Skip to main content

Advertisement

Log in

Recycled Translation: Repurposing Drugs for Stroke

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Stroke, which continues to be a leading cause of death and long-term disability worldwide, has often been described as a clinical graveyard. While multiple small molecule therapeutics have undergone clinical trials in stroke, currently only one Food and Drug Administration (FDA)-approved medication exists for the treatment of stroke, the biological, recombinant tissue plasminogen activator (rt-PA). Repurposing of therapeutics which have previously gained FDA approval for alternative indications serves as a prospective option for stroke therapeutic translation. In contrast to de novo drug development, repurposing strategies have patient-centered and economic advantages. These include increased safety, increased chance of approval, decreased time to approval, and decreased capital investment. Presently, 37 active stroke clinical trials utilize repurposed therapeutics with various initial indications and dosing paradigms. The currently studied repurposed therapeutics fall into six mechanistic categories: (1) anticoagulation; (2) vasculature integrity, response, or red blood cell (RBC) alterations; (3) immune system regulation; (4) neurotransmission; and (5) neuroprotection. Directed hypothesis-driven computational investigation utilizing drug databases, in silico drug-protein interaction modeling, genomic data, and consensus methodology can determine if the current mechanistic repurposing categories have the highest chance of translational success or if other mechanistic avenues should be explored. With this increased focus on repurposed therapeutic strategies over de novo strategies, evolution and optimization of regulatory protections are needed to incentivize innovators and investigators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Feigin VL, Stark BA, Johnson CO, Roth GA, Bisignano C, Abady GG, et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021;20:795–820.

    Article  CAS  Google Scholar 

  2. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al. Heart disease and stroke statistics—2021 Update. Circulation. 2021;143:e254–743.

    Article  PubMed  Google Scholar 

  3. Garber K. Stroke treatment—light at the end of the tunnel? Nat Biotechnol. 2007;25:838–40.

    Article  CAS  PubMed  Google Scholar 

  4. Fransen PS, Beumer D, Berkhemer OA, van den Berg LA, Lingsma H, van der Lugt A, et al. MR CLEAN, a multicenter randomized clinical trial of endovascular treatment for acute ischemic stroke in the Netherlands: study protocol for a randomized controlled trial. Trials. 2014;15:343.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. New Engl J Med. 2015;372:1019–30.

    Article  CAS  PubMed  Google Scholar 

  6. Smith WS, Yan B. REVASCAT Trial. Stroke. 2015;46:3012–3.

    Article  PubMed  Google Scholar 

  7. Zivin JA. Acute stroke therapy with tissue plasminogen activator (tPA) since it was approved by the U.S. Food and Drug Administration (FDA). Ann Neurol. 2009;66:6–10.

    Article  PubMed  Google Scholar 

  8. Zhang Z, Zhou L, Xie N, Nice EC, Zhang T, Cui Y, et al. Overcoming cancer therapeutic bottleneck by drug repurposing. Sig Transduct Target Ther. 2020;5:113.

    Article  Google Scholar 

  9. Pantziarka P, Bouche G, Meheus L, Sukhatme V, Sukhatme VP, Vikas P. The repurposing drugs in oncology (ReDO) project. ecancermedicalscience. 2014;8.

  10. Ballard C, Aarsland D, Cummings J, O’Brien J, Mills R, Molinuevo JL, et al. Drug repositioning and repurposing for Alzheimer disease. Nat Rev Neurol. 2020;16:661–73.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Stott SRW, Wyse RK, Brundin P. Drug repurposing for Parkinson’s disease: the international linked clinical trials experience. Front Neurosci. 2021;15:653377.

  12. Athauda D, Foltynie T. Drug Repurposing in Parkinson’s Disease. CNS Drugs. 2018;32:747–61.

    Article  CAS  PubMed  Google Scholar 

  13. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18:41–58.

    Article  CAS  PubMed  Google Scholar 

  14. Sweeney DD, Chancellor MB. Treatment of stress urinary incontinence with duloxetine hydrochloride. Rev Urol. 2005;7:81–6.

    PubMed Central  PubMed  Google Scholar 

  15. Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3:673–83.

