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Abstract
We hypothesized that imaging-only-based machine learning algorithms can analyze non-enhanced CT scans of patients with acute
intracerebral hemorrhage (ICH). This retrospective multicenter cohort study analyzed 520 non-enhanced CT scans and clinical data of
patients with acute spontaneous ICH. Clinical outcome at hospital discharge was dichotomized into good outcome and poor outcome
using different modified Rankin Scale (mRS) cut-off values. Predictive performance of a random forest machine learning approach
based on filter- and texture-derived high-end image features was evaluated for differentiation of functional outcome at mRS 2, 3, and 4.
Prediction of survival (mRS ≤ 5) was compared to results of the ICH Score. All models were tuned, validated, and tested in a nested 5-
fold cross-validation approach. Receiver-operating-characteristic area under the curve (ROC AUC) of the machine learning classifier
using image features only was 0.80 (95% CI [0.77; 0.82]) for predicting mRS ≤ 2, 0.80 (95% CI [0.78; 0.81]) for mRS ≤ 3, and 0.79
(95% CI [0.77; 0.80]) for mRS ≤ 4. Trained on survival prediction (mRS ≤ 5), the classifier reached an AUC of 0.80 (95% CI [0.78;
0.82]) which was equivalent to results of the ICH Score. If combined, the integrated model showed a significantly higher AUC of 0.84
(95%CI [0.83; 0.86],P value <0.05). Accordingly, sensitivities were significantly higher at Youden Indexmaximum cut-offs (77% vs.
74% sensitivity at 76% specificity, P value <0.05). Machine learning–based evaluation of quantitative high-end image features
provided the same discriminatory power in predicting functional outcome asmultidimensional clinical scoring systems. The integration
of conventional scores and image features had synergistic effects with a statistically significant increase in AUC.
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Introduction

Intracerebral hemorrhage (ICH) is the most severe form of
stroke with a 1-month morbidity and mortality approaching

50% and death or severe disability exceeding 75% [1–3]. In
contrast to recent advances in interventional treatments of pa-
tients with ischemic stroke, beneficial effects of medical treat-
ment and surgical intervention on the mortality and functional
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outcome of ICH patients were not observed in recent trials [4,
5]. Accurate stratification of ICH prognosis is highly desired
regardless of the therapeutic options that are available and
remains a clinical research priority [6]. Therefore, several
prognostic tools have been proposed for the prediction of
mortality and functional outcome in spontaneous ICH [7].
Though potentially useful for ascertaining prognosis and fa-
cilitating communication between clinicians, numerous meth-
odological and reporting deficiencies are reported for a major-
ity of these tools [7]. There is growing interest in augmented
diagnostic and prognostic vision with machine learning (ML)
in the medical field due to the wide range of applications of
these algorithms and the increasing availability of computa-
tional power. ML is a type of artificial intelligence that learns
patterns and rules from given information [8]. Recent studies
applied ML to severity and outcome prediction models for
neurological disorders such as ischemic stroke [8], aneurys-
mal subarachnoid hemorrhage [9], and traumatic brain injury
[10]. However, ML approaches in the field of ICHwere main-
ly focused on prompt diagnosis and automated volume quan-
tification [11, 12] with lacking algorithms for the prediction of
clinical outcome. As of late, Wang et al. have been among the
first to develop an outcome prediction model based on ML by
incorporating initial clinical presentations, laboratory data,
and imaging findings [13]. Imaging findings were limited to
ICH volume and location, presence of intraventricular hemor-
rhage, ventricle compression, and midline structure shift [13].
Further integration of quantitative imaging characteristics may
hold additional prognostic value [9]. In the past, specific CT
markers and histogram-based analyses of ICH heterogeneity
have been linked to poor clinical outcome and reinforce this
notion [14–16]. The goal of this study was twofold: First, we
hypothesized that quantitative radiomic filter- and texture-
derived high-end image features extracted from non-
enhanced computed tomography (NECT) brain scans can be
used to predict clinical outcome of ICH patients. To test and
evaluate this hypothesis, we employed a radiomics-based ML
approach on NECT brain scans of patients presenting with
acute primary ICH [17]. Secondly, we hypothesized that the
diagnostic power of the presented algorithm using high-end
image features is equal to the ICH Score serving as the most
widely utilized prognostic model for predicting mortality [18].

