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Dear Editor,

Worldwide, strokes are considered the second most preva-
lent cause of death. Around 7% are caused by subarachnoid 
hemorrhage (SAH), which in turn is associated with star-
tlingly high morbidity and case fatality rate (CFR) of about 
50% [1–3]. Translational approaches in the last decades have 
aimed to identify and establish new therapeutic approaches. 
Despite over 750 animal research studies having been pub-
lished—some of which yielded promising results—transla-
tion from bench to bedside has largely failed so far [4, 5]. 
Potential reasons have previously been discussed extensively 
and include differences in brain and vessel anatomy, (patho-) 
physiology, genetics, and pharmaco-dynamics depending on 
the species and the drugs used [6–8]. Consensus definitions 
of important end points, such as delayed cerebral ischemia 
(DCI), are not generally used [9, 10]. Experimental SAH 
and SAH following aneurysm rupture in human beings often 
cannot be compared directly due to different pathophysiol-
ogy and outcome parameters, e.g., vastly differing CFR [11]. 
Consequently, the use of animal models has been criticized 
for both scientific and ethical reasons.

Looking for a solution for this predicament, the suitability 
of (potential) non-animal experimental alternatives to study 
the complex pathophysiology after SAH has to be evaluated. 

However, so far, only a few preclinical in vitro models have 
been described for experimental SAH:

1. The most common preclinical SAH non-animal mod-
els are cell culture models. By growing individual cell 
populations, specific (cellular) pathomechanisms can be 
closely monitored, such as neuroinflammation, neuronal 
injury following SAH, and toxic side effects of blood 
and its components. However, when interpreting the 
results, the simplification of complex in vivo conditions 
has to be taken into account [12, 13].

2. A basic in vitro model of experimental SAH using blood, 
CSF, heme oxygenase-1, and rat arachnoid membranes 
was used to study the oxidation of unconjugated biliru-
bin by the cytochrome oxidase [14].

3. A computational analysis using a benchtop model con-
sisting of a cranial vault attached to an idealized ana-
tomical replica of the spinal canal allows the estimation 
of SAH clearance from cerebrospinal fluid (CSF) [15].

These—more or less advanced—cell cultures and basic 
in vitro models are promising tools that can lead to a more 
detailed understanding of the complex intracellular pro-
cesses following SAH, e.g., to study changes in intracel-
lular molecular pathways in response to SAH, increased 
pressure, or hypoxia. However, the pathophysiology of 
SAH is an orchestra of anatomical, mechanical, physi-
ological, and molecular mechanisms, including impair-
ments of cerebral perfusion, neuronal signaling and cel-
lular energy balance, neuroinflammatory responses, and 
disruption of CSF circulation [16]. Simple cell culture 
and basic in  vitro models clearly cannot depict these 
mechanisms—hence, more refined models are needed. An 
example of this represents the in vitro SAH—model of the 
perfused retina. The retinae used as a part of the central 
nervous system are usually a waste product generated in 
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abattoirs since they cannot be further processed into food. 
Therefore, such retinae may serve as good to study neuro-
vascular coupling and impairment of neuronal signaling by 
subarachnoid blood [17, 18]. Moreover, this model allows 
studying the impact of single cellular molecules or path-
ways for the pathophysiology of SAH [19].

Next to these established in vitro SAH models, some 
recent developments might be of great interest and poten-
tial for further SAH in vitro studies:

1. The brain-on-a-chip model allows the cultivation of dif-
ferent human cells in microfluidic chips. Using modifi-
able microchannels and microdomains inside the chip, 
a multicellular microenvironment that is able to imitate 
the neurophysiological conditions in the human brain 
with great accuracy can be created [20–22]. In the 
past few years, the brain-on-a-chip method allowed to 
depict neurophysiological processes and mechanisms 
of the human brain as well as pathological conditions 
[23–28]. Therefore, brain-on-a-chip models might be 
powerful tools for drug screening and disease modeling 
applications. So far, the brain-on-a-chip technique has 
not been used to model SAH, but it might be a promising 
approach in SAH research.

2. Embryonic stem cells are pluripotent in nature and capa-
ble of unlimited differentiation of any cell type. The pos-
sibility to create induced pluripotent stem cells (iPSCs) 
using artificial reprogramming of human somatic cells 
poses a modern possibility of modeling various organs 
in a preclinical environment. One such example is brain 
organoids which are complex and self-organizing three-
dimensional (3D) systems that can be generated via dif-
ferentiating iPSCs towards neuroectoderm lineages. 
These brain organoids are “brain-like neuroepithelial 
tissues” that constitute various cell types ranging from 
multipotent stem cells to layer-specific neurons whose 
cytoarchitecture is similar to its in vivo counterparts 
[29–32]. They show brain functionality and neurogen-
esis comparable to human neurophysiology [33, 34]. 
Generation of brain organoids with a vascular system 
is not possible since vasculature and endothelial cells 
originate from the mesoderm. Nevertheless, inducing 
a vascular system spontaneously within the brain orga-
noids is essential for neurophysiological and neuroana-
tomic completion of organoid structures. Additionally, 
vascularization in brain organoids could enhance oxy-
gen and nutrition supply, allowing culturing brain orga-
noids for the long term. Recent efforts of co-culturing 
of endothelial cells and neurospheres resulted in the 
formation of vascularized brain organoids [35]. Fur-
ther advancement was as induction of endothelial cells 
within brain organoids via an ectopic expression of ETS 

variant 2 (ETV2). This approach surprisingly generated 
functional vasculatures in brain organoids [36].

Taken together, brain organoids have the potential to fill 
the gap between in vitro cell cultures and in vivo animal 
models [37–40]. Indeed, Wang et al. [41] were able to use 
the self-organizing neural characteristic of brain organoids 
in a preclinical setting as part of the treatment of mice after 
SAH: comparing SAH-mice with and without organoid mod-
els, apoptosis was observed in less neurons when organoid 
models were implanted [41]. Furthermore, neurotransmitter-
related neurons were formed due to synaptic connections 
between brain organoids and the host brain.

So far, neither a brain-on-a-chip nor a brain organoid 
model has been established to study SAH and further studies 
have to clarify as to how far they are suitable to portray the 
human SAH pathophysiology and to develop new therapeutic 
approaches. In contrast to animal models, brain organoids 
have the advantage to offer personalized brain organoids 
when generated from iPSCs derived from individual patients. 
These organoids, as part of individualized medicine, may 
completely portray the individual patient with his genetic 
composition [42]. Therefore, these brain organoids will at 
least complement in vivo animal studies. Taken together 
with recently developed non-mammal animal models (e.g., 
zebrafish), this might substitute “classical” animal models in 
preclinical stroke research as discussed above [43, 44].

In conclusion, there exists a dilemma in translational SAH 
research: new therapeutic approaches are urgently needed 
but translation from bench to bedside with animal models 
has largely failed. Cell culture and basic in vitro models 
likely enable an analysis of some intracellular processes but 
are unable to give a complete picture. More advanced mod-
els are promising but have not yet been established except 
for the perfused retina model.

Consequently, future research has to focus on the refinement 
of sophisticated in vitro SAH models, such as a brain-on-a-chip 
or a brain organoid model. As in vitro approaches will unlikely 
replace animal experiments completely, differences in the patho-
physiology of SAH between different species must be analyzed 
and standardization in experimental SAH has to be aimed for.
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