    Article  CAS  PubMed  Google Scholar 

  16. Chong CR, Sullivan DJ. New uses for old drugs. Nature. 2007;448:645–6.

    Article  CAS  PubMed  Google Scholar 

  17. Schlander M, Hernandez-Villafuerte K, Cheng C-Y, Mestre-Ferrandiz J, Baumann M. How much does it cost to research and develop a new drug? A systematic review and assessment. PharmacoEconomics. 2021;39:1243–69.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Scannell JW, Blanckley A, Boldon H, Warrington B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov. 2012;11:191–200.

    Article  CAS  PubMed  Google Scholar 

  19. Nosengo N. Can you teach old drugs new tricks? Nature. 2016;534:314–6.

    Article  PubMed  Google Scholar 

  20. Thomson Reuters. 2011 CMR International Pharmaceutical R&D Factbook. 2011;6.

  21. Wong H-H, Jessup A, Sertkaya A, Birkenbach A, Berlind A, Eyraud J. Examination of clinical trial costs and barriers for drug development final. 2014.

  22. Lapchak PA, Zhang JH. The high cost of stroke and stroke cytoprotection research. Transl Stroke Res. 2017;8:307–17.

    Article  PubMed  Google Scholar 

  23. Yella JK, Yaddanapudi S, Wang Y, Jegga AG. Changing trends in computational drug repositioning. Pharmaceuticals. 2018;11:57.

    Article  PubMed Central  Google Scholar 

  24. Roses AD. Pharmacogenetics in drug discovery and development: a translational perspective. Nat Rev Drug Discov. 2008;7:807–17.

    Article  CAS  PubMed  Google Scholar 

  25. US Food and Drug Administration. The drug development process. Step 3: Clinical Research. FDA.gov 2018.

  26. Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates and related parameters. Biostatistics. 2018;20:273–86.

    Article  PubMed Central  Google Scholar 

  27. Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S, Owen RM, et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov. 2015;14:475–86.

    Article  CAS  PubMed  Google Scholar 

  28. Pammolli F, Magazzini L, Riccaboni M. The productivity crisis in pharmaceutical R&D. Nat Rev Drug Discov. 2011;10:428–38.

    Article  CAS  PubMed  Google Scholar 

  29. Fagan SC. Drug repurposing for drug development in stroke. Pharmacotherapy. 2010;30:51s–4s.

    Article  CAS  PubMed  Google Scholar 

  30. Fouda Abdelrahman Y, Newsome Andrea S, Spellicy S, Waller Jennifer L, Zhi W, Hess David C, et al. Minocycline in acute cerebral hemorrhage. Stroke. 2017;48:2885–7.

    Article  CAS  PubMed  Google Scholar 

  31. Martin RH, Yeatts SD, Hill MD, Moy CS, Ginsberg MD, Palesch YY. ALIAS (albumin in acute ischemic stroke) Trials: analysis of the combined data from parts 1 and 2. Stroke. 2016;47:2355–9.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Clark WM, Warach SJ, Pettigrew LC, Gammans RE, Sabounjian LA. A randomized dose-response trial of citicoline in acute ischemic stroke patients Citicoline Stroke Study Group. Neurology. 1997;49:671–8.

    Article  CAS  PubMed  Google Scholar 

  33. Secades JJ, Alvarez-Sabín J, Castillo J, Díez-Tejedor E, Martínez-Vila E, Ríos J, et al. Citicoline for acute ischemic stroke: a systematic review and formal meta-analysis of randomized, double-blind, and placebo-controlled trials. J Stroke Cerebrovasc Dis. 2016;25:1984–96.

    Article  PubMed  Google Scholar 

  34. Avgerinos KI, Chatzisotiriou A, Haidich A-B, Tsapas A, Lioutas V-A. Intravenous magnesium sulfate in acute stroke. Stroke. 2019;50:931–8.

    Article  CAS  PubMed  Google Scholar 

  35. Minnerup J, Wersching H, Schäbitz W-R. Erythropoietin for stroke treatment: dead or alive? Crit Care. 2011;15:129.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Bradley D. Why big pharma needs to learn the three ‘R’s. Nat Rev Drug Discov. 2005;4:446.

