. https://doi.org/10.1007/s12975-016-0480-8.

    Article  PubMed  Google Scholar 

  37. Gao F, Liu F, Chen Z, Hua Y, Keep RF, Xi G. Hydrocephalus after intraventricular hemorrhage: the role of thrombin. J Cereb Blood Flow Metab. 2014;34(3):489–94. https://doi.org/10.1038/jcbfm.2013.225.

    Article  CAS  PubMed  Google Scholar 

  38. Georgiadis P, Xu H, Chua C, Hu F, Collins L, Huynh C, et al. Characterization of acute brain injuries and neurobehavioral profiles in a rabbit model of germinal matrix hemorrhage. Stroke. 2008;39(12):3378–88. https://doi.org/10.1161/STROKEAHA.107.510883.

    Article  CAS  PubMed  Google Scholar 

  39. Gao C, Du H, Hua Y, Keep RF, Strahle J, Xi G. Role of red blood cell lysis and iron in hydrocephalus after intraventricular hemorrhage. J Cereb Blood Flow Metab. 2014;34(6):1070–5. https://doi.org/10.1038/jcbfm.2014.56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Botfield H, Gonzalez AM, Abdullah O, Skjolding AD, Berry M, McAllister JP 2nd, et al. Decorin prevents the development of juvenile communicating hydrocephalus. Brain. 2013;136(Pt 9):2842–58. https://doi.org/10.1093/brain/awt203.

    Article  PubMed  Google Scholar 

  41. Lummis NC, Sanchez-Pavon P, Kennedy G, Frantz AJ, Kihara Y, Blaho VA, et al. LPA1/3 overactivation induces neonatal posthemorrhagic hydrocephalus through ependymal loss and ciliary dysfunction. Sci Adv. 2019;5(10):eaax2011. https://doi.org/10.1126/sciadv.aax2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Takizawa K, Matsumae M, Sunohara S, Yatsushiro S, Kuroda K. Characterization of cardiac- and respiratory-driven cerebrospinal fluid motion based on asynchronous phase-contrast magnetic resonance imaging in volunteers. Fluids Barriers CNS. 2017;14(1):25. https://doi.org/10.1186/s12987-017-0074-1.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Faubel R, Westendorf C, Bodenschatz E, Eichele G. Cilia-based flow network in the brain ventricles. Science. 2016;353(6295):176–8. https://doi.org/10.1126/science.aae0450.

    Article  CAS  PubMed  Google Scholar 

  44. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577–85. https://doi.org/10.1007/s00125-017-4342-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bharath LP, Agrawal M, McCambridge G, Nicholas DA, Hasturk H, Liu J, et al. Metformin Enhances Autophagy and Normalizes Mitochondrial Function to Alleviate Aging-Associated Inflammation. Cell Metab. 2020;32(1):44-55 e6. https://doi.org/10.1016/j.cmet.2020.04.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu Y, Tang G, Li Y, Wang Y, Chen X, Gu X, et al. Metformin attenuates blood-brain barrier disruption in mice following middle cerebral artery occlusion. J Neuroinflammation. 2014;11:177. https://doi.org/10.1186/s12974-014-0177-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jiang S, Li T, Yang Z, Yi W, Di S, Sun Y, et al. AMPK orchestrates an elaborate cascade protecting tissue from fibrosis and aging. Ageing Res Rev. 2017;38:18–27. https://doi.org/10.1016/j.arr.2017.07.001.

    Article  CAS  PubMed  Google Scholar 

  48. Xiao H, Ma X, Feng W, Fu Y, Lu Z, Xu M, et al. Metformin attenuates cardiac fibrosis by inhibiting the TGFbeta1-Smad3 signalling pathway. Cardiovasc Res. 2010;87(3):504–13. https://doi.org/10.1093/cvr/cvq066.

    Article  CAS  PubMed  Google Scholar 

  49. Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13(4):251–62. https://doi.org/10.1038/nrm3311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dasgupta B, Milbrandt J. Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci U S A. 2007;104(17):7217–22. https://doi.org/10.1073/pnas.0610068104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Velagapudi R, El-Bakoush A, Lepiarz I, Ogunrinade F, Olajide OA. AMPK and SIRT1 activation contribute to inhibition of neuroinflammation by thymoquinone in BV2 microglia. Mol Cell Biochem. 2017;435(1–2):149–62. https://doi.org/10.1007/s11010-017-3064-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. O’Neill LA, Hardie DG. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature. 2013;493(7432):346–55. https://doi.org/10.1038/nature11862.

    Article  CAS  PubMed  Google Scholar 

  53. Ramadori G, Lee CE, Bookout AL, Lee S, Williams KW, Anderson J, et al. Brain SIRT1: anatomical distribution and regulation by energy availability. J Neurosci. 2008;28(40):9989–96. https://doi.org/10.1523/JNEUROSCI.3257-08.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang F, Wang S, Gan L, Vosler PS, Gao Y, Zigmond MJ, et al. Protective effects and mechanisms of sirtuins in the nervous system. Prog Neurobiol. 2011;95(3):373–95. https://doi.org/10.1016/j.pneurobio.2011.09.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Peng Y, Jin J, Fan L, Xu H, He P, Li J, et al. Rolipram Attenuates Early Brain Injury Following Experimental Subarachnoid Hemorrhage in Rats: Possibly via Regulating the SIRT1/NF-kappaB Pathway. Neurochem Res. 2018;43(4):785–95. https://doi.org/10.1007/s11064-018-2480-4.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang XS, Wu Q, Wu LY, Ye ZN, Jiang TW, Li W, et al. Sirtuin 1 activation protects against early brain injury after experimental subarachnoid hemorrhage in rats. Cell Death Dis. 2016;7(10): e2416. https://doi.org/10.1038/cddis.2016.292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen S, Zhao L, Sherchan P, Ding Y, Yu J, Nowrangi D, et al. Activation of melanocortin receptor 4 with RO27-3225 attenuates neuroinflammation through AMPK/JNK/p38 MAPK pathway after intracerebral hemorrhage in mice. J Neuroinflammation. 2018;15(1):106. https://doi.org/10.1186/s12974-018-1140-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhu J, Liu K, Huang K, Gu Y, Hu Y, Pan S, et al. Metformin Improves Neurologic Outcome Via AMP-Activated Protein Kinase-Mediated Autophagy Activation in a Rat Model of Cardiac Arrest and Resuscitation. J Am Heart Assoc. 2018;7(12):19. https://doi.org/10.1161/JAHA.117.008389.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aiping Tong or Liangxue Zhou.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Liu, C., Li, G. et al. Metformin Alleviates Delayed Hydrocephalus after Intraventricular Hemorrhage by Inhibiting Inflammation and Fibrosis. Transl. Stroke Res. 14, 364–382 (2023). https://doi.org/10.1007/s12975-022-01026-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-022-01026-3

Keywords

Navigation