Materials and Methods

Study Population

We retrospectively analyzed the database of three university
hospitals (University Medical Center Hamburg-Eppendorf,
Charité University Medical Center Berlin, University
Medical Center Münster) with a high-volume tertiary stroke
center, for patients with ICH aged ≥18 years between January

2010 and April 2019. Inclusion criteria were defined as fol-
lows: Spontaneous ICH confirmed on NECT on admission.
Patients were excluded if they had a secondary ICH from head
trauma, hemorrhagic transformation of ischemic infarction,
brain tumor, cerebral aneurysm, or vascular malformation.
Baseline patient characteristics were retrieved from medical
records, including Glasgow Coma Scale (GCS) at admission
and modified Rankin Scale (mRS) at discharge. Additionally,
we obtained vascular risk factors, blood pressure parameters,
antiplatelet and oral anticoagulation (OAC) medication, and
follow-up procedures, such as craniectomy or intraventricular
drainage placement from patients’ clinical records and follow-
up CT. A binary clinical outcome was defined based on mod-
ified Rankin Scale (mRS) on discharge with ≤3 as good out-
come and mRS >3 as poor outcome [19]. According to the
inclusion criteria, 520 patients were included, out of which
151 (29%) patients had a good outcome (mRS 0–3) and 369
(71%) patients had a poor outcome (mRS 4–6). Details are
listed for further consideration in Table 1. This multicenter
retrospective study was approved by the ethics committee
(Ethik-Kommission der Ärztekammer Hamburg, Ethik-
Komission der Charité Berlin) and written informed consent
was waived by the institutional review boards. All study pro-
tocols and procedures were conducted in accordance with the
Declaration of Helsinki. The deidentified data and analytic
code are available from the corresponding author upon rea-
sonable request.

Image Acquisitions

The NECT scans were performed using standard clinical pa-
rameters with axial < 5 mm section thickness. All datasets
were inspected for quality and excluded in case of severe
motion artifacts. In detail, the images were acquired on the
following scanners: 256 slice scanner (Philips iCT 256) with
120 kV, 280–320 mA, < 5.0 mm slice reconstruction; 80 slice
scanner (Toshiba Aquilion Prime) with 120 kV, 280 mA, <
5.0 mm slice reconstruction and < 0.5 mm in-plane resolution;
and 2 × 128 slice scanner (SOMATOMDefinition Flash) with
120 kV, 280 mA, < 5.0 mm slice reconstruction and < 0.5 mm
in-plane resolution.

Post-procedure Evaluations

NECT scans were obtained and stored for further evaluation.
Two experienced neuroradiologists (JN and SE) assessed and
documented the following imaging features on NECT scans:
[1] intraventricular hemorrhage; [2] ICH location; [3]
craniectomy in the follow-up NECT scans. ICH locations
were classified as basal ganglia, thalamus, lobe, brain stem,
pons, and cerebellum. In the following ICH, volumes were
segmented semi-automatically on the basis of the original
NECT images [20]. Regions of interest (ROIs) were
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delineated using Analyze 11.0 Software (Biomedical Imaging
Resource, Mayo Clinic, Rochester, MN). Consensus ROIs
were derived based on overlapping segmentations of both
readers. Both readers were blinded to all clinical information
and bleeding location. Discrepancies were settled by joint dis-
cussion of the 2 readers and a third reader (UH). JN and SE: 3
years clinical experience in diagnostic neuroradiology in an
academic full-service hospital; UH: 8 years clinical experience
in diagnostic neuroradiology; JN, SE, and UH: research with
focus on clinical applications of image processing and predic-
tive modelling.

ICH Score

ICH Scores were obtained for every patient included accord-
ing to the definition of Hemphill et al. based on five indepen-
dent and multidimensional predictors (ICH volume,
infratentorial location, GCS, age, and intraventricular

extension) [18]. ICH volumes were obtained from ICH delin-
eations. Oral anticoagulants (OAC) were not included as their
addition does not increase the prognostic performance of the
ICH Score [21]. As the ICH Score is a prognostic model for
30-day mortality in ICH patients (equivalent to mRS 6), a
binary mortality outcome was defined based on mRS at dis-
charge with mRS ≤ 5 (survival) and mRS = 6 (death).