    Article  CAS  PubMed  Google Scholar 

  37. Li YY, Jones SJM. Drug repositioning for personalized medicine. Genome Med. 2012;4:27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Fagan SC, Cronic LE, Hess DC. Minocycline development for acute ischemic stroke. Transl Stroke Res. 2011;2:202–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Schmidt-Pogoda A, Bonberg N, Koecke MHM, Strecker J-K, Wellmann J, Bruckmann N-M, et al. Why most acute stroke studies are positive in animals but not in patients: a systematic comparison of preclinical, early phase, and phase 3 clinical trials of neuroprotective agents. Ann Neurol. 2020;87:40–51.

    Article  CAS  PubMed  Google Scholar 

  40. Howard G, Howard VJ. Twenty years of progress toward understanding the stroke belt. Stroke. 2020;51:742–50.

    Article  PubMed  Google Scholar 

  41. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18:41–58.

    Article  CAS  PubMed  Google Scholar 

  42. Cha Y, Erez T, Reynolds IJ, Kumar D, Ross J, Koytiger G, et al. Drug repurposing from the perspective of pharmaceutical companies. Br J Pharmacol. 2018;175:168–80.

    Article  CAS  PubMed  Google Scholar 

  43. Corsello SM, Bittker JA, Liu Z, Gould J, McCarren P, Hirschman JE, et al. The Drug Repurposing Hub: a next-generation drug library and information resource. Nat Med. 2017;23:405–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Broad Institute. Clue Repurposing: Drug Repurposing Hub. 2022.

  45. US Food and Drug Administration. Drugs@FDA. 2018.

  46. March-Vila E, Pinzi L, Sturm N, Tinivella A, Engkvist O, Chen H, et al. On the integration of in silico drug design methods for drug repurposing. Front Pharmacol. 2017;8:298.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Gottlieb A, Stein GY, Ruppin E, Sharan R. PREDICT: a method for inferring novel drug indications with application to personalized medicine. Mol Syst Biol. 2011;7:496.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Valentini G, Armano G, Frasca M, Lin J, Mesiti M, Re M. RANKS: a flexible tool for node label ranking and classification in biological networks. Bioinformatics. 2016;32:2872–4.

    Article  CAS  PubMed  Google Scholar 

  49. Ruiz C, Zitnik M, Leskovec J. Identification of disease treatment mechanisms through the multiscale interactome. Nat Commun. 2021;12:1796.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Yoo M, Shin J, Kim J, Ryall KA, Lee K, Lee S, et al. DSigDB: drug signatures database for gene set analysis. Bioinformatics. 2015;31:3069–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Zulfiqar Z, Shah FA, Shafique S, Alattar A, Ali T, Alvi AM, et al. Repurposing FDA approved drugs as JNK3 inhibitor for prevention of neuroinflammation induced by MCAO in rats. J Inflamm Res. 2020;13:1185–205.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Zhou H, Gao M, Skolnick J. Comprehensive prediction of drug-protein interactions and side effects for the human proteome. Sci Rep. 2015;5:11090.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Zu S, Chen T, Li S. Global optimization-based inference of chemogenomic features from drug–target interactions. Bioinformatics. 2015;31:2523–9.

    Article  CAS  PubMed  Google Scholar 

  54. Kunz M, Liang C, Nilla S, Cecil A, Dandekar T. The drug-minded protein interaction database (DrumPID) for efficient target analysis and drug development. Database (Oxford). 2016;2016:baw041.

  55. Ikeda K, Doi T, Ikeda M, Tomii K. PreBINDS: an interactive web tool to create appropriate datasets for predicting compound–protein interactions. Front Mol Biosci. 2021;8.

  56. von Eichborn J, Murgueitio MS, Dunkel M, Koerner S, Bourne PE, Preissner R. PROMISCUOUS: a database for network-based drug-repositioning. Nucleic Acids Res. 2011;39:D1060–6.

    Article  Google Scholar 

  57. Gallo K, Goede A, Eckert A, Moahamed B, Preissner R, Gohlke B-O. PROMISCUOUS 2.0: a resource for drug-repositioning. Nucleic Acids Res. 2020;49:D1373–D80.