Imaging-Based Outcome Prediction

Radiomic features were defined according to the PyRadiomics
Python package v2.1.0. Features were extracted from consen-
sus ROIs and resampled to 0.5 mm × 0.5 mm × 2 mm reso-
lution using sitk BSpline interpolators. Resampling was per-
formed to ensure comparability of texture analysis. Extracted
features comprised 252 first-order features (thereof 18 based
on unfiltered images, 144 based on wavelet decompositions,
90 based on log-sigma laplacian of Gaussian filters), 902

Table 1 Baseline demographic,
clinical, and radiological
characteristics of study cohort

Baseline characteristics All

(n = 520)

mRS 0–3

(n = 151)

mRS 4–6

(n = 369)

P value

Clinical parameters

Age [years], median (IQR) 73 (59; 79) 70 (57; 78) 73 (60; 80) 0.85

Female, n (%) 234 (45.0) 67 (44.4) 167 (45.3) 0.85

Hypertension, n (%) 359 (69.2) 99 (65.6) 260 (70.7) 0.25

Diabetes mellitus, n (%) 73 (14.0) 23 (15.2) 50 (13.7) 0.62

Antiplatelet medication, n (%) 104 (20) 33 (21.9) 71 (19.2) 0.50

Anticoagulant medication, n (%) 113 (21.7) 34 (22.5) 79 (21.4) 0.78

Systolic blood pressure [mm Hg],
median (IQR)

162 (138; 193.75) 162 (145; 185) 160 (135; 197.5) 0.75

Time from symptom onset to
CT [days], median (IQR)

0.19 (0.76; 0.52) 0.21 (0.09; 0.59) 0.19 (0.07; 0.52) 0.92

Time from CT to discharge [days],
median (IQR)

14 (7; 22) 14 (6.5; 18.5) 15.5 (6.75; 23.5) 0.13

Clinical scores

GCS Score, median (IQR) 11 (5; 14) 14 (12; 15) 9 (3; 13) <0.001

ICH Score, median (IQR) 2 (1; 3) 1 (0; 2) 3 (2; 4) <0.001

CT parameters

Bleeding location, n (%)

- Lobar

- Basal ganglia

- Thalamus

- Brainstem and pons

- Cerebellar

238(45.8)

198 (38.1)

18 (3.5)

23 (4.4)

43 (8.3)

76 (50.3)

54 (35.8)

3 (2.0)

5 (3.3)

13 (8.6)

162 (43.9)

144 (39.0)

15 (4.1)

18 (4.9)

30 (8.1)

0.18

0.49

0.24

0.43

0.86

Intraventricular hemorrhage, n (%) 267 (51.3) 50 (33.1) 217 (59) <0.001

ICH volume [mL], median (IQR) 25.1 (9.7; 60.3) 11.5 (3.6; 24.7) 35.5 (14.9; 73.2) <0.001

Surgical procedures

Craniectomy, median (IQR) 117 (22.5) 16 (10.6) 101 (27.4) <0.001

Comparison of baseline demographic, clinical, and radiological characteristics between ICH patients with good
clinical outcome (modified Rankin Scale (mRS) 0–3) versus poor clinical outcome (mRS 4–6). ICH Score,
Intracerebral Hemorrhage Score; GCS, Glasgow Coma Scale; IQR, interquartile range
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texture features (thereof 68 based on unfiltered images, 544
based on wavelet decompositions, 290 based on log-sigma
laplacian of Gaussian filters), and 14 shape features. In total,
1218 quantitative image features were extracted from the ICH
ROIs. To adjust for effects of therapeutic interventions that
cannot be detected on admission NECTs, we included decom-
pressive craniectomy as sole clinical parameter into the ma-
chine learning models.

ML-based classification was performed using random for-
est algorithms (Python scikit-learn environment v0.20.3 [22]).
Random forest is a ML technique that utilizes multiple deci-
sion trees trained on random sub-selections of samples in or-
der to improve stability and reduce overfitting of the algorithm
[23]. Decision trees learn decision rules according to predictor
values of the training data samples. With increasing depth of
nodes, decision trees can represent more complex decision
rules, resulting in a better fitting of the model [23, 24].
Hyperparameter tuning (total number of features, number of
trees, maximum depth of the tree, minimum number of sam-
ples to split an internal node, number of features considered
for splitting (mtry), minimum number of samples at leaf node,
bootstrapping yes/no) was performed in a nested 5-fold cross-
validation approach for each training set using grid search
algorithms. Parameters at initiation were set to scikit-learn
default values.

Selection of features with highest predictive value was con-
ducted separately for each training dataset of the 5-fold cross-
validation outer loop sample split according to Gini impurity
measures [25]. Classifier models were trained and tested on
each set’s unique training and testing samples (outer loop)
utilizing optimized hyperparameters and feature importance
of the respective training data (inner loop).

Integration of ICH Score and Imaging-Based Outcome
Prediction

It was shown that combinations of classification models
trained on heterogeneous predictors tend to have higher syn-
ergistic effects if knowledge flows are merged at a very late
stage of the data evaluation process. Therefore, probabilities
for survival of the ICH Score and of the imaging-based clas-
sifier were extracted. The arithmetic average of both probabil-
ities was then used for outcome prediction.

Statistics

Model validation and testing of all classifiers was conducted
in a nested 5-fold cross-validation with independent training
and validation sets in a model-external approach [26].
Accordingly, model selection and hyperparameter tuning
was performed with grid search algorithms on each training
data set using a second cross-validation layer. Model stability

was examined through comparative analysis of 10 randomly
permuted cross-validation sets.

Receiver-operating characteristic (ROC) curves were gen-
erated from prediction results of all cross-validation sets.
Confidence intervals (CI) for sensitivities and specificities
were bootstrapped (2000 replicates, pROC v1.15 [27] R-pack-
age). Bonferroni adjustments were applied to control for alpha
error inflation.

Furthermore, the classifiers were analyzed using ROC
areas under the curve (AUC), sensitivity, specificity, accura-
cy, Youden Index, positive predictive value, negative predic-
tive value (ThresholdROC v2.8 R-package), and Matthews
correlation coefficient (MCC) [28] metrics (psychometric
v.2.2. R-package). MCC evaluates all fields of the confusion
matrix and is considered a favorable measure for unbiased
comparisons of binary classifiers [29]. With TP: true posi-
tives, TN: true negatives, FP: false positives, and FN: false
negatives, MCC is defined as:

MCC ¼ TP x TN−FP x FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp

A flow chart of the proposed ML-based prediction of the
clinical outcome is depicted in Fig. 1.

Results

Our analysis included NECT images of 520 patients with
acute ICH. One hundred fifty-one patients (29%) had a mRS
of 0–3 and 369 (71%) had a mRS of 4–6. There were no
statistically significant differences in clinical parameters age
(P value = 0.85), sex (P value = 0.85), hypertension (P value =
0.25), diabetes mellitus (P value = 0.62), antiplatelet or anti-
coagulant medication (P value = 0.5 and P value = 0.78,
respectively), and systolic blood pressure at admission (P val-
ue = 0.75). Both time from symptom onset to admission CT
and time from CT to hospital discharge were not statistically
different (P value 0.92 and P value = 0.13, respectively).
However, patients with mRS 4-6 had a significantly lower
GCS (GCS 9 versus GCS 14; P value <0.001), higher percent-
age of intraventricular hemorrhage (59% versus 33.1%; P val-
ue <0.001), higher ICH volumes (35.2 cm3 versus 8.4 cm3; P
value <0.001), and a higher rate of supra-tentorial
craniectomies (27.4% versus 10.6%; P value <0.02). There
were no significant differences in ICH locations. ICH Score
was significantly higher in patients with mRS 4-6 (median 3
versus 1; P < 0.001).

Imaging-Based Outcome Prediction

Machine learning–based ROC AUCs of the validation sets
for predicting functional clinical outcome were 0.80 (95%
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CI [0.77; 0.82]) for mRS ≤ 2, 0.80 (95% CI [0.78; 0.81])
for mRS ≤ 3, and 0.79 (95% CI [0.77; 0.80]) for mRS ≤ 4.
Trained on survival prediction (mRS ≤ 5), the classifier
reached ROC AUCs of 0.80 (95% CI [0.78; 0.82]) which
was equivalent to results of the ICH Score with ROC AUC
of 0.80 (95% CI [0.79; 0.82]) (Fig. 2, Table 2). Exclusion
of the parameter craniectomy yes/no had no effect on clas-
s i f i c a t i o n p e r f o rman c e . Mode l s e l e c t i o n and
hyperparameter tuning within the nested cross-validation
process resulted in the following median settings for
mRS ≤ 2, ≤ 3, ≤ 4, and ≤ 5, respectively (medians over
cross-validation sets): Number of features considered: 25,
100, 200, 100; number of trees: 750, 1000, 500, 1000;
maximum depth of trees: 10 for all cut-off values; number
of features considered for splitting (mtry), minimum num-
ber of samples to split an internal node, and minimum
number of samples at leaf node: 1 for all cut-off values.
Feature importance analyses of the mean top 100 predic-
tors of all training data sets suggests that features with
highest predictive power are mainly derived from wavelet
(43%) and log-sigma (30%) filtered images. Unfiltered
original images contributed 27% to total predictive power.
Within feature classes, texture metrics dominated predic-
tions (58%) (Fig. 3). Predictive power of the 15 most im-
portant features demonstrates dominance of texture and
shape features compared to first-order metrics (basic sta-
tistical measures of the grey level distribution). To also
assess the predictive value of the ICH volume only, an
additional ROC analysis was performed (supplementary
Figure 1). ROC AUC for ICH volume as sole predictor
was 0.72 with a Youden Index of 0.30 at 60% specificity
and 70% sensitivity.