  58. Iorio F, Bosotti R, Scacheri E, Belcastro V, Mithbaokar P, Ferriero R, et al. Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc Natl Acad Sci. 2010;107:14621–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Carrella D, Napolitano F, Rispoli R, Miglietta M, Carissimo A, Cutillo L, et al. Mantra 2.0: an online collaborative resource for drug mode of action and repurposing by network analysis. Bioinformatics. 2014;30:1787–1788.

  60. Wu H, Huang J, Zhong Y, Huang Q. DrugSig: a resource for computational drug repositioning utilizing gene expression signatures. PLoS One. 2017;12:e0177743.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Brown AS, Kong SW, Kohane IS, Patel CJ. ksRepo: a generalized platform for computational drug repositioning. BMC Bioinforma. 2016;17:78.

    Article  Google Scholar 

  62. Jia Z, Liu Y, Guan N, Bo X, Luo Z, Barnes MR. Cogena, a novel tool for co-expressed gene-set enrichment analysis, applied to drug repositioning and drug mode of action discovery. BMC Genomics. 2016;17:1–11.

    Article  Google Scholar 

  63. Setoain J, Franch M, Martínez M, Tabas-Madrid D, Sorzano CO, Bakker A, et al. NFFinder: an online bioinformatics tool for searching similar transcriptomics experiments in the context of drug repositioning. Nucleic AcidsRes. 2015;43:W193–9.

    Article  CAS  Google Scholar 

  64. Corbett A, Pickett J, Burns A, Corcoran J, Dunnett SB, Edison P, et al. Drug repositioning for Alzheimer’s disease. Nat Rev Drug Discov. 2012;11:833–46.

    Article  CAS  PubMed  Google Scholar 

  65. Hernandez JJ, Pryszlak M, Smith L, Yanchus C, Kurji N, Shahani VM, et al. Giving drugs a second chance: overcoming regulatory and financial hurdles in repurposing approved drugs as cancer therapeutics. Front Oncol. 2017;7:273.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Sakai S, DiMasi JA, Getz KA. Analysis of review times for recent 505(b)(2) applications. Ther Innov Regul Sci. 2017;51:651–6.

    Article  PubMed  Google Scholar 

  67. Novack GD. Thoughts on improving medication use. Ocular Surf. 2018;16:191–5.

    Article  Google Scholar 

  68. US Food and Drug Administration. Guidance for Industry Applications Covered by Section 505(b)(2). 1999;1–12.

  69. Sahragardjoonegani B, Beall RF, Kesselheim AS, Hollis A. Repurposing existing drugs for new uses: a cohort study of the frequency of FDA-granted new indication exclusivities since 1997. J Pharm Policy Pract. 2021;14:3.

    Article  PubMed Central  PubMed  Google Scholar 

  70. US Food and Drug Administration. Women’s Health Research. Understanding Sex Differences at the FDA. 2019.

  71. Monte L, Ellis R. Fertility of women in the United States: 2012: population characteristics. US Census Bur. 2016;20–575.

  72. Vitale C, Fini M, Spoletini I, Lainscak M, Seferovic P, Rosano GM. Under-representation of elderly and women in clinical trials. Int J Cardiol. 2017;232:216–21.

    Article  PubMed  Google Scholar 

  73. Heyrana K, Byers HM, Stratton P. Increasing the Participation of Pregnant Women in Clinical Trials. JAMA. 2018;320:2077–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

David C. Hess conceptualized the article topic. Samantha E. Spellicy performed the literature search, analyzed the data, and authored the original draft of the article. David C. Hess and Samantha E. Spellicy critically revised the work, and all authors have read and approved the final manuscript.

Corresponding author

Correspondence to Samantha E. Spellicy.

Ethics declarations

Ethics Approval

This is a review article of previously ethically approved articles and clinical trials. No primary, human, or animal data was utilized in this study.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spellicy, S.E., Hess, D.C. Recycled Translation: Repurposing Drugs for Stroke. Transl. Stroke Res. 13, 866–880 (2022). https://doi.org/10.1007/s12975-022-01000-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-022-01000-z

Keywords

Navigation