Integration of ICH Score and Imaging-Based Outcome
Prediction

ICH Score metrics reached a ROC AUC of 0.80 (95% CI
[0.79; 0.82]), which was equivalent to the purely imaging-
based classifier with ROC AUC of 0.80 (95% CI [0.78;
0.82]). If combined, the integrated model showed a signifi-
cantly higher ROCAUCof 0.84 (95%CI [0.83; 0.86],P value
<0.05). Sensitivities of the integrated model were significantly
higher at Youden Index maximum cut-offs with 77% vs. 74%
sensitivity at 76% specificity, P value <0.05 (Fig. 2, Table 2).

Discussion

In this study, we developed an imaging-based ML model for
predicting the functional outcome of ICH patients. The pro-
posed approach employing quantitative image features de-
rived from NECT scans provided high discriminatory accura-
cy between good and poor functional outcome of ICH patients
at different mRS cut-off values. This study is based on a large
multicenter and heterogeneous imaging dataset of 520 patients
that was acquired in clinical routine over almost a decade. The
proposed classification is solely based on high-end image fea-
tures without a priori information about the location of the
hemorrhage and without controlling for factors such as patient
conditions, image acquisition parameters, or scanner type.
Observed classification performance and model stability
across all nested cross-validation runs suggest sufficient gen-
eralizability of our results.

It is a well-known paradigm that the ICH volume pro-
foundly impacts functional clinical outcome. Initially derived

Fig. 1 Conceptual overview of the proposed machine learning approach
for intracerebral hemorrhage outcome prediction showing the major
processing steps: CT based image acquisition and segmentation, feature
extraction (n = 1218), and statistical learning (random forest algorithm).

NECT, non-contrast-enhanced computed tomography; ICH, intracerebral
hemorrhage; CT, computed tomography; mRS, modified Rankin Scale;
CV, cross-validation set with i: inner loop and o: outer loop
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by Broderick et al. to predict 30-day mortality after ICH, the
ICH volume has been later validated and included in the ICH
Score [3, 18]. In line with these findings, we have shown that
ML-based outcome assessment using ICH volume as sole
predictor al ready achieves ROC AUCs of >0.70
(supplementary Figure 1). Similarly, surrogate parameters of
ICH volume such as maximum 2D diameter or minor axis
length had comparatively high predictive importances in the
imaging-basedMLmodel. However, total contribution to pre-
dictive power of shape-based metrics in the comprehensive

model was only 19% at ROC AUCs of 0.80. It thus stands
to reason that the ICH formation on NECT holds additional
and relevant information which is not assessable by human
eyes but can be evaluated by imaging-based ML algorithms.
As so, analyses of the 100most powerful features demonstrate
the importance of second-order features (e.g., texture metrics)
in comparison to first-order features. In contrast to first-order
measures, second-order metrics also capture information re-
garding the spatial distribution of gray levels and are often
difficult to evaluate by the human visual system. The

Fig. 2 Receiver-operating characteristics (ROC) curves for (a) functional
outcome prediction of the proposed machine learning classifier based on
quantitative image features and (b) prediction of survival using the ICH
Score, the proposed machine learning classifier based on quantitative

image features, and a classifier integrating ICH Score metrics and quan-
titative image features. AUC, area under the curve; CI, confidence inter-
val; mRS, modified Rankin Scale
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predictive value of second-order features is particularly appar-
ent in the high predictive power of the gray level non-
uniformity (Fig. 3). This specific finding could be related to
the heterogenous appearance of hematomas that are still ac-
tively bleeding with evidence of spot sign or in those of pa-
tients with anticoagulation that are at risk for further expan-
sion. It is equally conceivable that the gray level non-
uniformity may differentiate areas of hyperacute ICH as the
blend sign—with blending of a hypoattenuating area and a
hyperattenuating region relative to the surrounding brain
parenchyma—suggesting hematoma expansion and in rever-
sal poor clinical outcome.

Hence, the proposed approach can be used as supportive
tool to augment conventional image analysis and to improve
prognostic decision for both radiologists and clinicians. As
aspects of precision medicine are an emerging concept [30],
combining the ICH Score with high-end imaging features may
be useful in this respect. In line with this, the ICH Score seems
to be limited in extension to critical care patients. In a pro-
spective multicenter cohort study with patients presenting
with spontaneous ICH and admitted to the intensive care unit
(ICU), the ICH Score had only acceptable discriminatory
power [31]. Although at this stage speculative and part of
future studies, the proposed ML classifier may provide prom-
ising complementary results. In anticoagulation-associated
ICH, the ICH Score may not be as reliable [21, 32, 33] and
clinical outcomes in these patients likewise substantially often
worse in comparison to patients without oral anticoagulation
(OAC) [34, 35]. Assuming that OAC therapy alters morphol-
ogy and intensity of ICH, it is most likely that radiomic fea-
tures are affected by OAC therapy. As we trained the ML
model on acute CT images of both, patients receiving OAC
and patients without OAC, the information on OAC therapy is
incorporated in the model through these differences in ICH
imaging characteristics.

Since our quantitative imaging feature analysis per-
forms equally in comparison to multidimensional scoring
systems (e.g., ICH Score), the application of the proposed
ML approach may be of value for randomized clinical
trials. Challenges and opportunities to optimize clinical
research and randomized trials in ICH are ongoing [36].
The ML approach could simplify trial procedures by
performing an imaging-based prediction of functional out-
come or early mortality. Simultaneously the multicenter
approach of this study takes local variations in practice
into account which are necessary to reflect upon a suc-
cessful trial planning. Furthermore, this approach may al-
so be of value for telemedicine and remote prediction of
ICH outcome in regions lacking neuroradiological spe-
cialists. Taken together, the proposed method integrates
the merits from quantitative radiomic features and ML
algorithms and relates the employed predictors to well-
known imaging characteristics.Ta
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Despite the promising results, several limitations deserve
comment. Our study had general limitations typically associ-
ated with quantitative radiomics-based image analysis and
classification [17, 37–39]. These limitations include differ-
ences in image acquisition settings (e.g., size of the field of
view, gantry tilt) and under- or overfitting of machine learning
algorithms. Bias of these factors was minimized through (a)
employment of NECT scans that offer standardized HU met-
rics and (b) the application of random forest algorithms that
are comparably stable with regard to overfitting. The risk of
overfitting was further reduced by evaluating multiple differ-
ent models in a nested cross-validation approach.
Furthermore, we observed study-specific limitations: First,
we included a limited number of patients in a retrospective
analysis. An expansion of sample size in a prospective study
design would certainly contribute to further improving gener-
alizability of our results. However, observed model stability
suggests sufficient robustness for evaluating feasibility and
limitations of the proposed algorithm. The utilized dataset
includes imaging data from 520 patients acquired over a rela-
tively long period of almost a decade in three different centers.
In such heterogeneous datasets, results of nested cross-
validation approaches serve as a valid indicator for confirming
feasibility and performance of the proposed classifier in the
underlying clinical setting. Due to standardized and calibrated
quantitative imaging parameters and signal intensity process-
ing of CT scanners, we assume neglectable bias on classifier
performance in a generalized setting. Second, the manual def-
inition of ROIs still implies a certain degree of observer de-
pendence within the ML process. To minimize its influence,
we employed consensus segmentations from two independent

readers and applied a semi-automated delineation method that
was shown to have a favorable inter- and intra-observer reli-
ability and a high level of congruence with a fully automated
delineation [20, 40]. Furthermore, it was found that radiomic
features are relatively stable with regard to variations in seg-
mentations [41, 42]. The lack of data on withdrawal and lim-
itation of care are a further limitation [43]. Final limitation was
the missing correlation with long-term data (e.g., mRS at 90
days andmortality) as it might offer additional information but
was not available for this study [44].

Conclusion

Quantitative imaging features of acute NECT evaluated byML
algorithms provide a high discriminatory power in predicting
functional outcome in patients with spontaneous ICH.
Additional integration of the ICH Score increases predictive
power of theML classifier, hence providing promising comple-
mentary results. The findings support the potential of ML algo-
rithms to augment conventional image analysis, improve prog-
nostic decision, and simplify trial procedures. In the very near
future, such ML techniques may play a pivotal role in deter-
mining optimized therapeutic regimes and predicting the prog-
nosis for patients with ICH in an individualized manner.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s12975-021-00891-8.
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